Land Use Change Impacts over the Indus Delta: A Case Study of Sindh Province, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.3. Land Use and Land Cover Classification and Analysis
Land Use Land Cover Change and Its Indices
2.4. Accuracy Assessment of the Classified Images
2.5. Predictor Driver Extraction
2.5.1. The Role of Elevation and Slope
2.5.2. Evaluating the Distance from the River and Roads
2.5.3. Understanding Precipitation and Temperature Dynamics
2.6. Future Land Cover Simulations and Projections
3. Results
3.1. Land Use Land Cover Classification
3.2. Extraction of Indices
3.3. Accuracy Assessment of the Classified Images
3.4. LULC Change Dynamics across the Indus Delta
3.4.1. First-Order LULC Pattern (2000–2010)
3.4.2. Second-Order LULC Pattern (2010–2020)
3.4.3. Total LULC Pattern (2000–2020)
3.5. Extraction of a Predictor Driver Responsible for LULCC
3.6. Future LULC Scenario Simulation
- Red color cells signify an increase in the percentage area of a specific LULC type over the interval, while blue cells indicate a decrease. The color intensity reflects the magnitude of the change.
- Forest areas witnessed a significant decrease between 2010 and 2015, succeeded by a gradual recovery, signifying deforestation followed by reforestation or natural regrowth efforts.
- Wetlands exhibit slight fluctuations with a general trend towards decrease, notably towards 2030, highlighting pressures on these ecosystems.
- Cropland consistently registers an increase across all intervals, reflecting ongoing agricultural expansion.
- Built-up areas show a steady rise, indicating urban growth.
- Barren land and rangeland display decreases in several intervals, suggesting land conversion to other uses or degradation.
3.7. Special Emphasis on Mangrove Ecosystems
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976. [Google Scholar]
- Adams, J.B.; Smith, M.O.; Gillespie, A.R. Imaging Spectroscopy: Interpretation based on Spectral Mixture Analysis. In Remote Geochemical Analysis: Elemental and Mineralogical Composition; Pieters, C.M., Englert, P., Eds.; Topics in Remote Sensing 4; Cambridge University Press: New York, NY, USA, 1993; pp. 145–166. [Google Scholar]
- Asner, G.P.; Heidebrecht, K.B. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing multispectral and hyperspectral observations. Int. J. Rem. Sens. 2002, 23, 3939–3958. [Google Scholar] [CrossRef]
- Waseem, S.; Khayyam, U. Loss of vegetative cover and increased land surface temperature: A case study of Islamabad, Pakistan. J. Clean. Prod. 2019, 234, 972–983. [Google Scholar] [CrossRef]
- Khan, S.; Ullah, M.S.; Sun, T.; Rehman, A.U.R.; Chen, L. Land-use/land-cover changes and its contribution to urban heat island: A case study of Islamabad, Pakistan. Sustainability 2020, 12, 3861. [Google Scholar] [CrossRef]
- Shahmohamadi, P.A.; Che-Ani, I.; Etessam, I.; Maulud, K.N.A.; Tawil, N. Healthy environment: The need to mitigate urban heat island effects on human health. Procedia Eng. 2011, 20, 61–70. [Google Scholar] [CrossRef]
- Alqadhi, S.; Mallick, J.; Balha, A.; Bindajam, A.; Singh, C.K.; Hoa, P.V. Spatial and decadal prediction of land use/land cover using multi-layer perceptron-neural network (MLP-NN) algorithm for a semi-arid region of Asir, Saudi Arabia. Earth. Sci. Inform. 2021, 14, 1547–1562. [Google Scholar] [CrossRef]
- Ahmed, B.; Wei, s.; Fu, Y.G.; Shabbir, M.; Nabi, G. Effects of floods policy in Pakistan and management issues: Case of District Dera-Ghazi Khan. Int. J. Adv. Res. 2014, 2, 967–974. [Google Scholar]
