Cover Crop Effects on Surface Runoff and Subsurface Flow in Rainfed Hillslope Farming and Connections to Water Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Management
2.2. Runoff Plots, Sampling, and Chemical Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Rainfall, Surface Runoff, and Subsurface Flow
3.2. Nutrient Leachates by Runoff Waters
Implications for Groundwater Quality
3.3. Soil Properties and Their Relationship with Surface Runoff
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Durán, Z.V.H.; Rodríguez, P.C.R.; Flanagan, D.; Francia, M.J.R.; Martínez, R.A. Agricultural runoff: New research trends. In Agricultural Runoff, Coastal Engineering and Flooding; Hudspeth, C.A., Reeve, T.E., Eds.; Nova Science Publisher Inc.: New York, NY, USA, 2009; pp. 27–48. [Google Scholar]
- Love, D.; Uhlenbrook, S.; Corzo, P.G.; Twomlow, S.; van der Zaag, P. Rainfall–interception–evaporation–runoff relationships in a semi-arid catchment, northern Limpopo basin, Zimbabwe. Hydrol. Sci. J. 2010, 55, 687–703. [Google Scholar] [CrossRef]
- Li, X.Y.; Contreras, S.; Solé-Benet, A.; Cantón, Y.; Domingo, F.; Lázaro, R.; Lin, H.; Van Wesemael, B.; Puigdefábregas, J. Controls of infiltration–runoff processes in Mediterranean karst rangelands in SE Spain. Catena 2011, 86, 98–109. [Google Scholar] [CrossRef]
- Luna, J.M.J.; Masino, P.; Bertone, E.; Stewart, R.A. Towards nutrient neutrality: A review of agricultural runoff mitigation strategies and the development of a decision-making framework. Sci. Total Environ. 2023, 874, 162408. [Google Scholar] [CrossRef] [PubMed]
- Lemma, B.; Kebede, F.; Mesfin, S.; Fitiwy, I.; Abraha, Z.; Norgrove, L. Quantifying annual soil and nutrient lost by rill erosion in continuously used semiarid farmlands, North Ethiopia. Environ. Earth Sci. 2017, 76, 190. [Google Scholar] [CrossRef]
- Cárceles, B.; Durán, Z.V.H.; Soriano, R.M.; Gálvez, R.B.; García-Tejero, I.F. Soil erosion and the effectiveness of the conservation measures in Mediterranean hillslope farming (SE Spain). Eurasian Soil Sci. 2021, 54, 792–806. [Google Scholar] [CrossRef]
- Deakin, J.; Flynn, R.; Archbold, M.; Daly, D.; O’Brien, R.; Orr, A.; Misstear, B. Understanding pathways transferring nutrients to streams: Review of a major Irish study and its implications for determining water quality management strategies. Biol. Environ. 2016, 116B, 233–243. [Google Scholar] [CrossRef]
- Deasy, C.; Brazier, R.E.; Heathwaite, A.L.; Hodgkinson, R. Pathways of runoff and sediment transfer in small agricultural catchments. Hydrol. Process. 2009, 23, 1349–1358. [Google Scholar] [CrossRef]
- Mazur, A. Quantity and quality of surface and subsurface runoff from an eroded loess slope used for agricultural purposes. Water 2018, 10, 1132. [Google Scholar] [CrossRef]
- Gardner, C.M.K.; Cooper, D.M.; Hughes, S. Phosphorus in soils and field drainage water in the Thame catchment, UK. Sci. Total Environ. 2002, 283, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Heathwaite, A.L.; Burke, S.P.; Bolton, L. Field drains as a route of rapid nutrient export from agricultural land receiving biosolids. Sci. Total Environ. 2006, 365, 33–46. [Google Scholar] [CrossRef]
- Nazari, S.; Ford, I.W.; King, W.K. Impact of flow pathway and source water connectivity on subsurface sediment and particulate phosphorus dynamics in tile-drained agroecosystems. Agric. Water Manag. 2022, 269, 107641. [Google Scholar] [CrossRef]
- Nachimuthu, G.; Hulugalle, N. On-farm gains and losses of soil organic carbon in terrestrial hydrological pathways: A review of empirical research. Int. Soil Water Conserv. Res. 2016, 4, 245–259. [Google Scholar] [CrossRef]
