Modelling Multi-Scenario Ecological Network Patterns and Dynamic Spatial Conservation Priorities in Mining Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials and Pre-Processing
2.2.1. Land Use Simulation
Land Use Demand Assessment Based on MOP Model
Land Use Pattern Simulation Based on PLUS Model
2.2.2. Ecological Network Construction
Core Ecological Source Identification
Resistance Surface Construction
Ecological Corridor Extraction
2.2.3. Analysis of Ecological Network Change
Analysis of Core Ecological Source
Analysis of Ecological Corridor
Analysis of Network Connectivity
2.2.4. Analysis of Conservation Priorities
3. Results
3.1. Spatiotemporal Land Use Variations in SD
3.2. Spatiotemporal Variation of ENs in SD
3.2.1. Spatiotemporal Variation in Habitat Suitability
3.2.2. Spatiotemporal Variation in Resistance Surface
3.2.3. Spatiotemporal Variation in ENs
3.2.4. Changes in ENs in SD
3.3. Ecological Conservation Priorities in SD
4. Discussion
4.1. The Response of EN in the EEB and EDP Scenarios
4.2. Spatial Conservation Priority of EN in SD
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Coal2021-Analysis and Forecast to 2024. International Energy Agency. 2021. Available online: https://www.oecd-ilibrary.org/energy/coal-2021_ba0095c1-en (accessed on 25 April 2024).
- Jia, Z.; Lin, B. How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective. Energy 2021, 233, 121179. [Google Scholar] [CrossRef]
- Jiang, W.; Sun, Y. Which is the more important factor of carbon emission, coal consumption or industrial structure? Energy Policy 2023, 176, 113508. [Google Scholar] [CrossRef]
- Dou, S.; Xu, D.; Keenan, R.J. Effect of income, industry structure and environmental regulation on the ecological impacts of mining: An analysis for Guangxi Province in China. J. Clean. Prod. 2023, 400, 136654. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, K.; Zhao, Y.; Lechner, A.M.; Wu, J.; Zhu, Q.; Sha, W.; Wang, Y. Modelling regional ecological security pattern and restoration priorities after long-term intensive open-pit coal mining. Sci. Total Environ. 2022, 835, 155491. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Lei, S.; Yan, Q.; Bian, Z.; Lu, Q. Landscape ecological network construction controlling surface coal mining effect on landscape ecology: A case study of a mining city in semi-arid steppe. Ecol. Indic. 2021, 133, 108403. [Google Scholar] [CrossRef]
- Duan, X.; Chen, Y.; Wang, L.; Zheng, G.; Liang, T. The impact of land use and land cover changes on the landscape pattern and ecosystem service value in Sanjiangyuan region of the Qinghai-Tibet Plateau. J. Environ. Manag. 2023, 325, 116539. [Google Scholar] [CrossRef] [PubMed]
- Iván, L.; Irene, C.; Isaías, R.; Virginia, N. Mining threatens health of Panama’s environment. Science 2023, 382, 1007–1008. [Google Scholar] [CrossRef]
- Kong, X.; Fu, M.; Zhao, X.; Wang, J.; Jiang, P. Ecological effects of land-use change on two sides of the Hu Huanyong Line in China. Land Use Policy 2022, 113, 105895. [Google Scholar] [CrossRef]
- Yan, Y.; Jarvie, S.; Liu, Q.; Zhang, Q. Effects of fragmentation on grassland plant diversity depend on the habitat specialization of species. Biol. Conserv. 2022, 275, 109773. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, J.; Wang, X.; Zhao, Y.; Feng, Z. Understanding ecological groups under landscape fragmentation based on network theory. Landsc. Urban Plan. 2021, 210, 104066. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, S.; Xu, K.; Qian, Y. Ecological network resilience evaluation and ecological strategic space identification based on complex network theory: A case study of Nanjing city. Ecol. Indic. 2024, 158, 111604. [Google Scholar] [CrossRef]