- Shah, S.A.; Ai, S. Flood susceptibility mapping contributes to disaster risk reduction: A case study in Sindh, Pakistan. Int. J. Disas. Risk Red. 2024, 108, 104503. [Google Scholar] [CrossRef]
- Faroughi, M.; Karimimoshaver, M.; Aram, F.; Solgi, E.; Mosavi, A.; Nabipour, N.; Chau, K.W. Computational modeling of land surface temperature using remote sensing data to investigate the spatial arrangement of buildings and energy consumption relationship. Eng. Appl. Comput. Fluid Mech. 2020, 14, 254–270. [Google Scholar] [CrossRef]
- Khan, U.; Janjuhah, H.T.; Kontakiotis, G.; Rehman, A.; Zarkogiannis, S.D. Natural Processes and Anthropogenic Activity in the Indus River Sedimentary Environment in Pakistan: A Critical Review. J. Mar. Sci. Eng. 2021, 9, 1109. [Google Scholar] [CrossRef]
- Altaf, M. The Major deserts of Pakistan-a review. J. Wildl. Ecol. 2022, 6, 78–92. [Google Scholar]
- Ghafoor, G.Z.; Sharif, F.; Shahid, M.G.; Shahzad, L.; Rasheed, R.; Khan, A.U.H. Assessing the impact of land use land cover change on regulatory ecosystem services of subtropical scrub forest, Soan Valley Pakistan. Sci. Rep. 2022, 12, 10052. [Google Scholar] [CrossRef]
- Waleed, M.; Sajjad, M.; Shazil, M.S. Urbanization-led land cover change impacts terrestrial carbon storage capacity: A high-resolution remote sensing-based nation-wide assessment in Pakistan (1990–2020). Environ. Imp. Asses. Rev. 2024, 105, 107396. [Google Scholar] [CrossRef]
- Garcia, A.; Orengo, H.; Conesa, F.; Green, A.; Petrie, C. Remote sensing and historical morpho dynamics of alluvial plains. The 1909 Indus flood and the city of Dera Ghazi Khan (Province of Punjab, Pakistan). Geosciences 2018, 9, 21. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Ahmad, A.; Akram, W.; Hammad, H.M.; Ali, M.; Masood, N.; Amin, A.; Farid, H.U.; Sultana, S.R.; et al. Using GIS tools to detect the land use/land cover changes during forty years in Lodhran District of Pakistan. Environ. Sci. Pollut. Res Int. 2020, 27, 39676–39692. [Google Scholar] [CrossRef]
- Spalding, M. World Atlas of Mangroves; Routledge: London, UK, 2010. [Google Scholar] [CrossRef]
- Mehmood, M.S.; Rehman, A.; Sajjad, M.; Song, J.; Zafar, Z.; Shiyan, Z.; Yaochen, Q. Evaluating land use/cover change associations with urban surface temperature via machine learning and spatial modeling: Past trends and future simulations in Dera Ghazi Khan, Pakistan. Front. Ecol. Evol. 2023, 11, 1115074. [Google Scholar] [CrossRef]
- Saifullah, S. Management of the Indus Delta Mangroves. Coastal Zone Management Imperative for Maritime Developing Nations; Springer: Berlin/Heidelberg, Germany, 1997; pp. 333–346. [Google Scholar] [CrossRef]
- Maurya, K.; Mahajan, S.; Chaube, N. Remote sensing techniques: Mapping and monitoring of mangrove ecosystem—A review. Complex Intell. Syst. 2021, 7, 2797–2818. [Google Scholar] [CrossRef]
- Rodrigues, F.H.; Cerri, R.I.; de Andrade Kolya, A.; Veiga, V.M.; Reis, F.A.G.V. Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil. Remote Sens. Appl. Soc. Environ. 2023, 30, 100965. [Google Scholar] [CrossRef]
- Purwanto, A.D.; Wikantika, K.; Deliar, A.; Darmawan, S. Decision tree and random forest classification algorithms for mangrove forest mapping in Sembilang National Park, Indonesia. Remote Sens. 2022, 15, 16. [Google Scholar] [CrossRef]
- Rahmadi, R.; Koestoer, R.H.S. Comparison of the mangrove forest mapping algorithms in Kelabat Bay using random forest and support vector machines. Int. J. Remote Sens. Earth Sci. 2023, 20, 106–112. [Google Scholar]