- Novara, A.; Pisciotta, A.; Minacapilli, M.; Maltese, A.; Capodici, F.; Cerdà, A.; Gristina, L. The impact of soil erosion on soil fertility and vine vigor. A multidisciplinary approach based on field, laboratory and remote sensing approaches. Sci. Total Environ. 2018, 622, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Feng, G.; Ouyang, Y. Effects of soil and water conservation practices on runoff, sediment and nutrient losses. Water 2018, 10, 1333. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Martínez, R.A.; Aguilar, R.J. Nutrient losses by runoff and sediment from the taluses of orchard terraces. Water Air Soil Pollut. 2004, 153, 355–373. [Google Scholar] [CrossRef]
- Vadas, P.A.; Jokela, E.W.; Franklin, D.H.; Endale, D.M. The effect of rain and runoff when assessing timing of manure application and dissolved phosphorus loss in runoff. J. Am. Water Resour. Assoc. 2011, 47, 877–886. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Xu, C.Y.; Huang, X.R.; Xie, D.T.; Ni, J.P. Particle interaction forces induce soil particle transport during rainfall. SSSAJ 2013, 77, 1563–1571. [Google Scholar] [CrossRef]
- Rodríguez, P.C.R.; Durán, Z.V.H.; Martínez, R.A.; Francia, M.J.R.; Cárceles, R.B. High reduction of erosion and nutrient losses by decreasing harvest intensity of lavender grown on slopes. Agron. Sustain. Develop. 2009, 29, 363–370. [Google Scholar] [CrossRef]
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Shou, C.Y.; Tian, Y.; Zhou, B.; Fu, X.J.; Zhu, Y.J.; Yue, F.J. The effect of rainfall on aquatic nitrogen and phosphorus in a semi-humid area catchment, northern China. Int. J. Environ. Res. Public Health 2022, 19, 10962. [Google Scholar] [CrossRef]
- Earman, S.; Dettinger, M. Potential impacts of climate change on groundwater resources—A global review. J. Water Clim. Chang. 2011, 2, 213–229. [Google Scholar] [CrossRef]
- Dao, P.U.; Heuzard, A.G.; Le, T.X.H.; Zhao, J.; Yin, R.; Shang, C.; Fan, C. The impacts of climate change on groundwater quality: A review. Sci. Total Environ. 2024, 912, 169241. [Google Scholar] [CrossRef] [PubMed]
- Schröder, J.J.; Scholefield, D.; Cabral, F.; Hofman, G. The effects of nutrient losses from agriculture on ground and surface water quality: The position of science in developing indicators for regulation. Environ. Sci. Policy 2004, 7, 15–23. [Google Scholar] [CrossRef]
- Carstensen, M.V.; Hashemi, F.; Hoffmann, C.C.; Zak, D.; Audet, J.; Kronvang, B. Efficiency of mitigation measures targeting nutrient losses from agricultural drainage systems: A review. Ambio 2020, 49, 1820–1837. [Google Scholar] [CrossRef] [PubMed]
- Zewdie, I.; Achame, A. Review of on-site and off-site effects of soil erosion. Int. J. Environ. Pollut. Res. 2021, 9, 1–17. [Google Scholar] [CrossRef]
- Ceballos, A.; Martínez, F.J.; Luengo, U.M.A. Analysis of rainfall trends and dry periods on a pluviometric gradient representative of Mediterranean climate in the Duero Basin, Spain. J. Arid Environ. 2004, 58, 215–233. [Google Scholar] [CrossRef]
- Deitch, M.J.; Sapundjieff, M.J.; Feirer, S.T. Characterizing precipitation variability and trends in the world’s Mediterranean-climate areas. Water 2017, 9, 259. [Google Scholar] [CrossRef]
- Ferreira, S.S.C.; Seifollahi, A.S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Nadal-Romero, E.; Lana-Renault, N.; Beguería, S. Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology 2013, 198, 20–36. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- ESYRCE. Encuesta Sobre Superficies y Rendimientos Cultivos (ESYRCE). 2023. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/ (accessed on 1 May 2024).
- Sánchez, M.D.; Paniza, C.A. The olive monoculture in the south of Spain. Eur. J. Geogr. 2015, 6, 16–29. [Google Scholar]
- FAOSTAT. Food and Agriculture Organisation of the United Nations; FAO: Rome, Italy, 2023; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 1 May 2024).