- De Montis, A.; Caschili, S.; Mulas, M.; Modica, G.; Ganciu, A.; Bardi, A.; Ledda, A.; Dessena, L.; Laudari, L.; Fichera, C.R. Urban–rural ecological networks for landscape planning. Land Use Policy 2016, 50, 312–327. [Google Scholar] [CrossRef]
- Jakiel, M.; Bernatek, A. Assessment of an Ecological Network at Local Scale in the Context of Landscape Changes: A Case Study from NE Poland, In Landscape Analysis and Planning: Geographical Perspectives; Luc, M., Somorowska, U., Szmańda, J.B., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 245–256. [Google Scholar] [CrossRef]
- Yu, Q.; Yue, D.; Wang, J.; Zhang, Q.; Li, Y.; Yu, Y.; Chen, J.; Li, N. The optimization of urban ecological infrastructure network based on the changes of county landscape patterns: A typical case study of ecological fragile zone located at Deng Kou (Inner Mongolia). J. Clean. Prod. 2017, 163, S54–S67. [Google Scholar] [CrossRef]
- Wade, A.A.; Mckelvey, K.S.; Schwartz, M.K. Resistance-surface-based wildlife conservation connectivity modeling: Summary of efforts in the United States and guide for practitioners. USDA For. Serv.-Gen. Tech. Rep. 2015, 333, 1–93. [Google Scholar] [CrossRef]
- Pierik, M.E.; Dell’Acqua, M.; Confalonieri, R.; Bocchi, S.; Gomarasca, S. Designing ecological corridors in a fragmented landscape: A fuzzy approach to circuit connectivity analysis. Ecol. Indic. 2016, 67, 807–820. [Google Scholar] [CrossRef]
- Hong, W.; Guo, R.; Su, M.; Tang, H.; Chen, L.; Hu, W. Sensitivity evaluation and land-use control of urban ecological corridors: A case study of Shenzhen, China. Land Use Policy 2017, 62, 316–325. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Jia, L.; Ji, Y.; Hu, G. Ecological risk assessment and ecological security pattern optimization in the middle reaches of the Yellow River based on ERI+MCR model. J. Geogr. Sci. 2023, 33, 823–844. [Google Scholar] [CrossRef]
- Yang, C.; Guo, H.; Huang, X.; Wang, Y.; Li, X.; Cui, X. Ecological network construction of a national park based on MSPA and MCR models: An example of the proposed national parks of “Ailaoshan-Wuliangshan” in China. Land 2022, 11, 1913. [Google Scholar] [CrossRef]
- Ma, J.; Yu, Q.; Wang, H.; Yang, L.; Wang, R.; Fang, M. Construction and optimization of wetland landscape ecological network in Dongying City, China. Land 2022, 11, 1226. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Z.; Wang, Y.; Sun, D.; Zhang, J. Combining MSPA-MCR Model to Evaluate the Ecological Network in Wuhan, China. Land 2022, 11, 213. [Google Scholar] [CrossRef]
- Gao, C.; Pan, H.; Wang, M.; Zhang, T.; He, Y.; Cheng, J.; Yao, C. Identifying priority areas for ecological conservation and restoration based on circuit theory and dynamic weighted complex network: A case study of the Sichuan Basin. Ecol. Indic. 2023, 155, 111064. [Google Scholar] [CrossRef]
- Zhou, G.; Huan, Y.; Wang, L.; Lan, Y.; Liang, T.; Shi, B.; Zhang, Q. Linking ecosystem services and circuit theory to identify priority conservation and restoration areas from an ecological network perspective. Sci. Total Environ. 2023, 873, 162261. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Y.; Peng, H.; He, L. Dynamic rule of ecological risk transmission among ecological communities based on network environmental analysis. Sci. Total Environ. 2021, 781, 146729. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, L.; Zhong, Q.; Zhang, Q.; Ji, Y.; Song, P.; Wang, Q. An optimized evaluation method of an urban ecological network: The case of the Minhang District of Shanghai. Urban For. Urban Green. 2021, 62, 127158. [Google Scholar] [CrossRef]
