Using Radiometric and Categorical Change to Create High-Accuracy Maps of Historical Land Cover Change in Watersheds of the Great Lakes Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Approach
2.2. Categorical Map Data Sources
2.3. Change Detection
2.4. Categorical Change and Image Segmentation
2.5. Change Vector Analysis
2.6. Hybrid Land Cover Change: Categorical and Radiometric Fusion
2.7. Validation
2.8. Fusion with LandTrendr
2.9. Comparison with LCMAP
3. Results
3.1. Basin Wide Change
3.2. Change by Ecoregion
3.3. Comparison to LCMAP
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahl, T.E. Status and Trends of Wetlands in the Conterminous United States 1986 to 1997; Department of the Interior, Fish and Wildlife Service Branch of Habitat Assessment: Washington, DC, USA, 2000; p. 82. [Google Scholar]
- Richards, R.P.; Baker, D.B. Trends in Nutrient and Suspended Sediment Concentrations in Lake Erie Tributaries, 1975–1990. J. Great Lakes Res. 1993, 19, 200–211. [Google Scholar] [CrossRef]
- Krieger, K.A. Effectiveness of a coastal wetland in reducing pollution of a Laurentian Great Lake: Hydrology, sediment, and nutrients. Wetlands 2003, 23, 778–791. [Google Scholar] [CrossRef]
- Wang, N.; Mitsch, W.J. A Detailed Ecosystem Model of Phosphorus Dynamics in Created Riparian Wetlands. Ecol. Model. 2000, 126, 101–130. [Google Scholar] [CrossRef]
- Currie, W.S.; Goldberg, D.E.; Martina, J.; Wildova, R.; Farrer, E.; Elgersma, K.J. Emergence of nutrient cycling feedbacks related to plant size and invasion success in a wetland community-ecosystem model. Ecol. Model. 2014, 282, 69–82. [Google Scholar] [CrossRef]
- Martina, J.P.; Currie, W.S.; Goldberg, D.E.; Elgersma, K.J. Nitrogen loading leads to increased carbon accretion in both invaded and uninvaded coastal wetlands. Ecosphere 2016, 7, e01459. [Google Scholar] [CrossRef]
- Galatowitsch, S.M.; Anderson, N.O.; Ascher, P.D. Invasiveness in wetland plants in temperate North America. Wetlands 1999, 19, 733–755. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Causes and Consequences of Invasive Plants in Wetlands: Opportunities, Opportunitists, and Outcomes. Crit. Rev. Plant Sci. 2004, 23, 431–452. [Google Scholar] [CrossRef]
- Trebitz, A.S.; Taylor, D.L. Exotic and Invasive Aquatic Plants in Great Lakes Coastal Wetlands: Distriution and Relation to Watershed Land Use and Plant Richness and Cover. J. Great Lakes Res. 2007, 33, 705–721. [Google Scholar] [CrossRef]
- Keddy, P.A.; Reznicek, A.A. Great Lakes Vegetation Dynamics: The Role of Fluctuating Water Levels and Buried Seeds. J. Great Lakes Res. 1986, 12, 25–36. [Google Scholar] [CrossRef]
- Wilcox, D.A.; Nichols, S.J. The Effects of water-level fluctuations on vegetation in a Lake Huron wetlands. Wetlands 2008, 28, 487–501. [Google Scholar] [CrossRef]
- Wilcox, D.A. Response of wetland vegetation to the post-1986 decrease in Lake St. Clair water levels: Seed bank emergence and beginnings of the Phragmites australis invasion. J. Great Lakes Res. 2012, 38, 270–277. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Johnston, C.A. Environmental Conditions Promoting Non-native Phragmites australis Expansion in Great Lakes Coastal Wetlands. Wetlands 2010, 30, 577–587. [Google Scholar] [CrossRef]
- Steinman, A.D.; Uzarski, D.G.; Lusch, D.P.; Miller, C.; Doran, P.; Zimnicki, T.; Chu, P.; Allan, J.; Asher, J.; Bratton, J.; et al. Groundwater in Crisis? Addressing Groundwater Challenges in Michigan (USA) as a Template for the Great Lakes. Sustainability 2022, 14, 3008. [Google Scholar] [CrossRef]
- Theuerkauf, E.J.; Braun, K.N. Rapid water level rise drives unprecedented coastal habitat loss along the Great Lakes of North America. J. Great Lakes Res. 2021, 47, 945–954. [Google Scholar] [CrossRef]
- Sayers, M.J.; Grimm, A.G.; Schuchman, R.A.; Bosse, K.R.; Fahnenstiel, G.L.; Ruberg, S.A.; Leshkevich, G.A. Satellite Monitoring of harmful algal blooms in the Western Basin of Lake Erie: A 20-year time-series. J. Great Lakes Res. 2019, 45, 508–521. [Google Scholar] [CrossRef]