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; Agriculture Handbook No. 537; U.S. Department of Agriculture: Washington, DC, USA, 1978.
- World Reference Base for Soil Resources; World Soil Resources; Report 84; FAO: Rome, Italy, 1998.
- APHA. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association Inc.: New York, NY, USA, 1995. [Google Scholar]
- Ministerio de Agricultura Pesca y Alimentación. Métodos Oficiales de Análisis. Tomo III; Ministerio de Agricultura Pesca y Alimentación: Madrid, Spanish, 1994.
- Martínez-Casasnovas, J.A.; Ramos, M.C.; Ribes, D.M. Soil erosion caused by extreme rainfall events: Mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 2002, 105, 125–140. [Google Scholar] [CrossRef]
- Martínez Ibarra, E. A geographical approach to postflood analysis: The extreme flood event of 12 October 2007 in Calpe (Spain). Appl. Geogr. 2012, 32, 490–500. [Google Scholar] [CrossRef]
- Valdes, A.J.; Pardo, M.A.; Tenza, A.J. Observed precipitation trend changes in the western Mediterranean region. Int. J. Climatol. 2017, 37, 1285–1296. [Google Scholar] [CrossRef]
- JLatron, J.; Gallart, F. Runoff generation processes in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). J. Hydrol. 2008, 358, 206–220. [Google Scholar] [CrossRef]
- Niedda, M.; Castellini, M.; Giadrossich, F.; Pirastru, M. Runoff generation processes in a Mediterranean research catchment (Sardinia). J. Agric. Eng. 2013, 44, 41–47. [Google Scholar] [CrossRef]
- Cárceles, R.B.; Gálvez, R.B.; Francia, M.J.R.; Cuadros, T.S.; Rodríguez, P.C.R.; Durán, Z.V.H. Vegetation cover and furrow erosion due to extreme rain events in semi-arid environments. Trop. J. Environ. Sci. 2017, 51, 51–61. [Google Scholar] [CrossRef]
- Serrano, N.R.; Martínez, S.A.; García, L.R.; Espín, S.D.; Conesa, C.G. Rainfall–runoff relationships at event scale in western Mediterranean ephemeral streams. Hydrol. Earth Syst. Sci. 2022, 26, 1243–1260. [Google Scholar] [CrossRef]
- Siebers, N.; Kruse, J.; Jia, Y.; Lennartz, B.; Koch, S. Loss of subsurface particulate and truly dissolved phosphorus during various flow conditions along a tile drain–ditch–brook continuum. Sci. Total Environ. 2023, 866, 161439. [Google Scholar] [CrossRef] [PubMed]
- Francia, M.J.R.; Durán, Z.V.H.; Martínez, R.A. Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci. Total Environ. 2006, 358, 46–60. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Rodríguez, P.C.R.; Arroyo, P.L.; Martínez, R.A.; Francia, M.J.R.; Cárceles, R.B. Soil conservation measures in rainfed olive orchards in South-Eastern Spain: Impacts of plant strips on soil water dynamics. Pedosphere 2009, 19, 453–464. [Google Scholar] [CrossRef]
- Durán, Z.V.H.; Rodríguez, P.C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Develop. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Bosch, D.D.; Potter, T.L.; Truman, C.C.; Bednarz, C.W.; Strickland, T.C. Surface runoff and lateral subsurface flow as a response to conservation tillage and soil-water conditions. Trans ASAE 2005, 48, 2137–2144. [Google Scholar] [CrossRef]
- Cárceles, R.B.; Durán, Z.V.H.; Soriano, R.M.; García-Tejero, I.F.; Gálvez, R.B.; Cuadros, T.S. Conservation agriculture as a sustainable system for soil health: A review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, Y.; Wan, K.Y.; Zhang, G.S.; Liu, D.B.; Xiong, G.Y.; Chen, F. Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China. Agric. Water Manag. 2012, 110, 34–40. [Google Scholar] [CrossRef]
- Liu, J.; Liang, Y.; Gao, G.; Dunkerley, D.; Fu, B. Quantifying the effects of rainfall intensity fluctuation on runoff and soil loss: From indicators to models. J. Hydrol. 2022, 607, 127494. [Google Scholar] [CrossRef]