- Mukhtar, I.; Hannan, A. Constrains on mangrove forests and conservation projects in Pakistan. J. Coast. Conserv. 2012, 16, 51–62. [Google Scholar] [CrossRef]
- Abbas, S.; Qamer, F.M.; Ali, G.; Tripathi, N.K.; Shehzad, K.; Saleem, R.; Gilani, H. An assessment of status and distribution of mangrove forest cover in Pakistan. J. Biodiver. Environ. Sci. 2013, 3, 64–78. [Google Scholar]
- Chuvieco, E. Fundamentals of Satellite Remote Sensing: An Environmental Approach; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Purkis, S.J.; Klemas, V.V. Remote Sensing, and Global Environmental Change; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Rehman, A.; Song, J.; Haq, F.; Mahmood, S.; Ahamad, M.I.; Basharat, M.; Sajid, M.; Mehmood, M.S. Multi-hazard susceptibility assessment using the analytical hierarchy process and frequency ratio techniques in the Northwest Himalayas, Pakistan. Remote Sens. 2022, 14, 554. [Google Scholar] [CrossRef]
- Thakur, S.; Mondal, P.; Ghosh, P.; Das, P.; De, T.K. A review of the application of multispectral remote sensing in the study of mangrove ecosystems with special emphasis on image processing techniques. Spatial Inform. Res. 2020, 28, 39–51. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Kamran, K.V.; Mahdavifard, M. A multi-sensor satellite image classification for the detection of mangrove forests in Qeshm Island (Southern Iran). Appl. Geomat. 2023, 15, 177–188. [Google Scholar] [CrossRef]
- Khan, R.; Li, H.; Basir, M.; Chen, Y.L.; Sajjad, M.M.; Haq, I.U.; Ullah, B.; Arif, M.; Hassan, W. Monitoring land use land cover changes and its impacts on land surface temperature over Mardan and Charsadda Districts, Khyber Pakhtunkhwa (KP), Pakistan. Environ. Monit. Assess. 2022, 194, 409. [Google Scholar] [CrossRef]
- Prasad, P.; Loveson, V.J.; Chandra, P.; Kotha, M. Evaluation and comparison of the earth observing sensors in land cover/land use studies using machine learning algorithms. Ecol. Informat. 2022, 68, 101522. [Google Scholar] [CrossRef]
- Reddy, G.O.; Kumar, N.; Singh, S. Remote sensing and GIS in mapping and monitoring of land degradation. Geospat. Technol. Land Resour. Map. Monit. Manag. 2018, 21, 401–424. [Google Scholar] [CrossRef]
- Arab, S.T.; Islam, M.M.; Shamsuzzoha, M.; Alam, K.F.; Muhsin, N.; Noguchi, R.; Ahamed, T. A review of remote sensing applications in agriculture and forestry to establish big data analytics. In Remote Sensing Application: Regional Perspectives in Agriculture and Forestry; Springer: Singapore, 2022; pp. 1–24. [Google Scholar] [CrossRef]
- Ghrefat, H.; Al Mutairi, Y.; ElAraby, H.; Galmed, M.; Mohamed, E. Using reflectance spectroscopy and Advanced Spaceborne Thermal Emission and Reflection Radiometer data to identify bauxite deposits in the vicinity of Az Zabirah, northern Saudi Arabia. Arab. J. Geosci. 2021, 14, 820. [Google Scholar] [CrossRef]
- Varga-Szilay, Z.; Fetyko, K.G.; Szovenyi, G.; Pozsgai, G. Bridging biodiversity and gardening: Unravelling the interplay of socio-demographic factors, garden practices, and garden characteristics. Urban For. Urban Green. 2024, 97, 128367. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Bossio, D.A.; Verchot, L.V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosys. Environ. 2008, 126, 67–80. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogram. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Pettorelli, N.; Laurance, W.F.; O’Brien, T.G.; Wegmann, M.; Nagendra, H.; Turner, W. Satellite remote sensing for applied ecologists: Opportunities and challenges. J. Appl. Ecol. 2014, 51, 839–848. [Google Scholar] [CrossRef]