- Coffer, M.M.; Schaeffer, B.A.; Salls, W.B.; Urquhart, E.; Loftin, K.A.; Stumpf, R.P.; Werdell, P.J.; Darling, J.A. Satellite remote sensing to assess cyanobacterial bloom frequency across the United States at multiple spatial scales. Ecol. Indic. 2021, 128, 107822. [Google Scholar] [CrossRef] [PubMed]
- Blair, T. Diversifying Clean Water: An Examination of Drinking Water Quality and Social Disparities in Michigan; Tennessee State University: Nashville, TN, USA, 2021. [Google Scholar]
- McWhirter, S. St. Marys River oil spill highlights bigger Line 5 risk to Great Lakes, critics say. News Article. 2022. MLive. Available online: https://www.mlive.com/public-interest/2022/06/st-marys-river-oil-spill-highlights-bigger-line-5-risk-to-great-lakes-critics-say.html (accessed on 14 June 2024).
- Colborne, S.F.; Maguire, T.J.; Mayer, B.; Nightingale, M.; Enns, G.E.; Fisk, A.T.; Drouillard, K.G.; Mohamed, M.N.; Weisener, C.G.; Wellen, C.; et al. Water and sediment as sources of phosphate in aquatic ecosystems: The Detroit River and its role in the Laurentian Great Lakes. Sci. Total Environ. 2019, 647, 1594–1603. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, A.; MacIsaac, H.J. Recent mass invasion of the North American Great Lakes by Ponto–Caspian species. Trends Ecol. Evol. 2000, 15, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, A. Patterns of Invasion in the Laurentian Great Lakes in relation to changes in vector activity. Divers. Distrib. 2006, 12, 425–433. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada and the U.S. Environmental Protection Agency. State of the Great Lakes 2022 Technical Report; Environment and Climate Change Canada: Gatineau, QC, USA, 2022; p. 921. [Google Scholar]
- Martina, J.P.; Hamilton, S.K.; Turetsky, M.R.; Phillippo, C.J. Organic matter stocks increase with degree of invasion in temperate inland wetlands. Plant Soil 2014, 385, 107–123. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Kowalski, K.P.; Mazur, M.L.C.; Scarbrough, K.A.; Powell, R.B.; Brooks, C.N.; Huberty, B.; Jenkins, L.K.; Banda, E.C.; Galbraith, D.M.; et al. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support. J. Great Lakes Res. 2013, 39, 65–77. [Google Scholar] [CrossRef]
- Brooks, C.; Grimm, A.; Shuchman, R.; Sayers, M.; Jessee, N. A satellite-based multi-temporal assessment of the extent of nuisance Cladophora and related submerged aquatic vegetation for the Laurentian Great Lakes. Remote Sens. Environ. 2015, 157, 58–71. [Google Scholar] [CrossRef]
- Croft-White, M.V.; Cvetkovic, M.; Rokitnicki-Wojcik, D.; Midwood, J.D.; Grabas, G.P. A shoreline divided: Twelve-year water quality and land cover trends in Lake Ontario coastal wetlands. J. Great Lakes Res. 2017, 43, 1005–1015. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Robinson, K.D. Rates and patterns of land use change in the Upper Great Lakes States, USA: A framework for spatial temporal analysis. Landsc. Urban Plan. 2011, 102, 102–116. [Google Scholar] [CrossRef]
- Brown, D.G.; Johnson, K.M.; Loveland, T.R.; Theobald, D.M. Rural Land-Use Trends in the Conterminous United States, 1950–2000. Ecol. Appl. 2005, 15, 1851–1863. [Google Scholar] [CrossRef]
- Wolter, P.T.; Johnston, C.; Neimi, G.J. Land Use Land Cover Change in the U.S. Great Lakes Basin 1992 to 2001. J. Great Lakes Res. 2006, 32, 607–628. [Google Scholar] [CrossRef]
- Amani, M.; Kakooei, M.; Ghorbanian, A.; Warren, R.; Mahdavi, S.; Brisco, B.; Moghimi, A.; Bourgeau-Chavez, L.; Toure, S.; Paudel, A.; et al. Forty Years of Wetland Status and Trends Analyses in the Great Lakes Using Landsat Archive Imagery and Google Earth Engine. Remote Sens. 2022, 14, 3778. [Google Scholar] [CrossRef]
- NOAA Office for Coastal Management. C-CAP Land Cover Atlas; NOAA Office for Coastal Management: Charleston, SC, USA, 2024. [Google Scholar]