- Manninen, N.; Soinne, H.; Lemola, R.; Hoikkala, L.; Turtola, E. Effects of agricultural land use on dissolved organic carbon and nitrogen in surface runoff and subsurface drainage. Sci. Total Environ. 2018, 618, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Tiscareño, L.M.; Velasquez, V.M.; Salinas, G.J.; Baez, G.A.D. Nitrogen and organic matter losses in no-till corn cropping systems. J. Am. Water Resour. Assoc. 2004, 40, 401–408. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Motavalli, P.P.; Garrett, H.E.; Krstansky, J.J. Nitrogen losses in runoff from three adjacent agricultural watersheds with claypan soils. Agric. Ecosyst. Environ. 2006, 117, 39–48. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, B.K.; Scherer, H.W. Fixation and defixation of ammonium in soils: A review. Biol. Fertil. Soils 2011, 47, 1–14. [Google Scholar] [CrossRef]
- Stenberg, M.; Ulén, B.; Söderström, M.; Roland, B.; Delin, K.; Helander, C.A. Tile drain losses of nitrogen and phosphorus from fields under integrated and organic crop rotations: A four-year study on a clay soil in southwest Sweden. Sci. Total Environ. 2012, 434, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Melland, A.R.; Mc Caskill, M.R.; White, R.E.; Chapman, D.F. Loss of phosphorus and nitrogen in runoff and subsurface drainage from high and low input pastures grazed by sheep in southern Australia. Aust. J. Soil Res. 2008, 46, 161–172. [Google Scholar] [CrossRef]
- Norberg, L.; Linefur, H.; Andersson, S.; Blomberg, M.; Kyllmar, K. Nutrient losses over time via surface runoff and subsurface drainage from an agricultural field in northern Sweden. J. Environ. Qual. 2022, 51, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Turtola, E.; Yli-Halla, M. Fate of phosphorus applied in slurry and mineral fertilizer: Accumulation in soil and release into surface runoff water. Nutr. Cycl. Agroecosyst. 1999, 55, 165–174. [Google Scholar] [CrossRef]
- Kleinman, P.; Sharpley, A.; Buda, A.; McDowell, R.; Allen, A. Soil controls of phosphorus in runoff: Management barriers and opportunities. Can. J. Soil Sci. 2011, 91, 329–338. [Google Scholar] [CrossRef]
- Xia, L.Z.; Liu, G.H.; Wu, Y.H.; Ma, L.; Li, Y.D. Protection methods to reduce nitrogen and phosphorus losses from sloping citrus land in the three gorges area of China. Pedosphere 2015, 25, 478–488. [Google Scholar] [CrossRef]
- Yao, Y.; Dai, Q.; Gao, R.; Gan, Y.; Yi, X. Effects of rainfall intensity on runoff and nutrient loss of gently sloping farmland in a karst area of SW China. PLoS ONE 2021, 16, e0246505. [Google Scholar] [CrossRef] [PubMed]
- Korucu, T.; Shipitalo, M.J.; Kaspar, T.C. Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff. Soil Till. Res. 2018, 180, 99–106. [Google Scholar] [CrossRef]
- Coelho, B.B.; Bruin, A.J.; Staton, S.; Hayman, D. Sediment and nutrient contributions from subsurface drains and point sources to an agricultural watershed. Air Soil Water Res. 2010, 3, ASWR.S4471. [Google Scholar] [CrossRef]
- EPA-440/5-86-001; Quality Criteria for Water. US Environmental Protection Agency, United States Government Printing Office: Washington DC, USA, 1986; pp. 241–249.
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29, Rev. 1; Food and Agriculture Organization of the United Nations: Rome, Italy, 1994; pp. 15–25. [Google Scholar]
- Camargo, J.A.; Alonso, A.; Salamanca, A. Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates. Chemosphere 2005, 58, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Grizzetti, B.; Bouraoui, F.; Billen, G.; van Grinsven, H.; Cardoso, A.C.; Thieu, V.; Garnier, J.; Curtis, C.; Howarth, R.; Johnes, P. Nitrogen as a threat to European water quality. In The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: London UK, 2011; pp. 379–404. [Google Scholar] [CrossRef]
- WHO. Recommendations incorporating the first and second addenda. In Guidelines for Drinking Water Quality, 3rd ed.; WHO: Geneva, Switzerland, 2008; Volume 1. Available online: https://www.who.int/publications/i/item/9789241547611 (accessed on 15 January 2024).
- Directive 98/83/EC, 2020 Official Journal of the European Union L 435. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31998L0083 (accessed on 10 February 2024).