- Shah, S.A.; Kiran, M. Mann–Kendall test: Trend analysis of temperature, rainfall, and discharge of Ghotki feeder canal in district Ghotki, Sindh, Pakistan. Environ. Ecosys. Sci. 2021, 5, 137–142. [Google Scholar] [CrossRef]
- Shah, S.A.; Kiran, M. A GIS-based technique analysis of land use and land cover change detection in taluka Mirpur Mathelo: A case study in district Ghotki, Pakistan. Int. Adv. Res. Eng. J. 2021, 5, 231–239. [Google Scholar] [CrossRef]
- Demarquet, Q.; Rapinel, S.; Dufour, S.; Hubert-Moy, L. Long-term wetland monitoring using the Landsat archive: A Review. Remote Sens. 2023, 15, 820. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, X.; Li, X.; Song, B.; Wang, C. Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Ecol. Indica 2020, 56, 106004. [Google Scholar] [CrossRef]
- Shah, S.A.; Kiran, M.; Khurshid, T. Seepage losses measurement of Desert minor and development of gauge-discharge rating curve: A case study in District Ghotki, Sindh. World Acad. J. Eng. Sci. 2021, 8, 13–22. [Google Scholar] [CrossRef]
- Khan, N.; Shah, S.J.; Rauf, T.; Zada, M.; Yukun, C.; Harbi, J. Socioeconomic impacts of the billion trees afforestation program in Khyber Pakhtunkhwa Province (KPK), Pakistan. Forests 2019, 10, 703. [Google Scholar] [CrossRef]
- Kafy, A.A.; Shuvo, R.M.; Naim, M.N.H.; Sikdar, M.S.; Chowdhury, R.R.; Islam, M.A.; Sarker, M.H.S.; Khan, M.H.H.; Kona, M.A. Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of Bangladesh. Remote Sens. Appl. Soc. Environ. 2020, 21, 100463. [Google Scholar] [CrossRef]
- Tayyab, M. Management of surface water resources to mitigate the water stress in Karachi. In Proceedings of the International Conference on Hydrology and Water Resources (ICHWR-2021), Lahore, Pakistan, 25 March 2021. [Google Scholar]
- Gedan, K.B.; Epanchin-Niell, R.; Qi, M. Rapid lands cover change in a submerging coastal county. Wetlands 2020, 40, 1717–1728. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Ai, J.; Zhang, C.; Chen, J.; Li, D. Mapping annual land use and land cover changes in the Yangtze estuary region using an object-based classification framework and Landsat time series data. Sustainability 2020, 12, 659. [Google Scholar] [CrossRef]
- Chughtai, A.H.; Abbasi, h.; Karas, I.R. A review on change detection method and accuracy assessment for land use land cover. Remote Sens. Appl. Soc. Environ. 2021, 22, 100482. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Cui, S.; Xu, L.; Ding, S.; Nie, W. Linking land-use change, landscape patterns, and ecosystem services in a coastal watershed of southeastern China. Glob. Ecol. Conserv. 2020, 23, e01177. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Rana, V.K.; Suryanarayana, T.M.V. Performance evaluation of MLE, RF, and SVM classification algorithms for watershed-scale land use/land cover mapping using sentinel 2 bands. Remote Sens. Appl. Soc. Environ. 2020, 19, 100351. [Google Scholar] [CrossRef]
- Regasa, M.S.; Nones, M.; Adeba, D. A review on land use and land cover change in Ethiopian basins. Land 2021, 10, 585. [Google Scholar] [CrossRef]
- Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Space Sci. 2017, 20, 125–145. [Google Scholar] [CrossRef]