- Kennedy, R.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef]
- Gray, A.N.; Cohen, W.B.; Yang, Z.; Pfaff, E. Integrating TimeSync Disturbance Detection and Repeat Forest Inventory to Predict Carbon Flux. Forests 2019, 10, 984. [Google Scholar] [CrossRef]
- Johnson, R.D.; Kasischke, E.S. Change Vector Analysis: A Technique for the Multispectral Monitoring of Land Cover and Condition. Int. J. Remote Sens. 1998, 19, 411–426. [Google Scholar] [CrossRef]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.; Endres, S.; Powell, R.; Battaglia, M.J.; Benscoter, B.; Turetsky, M.; Kasischke, E.S.; Banda, E. Mapping boreal peatland ecosystem types from multitemporal radar and optical satellite imagery. Can. J. For. Res. 2017, 47, 545–559. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.; Endres, S.; Battaglia, M.; Miller, M.E.; Banda, E.; Laubac, Z.; Higman, P.; Chow-Fraser, P.; Marcaccio, J. Development of a Bi-National Great Lakes Coastal Wetland and Land Use Map Using Three-Season PALSAR and Landsat Imagery. Remote Sens. 2015, 7, 8655–8682. [Google Scholar] [CrossRef]
- Agriculture and Agri-Food Canada. The 2000 AAFC Semi-Decadal Land Use; Agriculture and Agri-Food Canada: Ottawa, ON, Canada, 2018. [Google Scholar]
- Bourgeau-Chavez, L.; Riordan, K.; Miller, N.; Nowels, M.; Powell, R. Remotely Monitoring Great Lakes Coastal Wetlands with Multi-Sensor, Multi-Temporal SAR and Multi-Spectral Data. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008. [Google Scholar]
- Linke, J.; McDermid, G.J.; Laskin, D.N.; McLane, A.J.; Pape, A.; Cranston, J.; Hall-Beyer, M.; Franklin, S.E. A Dsiturbance-Inventory Framework for Flexible and Reliable Landscape Monitoring. Photogramm. Eng. Remote Sens. 2009, 75, 981–995. [Google Scholar] [CrossRef]
- Chen, J.; Gong, P.; He, C.; Pu, R.; Shi, P. Land-Use/Land-Cover Change Detection Using Improved Change-Vector Analysis. Photogramm. Eng. Remote Sens. 2003, 69, 369–379. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Ediriwickrema, J.; Johnson, D.M.; Lyon, J.G.; McKerrow, A. Impacts of vegetation dynamics on the identification of land-cover change in a biologically complex community in North Carolina, USA. Remote Sens. Environ. 2002, 82, 258–270. [Google Scholar] [CrossRef]
- Chen, G.; Hay, G.J.; Carvalho, L.M.T.; Wulder, M.A. Object-based change detection. Int. J. Remote Sens. 2012, 33, 4434–4457. [Google Scholar] [CrossRef]
- McDermid, G.J.; Linke, J.; Pape, A.D.; Laskin, D.N.; McLane, A.J.; Franklin, S.E. Object-Based Approaches to Change Analyzsis and Thematic Map Update: Challenges and Limitations. Can. J. Remote Sens. 2008, 34, 462–466. [Google Scholar] [CrossRef]
- Zhou, W.; Troy, A.; Grove, M. Object-based Land Cover Classification and Change Analysis in the Baltimore Metropolitan Area Using Multitemporal High Resolution Remote Sensing Data. Sensors 2008, 8, 1613–1636. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, J. The Whitebox Geospatial Analysis Tools project and open-access GIS. In Proceedings of the GIS Research UK 22nd Annual Conference, The University of Glasgow, Glasgow, UK, 16–18 April 2014. [Google Scholar]
- Franklin, S.E.; Lavigne, M.B.; Moskal, L.M.; Wulder, M.A.; McCaffrey, T.M. Interpretation of Forest Harvest Conditions in New Brunswick Using Landsat TM Enhanced Wetness Difference Imagery (EWDI). Can. J. Remote Sens. 2001, 27, 118–128. [Google Scholar] [CrossRef]
- Richards, D.R.; Belcher, R.N. Global Changes in Urban Vegetation Cover. Remote Sens. 2020, 12, 23. [Google Scholar] [CrossRef]
- Fickas, K.C.; Cohen, W.B.; Yang, Z. Landsat-based monitoring of annual wetland change in the Willamette Valley of Oregon, USA from 1972 to 2012. Wetl. Ecol. Manag. 2016, 24, 73–92. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- United States Geological Survey. Land Change Monitoring, Assessment, and Projection (LCMAP). Available online: https://www.usgs.gov/special-topics/lcmap (accessed on 8 January 2023).