- Vollenweider, R.A. The Scientific Basis of Lake and Stream Eutrophication, with Particular Reference to Phosphorus and Nitrogen as Eutrophication Factors; Technical Report OECD, DAS/CSI/68; OECD: Paris, France, 1968; Volume 27, pp. 1–182. [Google Scholar]
- Vollenweider, R.A.; Kerekes, J. The loading concept as a basis for controlling eutrophication philosophy and preliminary results of the OECD programme on eutrophication. Prog. Water Technol. 1980, 12, 5–38. [Google Scholar]
- Chambers, P.A.; McGoldrick, D.J.; Brua, R.B.; Vis, C.; Culp, J.M.; Benoy, G.A. Development of environmental thresholds for nitrogen and phosphorus in streams. J. Environ. Qual. 2012, 41, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Griffioen, J. Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater. J. Hydrol. 2001, 254, 244–254. [Google Scholar] [CrossRef]
- Rodeghiero, M.; Rubio, A.; Díaz, P.E.; Romanyà, J.; Jiménez, M.S.; Levy, G.J.; Fernández, G.A.; Sebastià, M.T.; Karyotis, T.; Chiti, T.; et al. Soil carbon in Mediterranean ecosystems and related management problems. In Soil Carbon in Sensitive European Ecosystems: From Science to Land Management; Jandl, R., Rodeghiero, M., Olsson, M., Eds.; John Wiley and Sons: London, UK, 2011; Chapter 8; pp. 175–218. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal, R.E.; Errea, M.P. The footprint of marginal agriculture in the Mediterranean mountain landscape: An analysis of the Central Spanish Pyrenees. Sci. Total Environ. 2017, 600, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Kobierski, M.; Cieścińska, B.; Cieściński, J.; Kondratowicz, M.K. Effect of soil management practices on the mineralization of organic matter and quality of sandy soils. J. Ecol. Eng. 2020, 21, 217–223. [Google Scholar] [CrossRef]
- Madejón, E.; Murillo, J.M.; Moreno, F.; López, M.V.; Alvaro, F.J.; Cantero, C. Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil Till. Res. 2009, 105, 55–62. [Google Scholar] [CrossRef]
- Hepper, E.N.; Buschiazzo, D.E.; Hevia, G.G.; Urioste, A.; Antón, L. Clay mineralogy, cation exchange capacity and SSA of loess soils with different volcanic ash contents. Geoderma 2006, 135, 216–223. [Google Scholar] [CrossRef]
- Kaiser, M.; Ellerbrock, R.H.; Gerke, H.H. Cation exchange capacity and composition of soluble soil organic matter fractions. Soil Sci. Soc. Am. J. 2008, 72, 1278–1285. [Google Scholar] [CrossRef]
- Verheye, W.; de la Rosa, D. Mediterranean soils. In Land Use and Land Cover; Verheye, W., Ed.; Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO; Eolss Publishers: Oxford, UK, 2005; pp. 96–121. [Google Scholar]
- Mao, Y.-T.; Hu, W.; Chau, H.W.; Lei, B.-K.; Di, H.-J.; Chen, A.-Q.; Hou, M.-T.; Whitley, S. Combined cultivation pattern reduces soil erosion and nutrient loss from sloping farmland on red soil in south-western China. Agron. 2020, 10, 1071. [Google Scholar] [CrossRef]
- Kang, H.K.; Shin, C.A.; Lee, A.; Yang, A.H.S.; Lee, A.S.S.; Koh, A.S.J.; Ha, A.S.K.; Hur, B.S.O. Soil erosion characteristics under rainfall simulator conditions of the Jeju soil in Korea. In Proceedings of the 19-th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 71–74. [Google Scholar]