- Piyoosh, A.K.; Ghosh, S.K. Analysis of land use land cover change using a new and existing spectral index and its impact on normalized land surface temperature. Geocarto Int. 2022, 37, 2137–2159. [Google Scholar] [CrossRef]
- Lemenkova, P.; Debeir, O. Computing Vegetation Indices from the Satellite Images Using GRASS GIS Scripts for Monitoring Mangrove Forests in the Coastal Landscapes of Niger Delta, Nigeria. J. Mar. Sci. Eng. 2023, 11, 871. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, M.; Shah, S.H.H.; Kamran, M.; Wajid, S.A.; Amin, M.; Khan, A.; Arshad, M.N.; Cheema, M.J.M.; Saqid, Z.A. Agro-Ecological Zones of Punjab, Pakistan; FAO: Rome, Italy, 2019. [Google Scholar]
- Platt, R.V.; Rapoza, L. An evaluation of an object-oriented paradigm for land use/land cover classification. Prof. Geogr. 2008, 60, 87–100. [Google Scholar] [CrossRef]
- Tilahun, A.; Teferie, B. Accuracy assessment of land use land cover classification using Google Earth. Am. J. Environ. Prot. 2015, 4, 193–198. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 8, 611. [Google Scholar] [CrossRef]
- Kraemer, C.; Panda, S.S. Automating arc hydro for watershed delineation. In Proceedings of the 2009 Georgia Water Resources Conference, University of Georgia, Athens, GA, USA, 27–29 April 2009. [Google Scholar]
- Rimal, B.; Zhang, L.; Keshtkar, H.; Wang, N.; Lin, Y. Monitoring and Modeling of Spatiotemporal Urban Expansion and Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model. ISPRS Int. J. Geo-Inform. 2017, 6, 288. [Google Scholar] [CrossRef]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy 2020, 91, 104414. [Google Scholar] [CrossRef]
- Ruben, G.B.; Zhang, K.; Dong, Z.; Xia, J. Analysis and projection of land-use/land-cover dynamics through scenario-based simulations using the CA-Markov model: A case study in Guanting reservoir basin, China. Sustainability 2020, 12, 3747. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Cao, X.; Wang, Y.; Zhang, W.; Cheng, X. A review of regional and Global scale Land Use/Land Cover (LULC) mapping products generated from satellite remote sensing. ISPRS J. Photogram. Remote Sens. 2023, 206, 311–334. [Google Scholar] [CrossRef]
- Zhai, J.; Xiao, C.; Feng, Z.; Liu, Y. Are there suitable global datasets for monitoring of land use and land cover in the tropics? Evidences from mainland Southeast Asia. Glob. Planet. Chang. 2023, 229, 104233. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Guneralp, B.; Reilly, M.K. A Meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J. Land Use and Land Cover Change-Local Processes and Global Impacts; Springer: Berlin/Heidelberg, Germany, 2006; p. 222. [Google Scholar]
- Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and productivity in a long-term grassland experiment. Science 2001, 294, 843–845. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. The Value of Wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25–33. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Health Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Verburg, P.H.; Kok, K.; Pontius, R.G.; Veldkamp, A. Modeling land-use and land-cover change. In Land-Use and Land-Cover Change; Lambin, E.F., Geist, H., Eds.; Global Change the IGBP Series; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Turner, R.N.; Crisp, R.J.; Lambert, E. Imagining intergroup contact can improve intergroup attitudes. Group Process. Intergroup Relat. 2007, 10, 427–441. [Google Scholar] [CrossRef]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Ahmad, H.; Abdallah, M.; Jose, F.; Elzain, H.E.; Bhuyan, M.S.; Shoemaker, D.J.; Selvam, S. Evaluation and mapping of predicted future land use changes using hybrid models in a coastal area. Ecol. Inform. 2023, 78, 102324. [Google Scholar] [CrossRef]