- Wiken, E.; Griffith, G.; Nava, F.J. North American Terrestrial Ecoregions—Level III; Commission for Environmental Cooperation: Montreal, QC, Canada, 2011. [Google Scholar]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Mas, J.-F. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote Sens. 1999, 20, 139–152. [Google Scholar] [CrossRef]
- Mancuso, J.; Weinke, A.D.; Stone, I.P.; Hamsher, S.E.; Woller-Skar, M.M.; Snyder, E.B.; Biddana, B.A. Bloom and bust: Historical trends of harmful algal blooms in Muskegon Lake, Michigan, a Great Lakes estuary. Freshw. Sci. 2021, 40, 463. [Google Scholar] [CrossRef]
- Lothspeich, A.C.; Knight, J.F. The Applicability of LandTrendr to Surface Water Dynamics: A Case Study of Minnesota from 1984 to 2019 Using Google Earth Engine. Remote Sens. 2022, 14, 2662. [Google Scholar] [CrossRef]
- Guiry, E.J.; Buckley, M.; Orchard, T.J.; Hawkins, A.L.; Needs-Howarth, S.; Holm, E.; Szpak, P. Deforestation caused abrupt shift in Great Lakes nitrogen cycle. Assoc. Sci. Limnol. Oceanogr. 2020, 65, 1921–1935. [Google Scholar] [CrossRef]
- Hyndman, D.W.; Day-Lewis, F.D.; Singha, K. Subsurface Hydrology: Data Integration for Properties and Processes; American Geophysical Union: Washington, DC, USA, 2007; Volume 171. [Google Scholar]
- Jordan, P.A. Hands across the water: Climate change and binational cooperation in the Great Lakes Basin. Clim. Change 2020, 161, 479–497. [Google Scholar] [CrossRef]
- LANDSAT NEXT: A New and Revolutionary Landsat Mission. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-next/ (accessed on 15 August 2023).
- Surface Biology and Geology. Available online: https://sbg.jpl.nasa.gov/ (accessed on 15 August 2023).
Classified | Producers Accuracy (%) | Users Accuracy (%) |
---|---|---|
Urban | 77.5% | 74.2% |
Grass | 79.0% | 50.9% |
Agriculture | 88.6% | 97.6% |
Orchard | 84.8% | 82.7% |
Forest | 92.0% | 88.4% |
Pine Plantation | 80.9% | 89.7% |
Shrub | 84.2% | 80.4% |
Barren Light | 82.3% | 88.1% |
Water | 99.3% | 100.0% |
Aquatic Bed | 91.3% | 61.3% |
Marsh | 73.1% | 58.7% |
Typha | 87.1% | 81.1% |
Phragmites | 83.7% | 69.3% |
Open Peatland | 65.0% | 73.7% |
Shrub Peatland | 56.5% | 65.6% |
Treed Peatland | 69.2% | 65.3% |
Wetland Shrub | 72.9% | 72.5% |
Forested Wetland | 81.0% | 78.5% |
Overall Accuracy | 93.3% |
CCAP | MTRI | Canadian | Reclassified | Class Number |
---|---|---|---|---|
Developed high | Urban | Settlement | Urban | 1 |
Developed medium | Road | |||
Developed low | Urban grass | Roads | Suburban | 2 |
Developed open space | Suburban | |||
Bare land | Bare land | Other land | Bare land | 3 |
Cultivated crops | Agriculture | Cropland | Agriculture | 4 |
Pasture/hay | Orchard | |||
Grassland/herbaceous | Fallow | Grassland managed | Grasslands | 5 |
Deciduous | Forest | Forest | Deciduous | 6 |
Mixed Forest | Trees | |||