- Valainis, U.; Balalaikins, M.; Soms, J.; Bastyte-Cseh, D.; Gintaras, A.; Baneliene, A.; Augutis, D.; Zukovskiene, M.; Nitcis, M.; Zolovs, M. Ecological network for species dependent on ancient broadleaf trees using Osmoderma barnabita as a model species: A new approach. Insect Conserv. Divers. 2022, 15, 273–287. [Google Scholar] [CrossRef]
- Wang, X.; Yonghong Li, F.; Zhang, J.; Liu, J.; Wang, Y.; Guo, Y.; Baoyin, T.; Liu, X. Changes in plant and arthropod functional traits mediate land use and precipitation effects on grassland production. Ecol. Indic. 2022, 135, 108535. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Tulbure, M.G.; Broich, M. Evaluating static and dynamic landscape connectivity modelling using a 25-year remote sensing time series. Landsc. Ecol. 2018, 33, 625–640. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Zhang, M.; Tang, Q. Characterizing and attributing the vegetation coverage changes in North Shanxi coal base of China from 1987 to 2020. Resour. Policy 2021, 74, 102331. [Google Scholar] [CrossRef]
- Liu, X.; Shi, H.; Bai, Z.; Zhou, W.; Liu, K.; Wang, M.; He, Y. Heavy metal concentrations of soils near the large opencast coal mine pits in China. Chemosphere 2020, 244, 125360. [Google Scholar] [CrossRef]
- Tozsin, G. Hazardous elements in soil and coal from the Oltu coal mine district, Turkey. Int. J. Coal Geol. 2014, 131, 1–6. [Google Scholar] [CrossRef]
- Han, T.; Li, Q.; Hai, Y.; Yang, Y.; Wen, Z.; Li, R.; Zheng, H. Response of ecosystem services and environmental dynamics in large open-pit coal mines: A case study in semi-arid areas. Glob. Ecol. Conserv. 2024, 51, e02891. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.; Zhao, D.; Wang, B.; Jin, J.; Hu, D. Evaluating and modeling ecosystem service loss of coal mining: A case study of Mentougou district of Beijing, China. Ecol. Complex. 2011, 8, 139–143. [Google Scholar] [CrossRef]
- Xu, D.Y.; Kang, X.W.; Zhuang, D.F.; Pan, J.J. Multi-scale quantitative assessment of the relative roles of climate change and human activities in desertification–A case study of the Ordos Plateau, China. J. Arid Environ. 2010, 74, 498–507. [Google Scholar] [CrossRef]
- Zhu, G.P.; Li, H.Q.; Zhao, L.; Man, L.; Liu, Q. Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center. Sci. Rep. 2016, 6, 26268. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.K.; Das Chatterjee, N.; Das, K. Modelling of soil erosion susceptibility incorporating sediment connectivity and export at landscape scale using integrated machine learning, InVEST-SDR and Fragstats. J. Environ. Manag. 2024, 353, 120164. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Gu, C.-J.; Xiao, C. Multiple scenarios analysis on land use simulation by coupling socioeconomic and ecological sustainability in Shanghai, China. Sustain. Cities Soc. 2023, 95, 104578. [Google Scholar] [CrossRef]
- Tebaldi, C.; Debeire, K.; Eyring, V.; Fischer, E.; Fyfe, J.; Friedlingstein, P.; Knutti, R.; Lowe, J.; O’Neill, B.; Sanderson, B.; et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 2021, 12, 253–293. [Google Scholar] [CrossRef]
- Williams, J.R.; Arnold, J.G. A system of erosion—Sediment yield models. Soil Technol. 1997, 11, 43–55. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; Agriculture Handbook; Department of Agriculture: Washington, DC, USA, 1978.