- Sposito, G. Colloid chemistry of kaolinitic tropical soils. Soil Sci. Soc. Am. J. 1995, 59, 1558–1564. [Google Scholar] [CrossRef]
- Bi, X.; Chu, H.; Fu, M.; Xu, D.; Zhao, W.; Zhong, Y.; Wang, M.; Li, K.; Zhang, Y.N. Distribution characteristics of organic carbon (nitrogen) content, cation exchange capacity, and specific surface area in different soil particle sizes. Sci. Rep. 2023, 13, 12242. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Rai, S.C.; Sharma, R.; Sharma, E. Effects of land use change on soil microbial C, N and P in a Himalayan watershed. Pedobiologia 2004, 48, 83–92. [Google Scholar] [CrossRef]
- Hontoria, C.; Saa, A.; Rodríguez, M.C. Relationships between soil organic carbon and site characteristics in peninsular Spain. Soil Sci. Soc. Am. J. 1999, 63, 614–621. [Google Scholar] [CrossRef]
- Räty, M.; Keskinen, R.; Yli-Halla, M.; Hyvönen, J.; Soinne, H. Estimating cation exchange capacity and clay content from agricultural soil testing data. Agric. Food Sci. 2021, 30, 131–145. [Google Scholar] [CrossRef]
- He, N.; Wu, L.; Wang, Y.; Han, X. Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in northern China. Geoderma 2009, 150, 302–308. [Google Scholar] [CrossRef]
- Choudhury, S.G.; Srivastava, S.; Singh, R.; Chaudhari, S.K.; Sharma, D.K.; Singh, S.K.; Sarkar, D. Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice-wheat cropping system under reclaimed sodic soil. Soil Till. Res. 2014, 136, 76–83. [Google Scholar] [CrossRef]
Plots | Slope | Depth | Clay | Silt | Sand | NT | SOC | K | P | ρb | CEC | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (cm) | (g kg−1) | (mg kg−1) | (Mg m−3) | (cmolC kg−1) | (1:2.5) | ||||||
Almond | 33 | 0–25 | 93 ± 12 | 215 ± 32 | 692 ± 65 | 0.45 ± 0.03 | 9.4 ± 2.4 | 68.7 ± 26.2 | 6.4 ± 2.2 | 1.17 ± 0.04 | 15.8 ± 4.4 | 7.4 ± 0.1 |
25–50 | 106 ± 15 | 244 ± 19 | 650 ± 41 | 0.40 ± 0.05 | 8.2 ± 3.1 | 77.7 ± 16.5 | 7.0 ± 3.9 | 1.20 ± 0.02 | 15.7 ± 5.6 | 7.7 ± 0.2 | ||
Olive | 26 | 0–25 | 133 ± 19 | 200 ± 17 | 667 ± 31 | 0.58 ± 0.02 | 8.5 ± 3.3 | 90.4 ± 12.7 | 4.6 ± 1.4 | 1.19 ± 0.04 | 10.2 ± 4.9 | 7.5 ± 0.4 |
25–50 | 118 ± 11 | 271 ± 22 | 611 ± 17 | 0.62 ± 0.08 | 8.9 ± 2.5 | 94.7 ± 32.7 | 5.2 ± 4.6 | 1.24 ± 0.07 | 9.7 ± 7.8 | 7.7 ± 0.5 |
Parameters | Almond Plots | Olive Plots | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Surface | Subsurface | Surface | Subsurface | |||||||
0 | 5 | 10 | 25 | 50 | 0 | 5 | 10 | 25 | 50 | |
R | 0.606 ** | 0.374 | 0.368 | 0.330 | 0.326 | 0.556 ** | 0.556 ** | 0.451 | 0.415 | 0.401 |
I30 | 0.532 ** | 0.465 | 0.324 | 0.337 | 0.086 | 0.743 ** | 0.411 | 0.454 | 0.209 | 0.070 |
EI30 | 0.592 ** | 0.211 | 0.201 | 0.175 | 0.181 | 0.497 | 0.361 | 0.262 | 0.231 | 0.224 |
Soil Depth (cm) | Almond Plot | Olive Plot | ||||||
---|---|---|---|---|---|---|---|---|
NO3–N | NH4–N | PO4–P | K | NO3–N | NH4–N | PO4–P | K | |
(mg L−1) | ||||||||
0 (Surface) | 7.92 a (±6.12) | 0.30 a (±0.20) | 0.019 a (±0.015) | 2.37 a (±0.21) | 8.08 a (±2.19) | 0.23 a (±0.10) | 0.026 a (±0.011) | 3.89 a (±0.32) |