- O’Hara, C.; King, G.J.S.; Cartwright, J.H.; King, R.L. Multitemporal land use and land cover classification of urbanized areas within sensitive coastal environments. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2005–2014. [Google Scholar] [CrossRef]
- Abijith, D.; Saravanan, S. Assessment of land use and land cover change detection and prediction using remote sensing and CA Markov in the northern coastal districts of Tamil Nadu, India. Environ. Sci. Pollut. Res. 2021, 29, 86055–86067. [Google Scholar] [CrossRef]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote sensing of mangrove ecosystems: A Review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef]
Acquired Date | Spacecraft ID | Sensor ID | Path/Row | No. of Scene |
---|---|---|---|---|
2000 | Landsat-5 | TM | 150-52/40-44 | 13–14 |
2005 | Landsat-5 | TM | 150-52/40-44 | 13–14 |
2010 | Landsat-5 | TM | 150-52/40-44 | 13–14 |
2015 | Landsat-8 | OLI_TIRS | 150-52/40-44 | 13 |
2020 | Landsat-8 | OLI_TIRS | 150-52/40-44 | 13 |
Class Code | LULC Type | Description |
---|---|---|
1 | Forest | Forest, natural and artificial dense vegetation area, orchard |
2 | Wetland | Ocean and surface water bodies like major and minor streams, lakes, mangroves, and ponds |
3 | Cropland | All types of cultivated land including rainfed agriculture land |
4 | Built-up | Artificial structures and surfaces associated with urban and suburban environments |
5 | Barren land | Open spaces with low and no vegetation, deforested areas, rock surfaces, sand, and soil deposits |
6 | Rangeland | Grasslands, shrublands, savannas, and woodlands |
Accuracy Types | LULC Types | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|
User’s accuracy (%) | Forest | 95.7 | 93 | 96.2 | 92.6 | 90.7 |
Wetland | 99.8 | 97.1 | 98.3 | 100 | 100 | |
Cropland | 78 | 81 | 88.3 | 86.3 | 91.5 | |
Built-up | 97 | 90 | 89 | 90 | 88.5 | |
Barren land | 99 | 97.3 | 78.7 | 97.3 | 79.6 | |
Rangeland | 93 | 91 | 95.4 | 95 | 93.4 | |
Producer’s accuracy (%) | Forest | 96 | 93 | 92.4 | 93 | 91.7 |
Wetland | 99.5 | 88.1 | 98 | 88.1 | 100 | |
Cropland | 86 | 94.1 | 89.1 | 94.1 | 90.1 | |
Built-up | 97 | 94.3 | 89 | 94.3 | 87.7 | |
Barren land | 96 | 95 | 79.2 | 95 | 79.6 | |
Rangeland | 89.6 | 90.5 | 95.4 | 90.5 | 93.4 | |
Overall accuracy (%) | 92.3 | 94.8 | 89.1 | 95.3 | 96.8 | |
Kappa coefficient | 90.4 | 92.1 | 88.4 | 93.5 | 94.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masood, M.; He, C.; Shah, S.A.; Rehman, S.A.U. Land Use Change Impacts over the Indus Delta: A Case Study of Sindh Province, Pakistan. Land 2024, 13, 1080. https://doi.org/10.3390/land13071080
Masood M, He C, Shah SA, Rehman SAU. Land Use Change Impacts over the Indus Delta: A Case Study of Sindh Province, Pakistan. Land. 2024; 13(7):1080. https://doi.org/10.3390/land13071080
Chicago/Turabian StyleMasood, Maira, Chunguang He, Shoukat Ali Shah, and Syed Aziz Ur Rehman. 2024. "Land Use Change Impacts over the Indus Delta: A Case Study of Sindh Province, Pakistan" Land 13, no. 7: 1080. https://doi.org/10.3390/land13071080
APA StyleMasood, M., He, C., Shah, S. A., & Rehman, S. A. U. (2024). Land Use Change Impacts over the Indus Delta: A Case Study of Sindh Province, Pakistan. Land, 13(7), 1080. https://doi.org/10.3390/land13071080