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Gao, J.; Gong, J.; Li, Y.; Yang, J.; Liang, X. Ecological network assessment in dynamic landscapes: Multi-scenario simulation and conservation priority analysis. Land Use Policy 2024, 139, 107059. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, L.R.; Xu, H.M.; Li, Y.Y. Spatial variability of plant community characteristics and its influencing factors in a small watershed of wind-water erosion crisscross region on the Loess Plateau, China. Ying Yong Sheng Tai Xue Bao 2019, 30, 2521–2530. [Google Scholar] [CrossRef]
- Doherty, T.S.; Hays, G.C.; Driscoll, D.A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 2021, 5, 513–519. [Google Scholar] [CrossRef]
- Gurrutxaga, M.; Lozano, P.J.; del Barrio, G. GIS-based approach for incorporating the connectivity of ecological networks into regional planning. J. Nat. Conserv. 2010, 18, 318–326. [Google Scholar] [CrossRef]
- Song, S.; Xu, D.; Hu, S.; Shi, M. Ecological network optimization in urban central district based on complex network theory: A case study with the Urban Central District of Harbin. Int. J. Environ. Res. Public Health 2021, 18, 1427. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Z.; Zhong, Q.; Zhang, Q.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.; Li, X.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 109258. [Google Scholar] [CrossRef]
- Kong, F.; Wang, D.; Yin, H.; Dronova, I.; Fei, F.; Chen, J.; Pu, Y.; Li, M. Coupling urban 3-D information and circuit theory to advance the development of urban ecological networks. Conserv. Biol. 2021, 35, 1140–1150. [Google Scholar] [CrossRef]
- Wang, F.; Yu, Q.; Qiu, S.; Xu, C.; Ma, J.; Liu, H. Study on the relationship between topological characteristics of ecological spatial network and soil conservation function in southeastern Tibet, China. Ecol. Indic. 2023, 146, 109791. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 1995. [CrossRef]
- Cook, E.A. Landscape structure indices for assessing urban ecological networks. Landsc. Urban Plan. 2002, 58, 269–280. [Google Scholar] [CrossRef]
- Miao, Z.; Pan, L.; Wang, Q.; Chen, P.; Yan, C.; Liu, L. Research on urban ecological network under the threat of road networks—A case study of Wuhan. Int. J. Geo-Inf. 2019, 8, 342. [Google Scholar] [CrossRef]
- Linehan, J.; Gross, M.; Finn, J. Greenway planning-developing a landscape ecological network approach. Landsc. Urban Plan. 1995, 33, 179–193. [Google Scholar] [CrossRef]
- Bunn, A.G.; Urban, D.L.; Keitt, T.H. Landscape connectivity: A conservation application of graph theory. J. Environ. Manag. 2000, 59, 265–278. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Saura, S.; Rubio, L. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 2010, 33, 523–537. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, L.; Cheng, Z.; Liu, X.; Dai, J.; Zhao, X.; Chen, J.; Li, M.; Chen, Z.; Sun, Q. Anthropogenic impacts on vegetation and biodiversity of the lower Yangtze region during the mid-Holocene. Quat. Sci. Rev. 2023, 299, 107881. [Google Scholar] [CrossRef]
- Wanghe, K.; Guo, X.; Hu, F.; Ahmad, S.; Jin, X.; Khan, T.U.; Xiao, Y.; Luan, X. Spatial coincidence between mining activities and protected areas of giant panda habitat: The geographic overlaps and implications for conservation. Biol. Conserv. 2020, 247, 108600. [Google Scholar] [CrossRef]