5 | 16.8 ab (±8.07) | 0.27 a (±0.14) | 0.017 a (±0.010) | 1.51 b (±0.12) | 16.5 ab (±8.27) | 0.56 b (±0.21) | 0.023 a (±0.017) | 2.21 b (±0.14) |
10 | 17.08 ab (±7.76) | 0.26 a (±0.12) | 0.016 a (±0.005) | 1.24 b (±0.11) | 11.6 a (±5.84) | 0.47 ab (±0.42) | 0.025 a (±0.007) | 1.58 b (±0.27) |
25 | 19.8 b (±5.96) | 0.31 a (±0.18) | 0.010 b (±0.005) | 1.35 b (±0.11) | 20.4 b (±7.23) | 0.37 ab (±0.23) | 0.015 b (±0.008) | 1.95 b (±0.13) |
50 | 23.6 c (±5.18) | 0.35 a (±0.16) | 0.010 b (±0.008) | 3.64 a (±0.11) | 26.7 c (±7.04) | 0.59 b (±0.16) | 0.013 b (±0.009) | 4.26 a (±0.16) |
RFS | ρb | SOC | TN | P | K | CEC | Sand | Silt | Clay | pH | R | I30 | EI30 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RFS | 1 | 0.652 ** | −0.554 ** | 0.452 | 0.235 | 0.442 | −0.305 | −0.116 | 0.187 | 0.205 | 0.235 | 0.589 ** | 0.578 ** | 0.398 |
ρb | 1 | −0.758 ** | 0.395 | 0.478 | 0.107 | −0.638 ** | −0.340 | 0.378 | 0.107 | 0.354 | 0.064 | 0.425 | 0.5672 ** | |
SOC | 1 | 0.612 ** | 0.478 | 0.236 | 0.850 ** | 0.142 | −0.415 | 0.447 | 0.554 ** | −0.223 | −0.078 | −0.684 ** | ||
TN | 1 | 0.502 ** | 0.387 | 0.546 ** | −0.216 | 0.345 | 0.015 | 0.467 | 0.341 | 0.193 | 0.389 | |||
P | 1 | 0.789 ** | 0.532 ** | −0.360 | 0.147 | 0.245 | 0.658 ** | 0.478 | 0.411 | 0.756 ** | ||||
K | 1 | 0.745 ** | 0.541 ** | −0.227 | 0.278 | 0.345 | −0.365 | −0.265 | 0.154 | |||||
CEC | 1 | 0.1456 | −0.478 | 0.498 | 0.423 | −0.287 | −0.568 ** | −0.456 | ||||||
Sand | 1 | −0.102 | −0.504 ** | 0.231 | −0.157 | −0.854 ** | −0.385 | |||||||
Silt | 1 | −0.412 | 0.312 | 0.285 | 0.125 | 0.489 | ||||||||
Clay | 1 | 0.224 | −0.122 | −0.047 | 0.587 ** | |||||||||
pH | 1 | 0.458 | 0.478 | 0.167 | ||||||||||
R | 1 | −0.176 | −0.035 | |||||||||||
I30 | 1 | 0.834 ** | ||||||||||||
EI30 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán Zuazo, V.H.; Cárceles Rodríguez, B.; Cuadros Tavira, S.; Gálvez Ruiz, B.; García-Tejero, I.F. Cover Crop Effects on Surface Runoff and Subsurface Flow in Rainfed Hillslope Farming and Connections to Water Quality. Land 2024, 13, 1103. https://doi.org/10.3390/land13071103
Durán Zuazo VH, Cárceles Rodríguez B, Cuadros Tavira S, Gálvez Ruiz B, García-Tejero IF. Cover Crop Effects on Surface Runoff and Subsurface Flow in Rainfed Hillslope Farming and Connections to Water Quality. Land. 2024; 13(7):1103. https://doi.org/10.3390/land13071103
Chicago/Turabian StyleDurán Zuazo, Víctor Hugo, Belén Cárceles Rodríguez, Simón Cuadros Tavira, Baltasar Gálvez Ruiz, and Iván Francisco García-Tejero. 2024. "Cover Crop Effects on Surface Runoff and Subsurface Flow in Rainfed Hillslope Farming and Connections to Water Quality" Land 13, no. 7: 1103. https://doi.org/10.3390/land13071103
APA StyleDurán Zuazo, V. H., Cárceles Rodríguez, B., Cuadros Tavira, S., Gálvez Ruiz, B., & García-Tejero, I. F. (2024). Cover Crop Effects on Surface Runoff and Subsurface Flow in Rainfed Hillslope Farming and Connections to Water Quality. Land, 13(7), 1103. https://doi.org/10.3390/land13071103