- Cao, S.; Ma, Z.; Liu, Z.; Guo, J.; Yuan, W. Achieving Harmony between the Economy and the Environment. Habitat Int. 2023, 131, 102733. [Google Scholar] [CrossRef]
- Huang, J.; Tang, Z.; Liu, D.; He, J. Ecological response to urban development in a changing socio-economic and climate context: Policy implications for balancing regional development and habitat conservation. Land Use Policy 2020, 97, 104772. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Li, J.; Gao, C. Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities. Sustain. Cities Soc. 2020, 63, 102425. [Google Scholar] [CrossRef]
- Min, M.; Lin, C.; Duan, X.; Jin, Z.; Zhang, L. Spatial distribution and driving force analysis of urban heat island effect based on raster data: A case study of the Nanjing metropolitan area, China. Sustain. Cities Soc. 2019, 50, 101637. [Google Scholar] [CrossRef]
Datasets | No. | Data | Source | Unit | Resolution | Processing |
---|---|---|---|---|---|---|
Land use | (1) | Land use data | Resource and Environmental Science Data Platform (https://www.resdc.cn/DOI/DOI.aspx?DOIID=54) (accessed on 15 April 2024) | -- | 30 m | |
Soil datasets | (2) | Harmonized World Soil Database | Geographic Data Sharing Infrastructure, College of Urban and Environmental Science, Peking University (http://geodata.pku.edu.cn) (accessed on 15 April 2024) | -- | 1 km | Calculating available plant water content and soil erosion factor [40] |
Depth to bedrock | http://globalchange.bnu.edu.cn/research/cdtb.jsp (accessed on 15 April 2024) | m | 1 km | -- | ||
Aboveground/subsurface biological carbon density | (Spawn and Gibbs, 2020) (https://doi.org/10.3334/ORNLDAAC/1763) (accessed on 15 April 2024) | Mg/ha | 300 m | Building carbon pool | ||
Soil surface organic carbon density | Global Soil Organic Carbon Map v1.5 (http://54.229.242.119/GSOCmap) (accessed on 18 April 2024) | T/ha | 1 km | Building carbon pool | ||
Road network | (3) | Freeway | Open Street Map (https://www.openstreetmap.org/) (accessed on 18 April 2024) | - | --- | Building threat sources |
Railway | ||||||
National highway | ||||||
Provincial roads | ||||||
Country roads | ||||||
Socioeconomic datasets | (4) | POP | Resource and Environmental Science Data Platform (https://www.resdc.cn) (accessed on 18 April 2024) | people/km2 | 1 km | Drivers of the PLUS model |
GDP | 104 CNY/km2 | 1 km | ||||
Industry output value | Statistic Yearbook | 104 CNY | -- | Predicting the pattern of land use | ||
Natural datasets | (5) | Precipitation | National Earth System Science Data Center (https://www.geodata.cn/data) (accessed on 18 April 2024) | 0.1 mm | 1 km | Calculating the annual precipitation and rainfall erosivity [41] |
Evaporation | 0.1 mm | 1 km | Calculating the annual evaporation | |||
SSP-RCP prediction datasets | (6) | Precipitation prediction dataset | A Big Earth Data Platform for Three Poles (https://poles.tpdc.ac.cn/zh-hans/data/) (accessed on 22 April 2024) | 0.1 mm | 1 km | Calculating the water yield and sediment delivery ratio |
Evaporation prediction dataset | National Tibetan Plateau Data Center (https://www.tpdc.ac.cn/zh-hans/data/70a3ad6b-9847-476d-a11e-a493d6c31af1) (accessed on 22 April 2024) | m/day | 0.25° | Calculating the sediment delivery ratio | ||
Topographic dataset | (7) | DEM | Geospatial Data Cloud (https://www.gscloud.cn/) (accessed on 22 April 2024) | m | 30 m | Extracting watersheds, calculating TPI |
Parameter Type | No. | Description | Equation |
---|---|---|---|
Decision variables | -- | The area of land use | |
Objective function | -- | EDP | |
-- | EEB | ||
Objective function | (1) | Total area | |
(2) | Vegetation coverage | ||
(3) | Cultivated land | ||
(4) | Forest | ||
(5) | Grassland | ||
(6) | Waterbody | ||
(7) | Construction land | ||
(8) | Unused land | ||
(9) | Coal mines | ||
(10) | Ecosystem service value |
Category | Content | Ecological Source Score | Resistance Score |
---|---|---|---|
Land use type | Cultivated land | 50 | 200 |
Forest | 100 | 1 | |
Grassland | 80 | 50 | |
Water bodies | 0 | 1000 | |
Construction land | 0 | 500 | |
Unused land | 20 | 10 | |
Coal mine | 0 | 600 | |
Ecosystem services (ES) | 0–0.25 | 60 | 100 |
0.25–0.41 | 80 | 50 | |
0.41–0.70 | 100 | 1 | |
Topography position index (TPI) | Ridge | 10 | 800 |
Abrupt slope | 30 | 300 | |
Gentle slope | 50 | 200 | |
Gorge | 90 | 10 | |
Distance to watershed | 0–1 km | 100 | 10 |
1–3 km | 90 | 50 | |
3–5 km | 70 | 100 | |
5–10 km | 60 | 200 | |
10–184 km | 30 | 300 |
Content | Index | References |
---|---|---|
Core ecological source | PN | [55] |
TA (km2) | [52] | |
MPS (km2) | [54] | |
LPI (%) | [54] | |
Ecological corridor | L | [55] |
MCL (km) | [55] | |
Network connectivity | [56] | |
[57] | ||
[58] | ||
IIC | [59] | |
PC | [60] |
Content | Indicators | 2000 | 2020 | 2030EEB | 2030EDP |
---|---|---|---|---|---|
Core ecological source | PN | 81 | 85 | 91 | 111 |
TA (km2) | 1604.99 | 1587.83 | 1799.72 | 2133.09 | |
MPS (km2) | 19.81 | 18.68 | 19.78 | 19.22 | |
LPI (%) | 44.24 | 43.23 | 41.41 | 36.62 | |
Ecological corridor | L | 200 | 201 | 212 | 269 |
MCL | 11.45 | 10.14 | 12.15 | 9.27 | |
Network connectivity | 0.76 | 0.71 | 0.69 | 0.73 | |
2.47 | 2.36 | 2.34 | 2.42 | ||
0.84 | 0.81 | 0.79 | 0.82 | ||
IIC | 0.21 | 0.20 | 0.21 | 0.21 | |
PC | 0.38 | 0.36 | 0.36 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Jiang, Z.; Dai, H.; Lin, G.; Liu, K.; Yan, R.; Zhu, Y. Modelling Multi-Scenario Ecological Network Patterns and Dynamic Spatial Conservation Priorities in Mining Areas. Land 2024, 13, 1065. https://doi.org/10.3390/land13071065
Zhang W, Jiang Z, Dai H, Lin G, Liu K, Yan R, Zhu Y. Modelling Multi-Scenario Ecological Network Patterns and Dynamic Spatial Conservation Priorities in Mining Areas. Land. 2024; 13(7):1065. https://doi.org/10.3390/land13071065
Chicago/Turabian StyleZhang, Wanqiu, Zeru Jiang, Huayang Dai, Gang Lin, Kun Liu, Ruiwen Yan, and Yuanhao Zhu. 2024. "Modelling Multi-Scenario Ecological Network Patterns and Dynamic Spatial Conservation Priorities in Mining Areas" Land 13, no. 7: 1065. https://doi.org/10.3390/land13071065
APA StyleZhang, W., Jiang, Z., Dai, H., Lin, G., Liu, K., Yan, R., & Zhu, Y. (2024). Modelling Multi-Scenario Ecological Network Patterns and Dynamic Spatial Conservation Priorities in Mining Areas. Land, 13(7), 1065. https://doi.org/10.3390/land13071065