Evergreen | Pine Plantation | Evergreen | 7 | |
Shrubs | Shrubs | Grassland unmanaged | Shrubs | 8 |
Palustrine forest | Forested wetland | Forested wetland | Woody wetland | 9 |
Estuarine forest | Treed wetland | |||
Palustrine shrub | Wetland Shrub | Wetland shrub | ||
Estuarine shrub | ||||
Palustrine wetland | Emergent wetland | Wetland | Wetland | 10 |
Estuarine wetland | Schoenoplectus | Wetland herb | ||
Typha | ||||
Phragmites | ||||
Peatlands | ||||
Palustrine aquatic bed | Aquatic bed | Aquatic bed | 11 | |
Unconsolidated shore | ||||
Water | Water | Water | Water | 12 |
MTRI Reclassified | LCMAP |
---|---|
Urban | Developed |
Suburban | |
Bare land | Barren |
Agriculture | Agriculture |
Grasslands | Grassland/shrubs |
Shrubs | |
Deciduous | Tree cover |
Evergreen | |
Woody wetland | Wetland |
Wetland | |
Aquatic bed | |
Water | Water |
Land Cover | c.1980–1995 (ha) | c.1990–2010 (ha) |
---|---|---|
Agriculture gain | 12,023 | 99,218 |
Agriculture loss | 91,673 | 102,144 |
Aquatic bed gain | 335 | 41,801 |
Aquatic bed loss | 2753 | 3270 |
Barren gain | 52,396 | 39,779 |
Barren loss | 24,732 | 52,621 |
Deciduous gain | 180,301 | 84,831 |
Deciduous loss | 254,070 | 219,701 |
Evergreen gain | 59,617 | 70,998 |
Evergreen loss | 48,069 | 94,324 |
Grassland gain | 92,468 | 6842 |
Grassland loss | 96,267 | 159,130 |
Non-woody wetland gain | 44,402 | 100,901 |
Non-woody wetland loss | 19,459 | 44,904 |
Shrubland gain | 137,143 | 290,795 |
Shrubland loss | 163,203 | 98,202 |
Suburban gain | 130,836 | 139,238 |
Suburban loss | 6447 | 46,421 |
Urban gain | 21,155 | 19,464 |
Urban loss | 5655 | 11,837 |
Water gain | 9091 | 2458 |
Water loss | 29,272 | 56,869 |
Woody wetland gain | 37,087 | 102,074 |
Woody wetland loss | 35,256 | 108,977 |
Total land cover change | 776,855 | 998,400 |
Years | % |
---|---|
+/−0 | 29% |
+/−1 | 47% |
+/−2 | 56% |
+/−3 | 64% |
+/−4 | 72% |
+/−5 | 87% |
+/−6 | 82% |
Change From: | # Plots | Correct | Accuracy (%) | Change To: | # Plots | Correct | Accuracy (%) | |
---|---|---|---|---|---|---|---|---|
Urban | 7 | 4 | 57 | Urban | 45 | 43 | 96 | |
Suburban | 17 | 15 | 88 | Suburban | 168 | 152 | 90 | |
Barren | 25 | 21 | 84 | Barren | 22 | 20 | 91 | |
Agriculture | 115 | 106 | 92 | Agriculture | 25 | 15 | 60 | |
Grassland | 110 | 94 | 85 | Grassland | 28 | 27 | 96 | |
Deciduous | 117 | 104 | 89 | Deciduous | 66 | 58 | 88 | |
Coniferous | 30 | 29 | 97 | Coniferous | 35 | 34 | 97 | |
Shrubs | 56 | 53 | 95 | Shrubs | 87 | 80 | 92 | |
Woody wetland | 28 | 26 | 93 | Woody wetland | 27 | 24 | 89 | |
Non-woody wetland | 15 | 15 | 100 | Non-woody wetland | 29 | 26 | 90 | |
Aquatic bed | 4 | 4 | 100 | Aquatic bed | 6 | 6 | 100 | |
Water | 16 | 16 | 100 | Water | 2 | 2 | 100 | |
Total | 540 | 487 | Total | 540 | 487 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poley, A.F.; Bourgeau-Chavez, L.L.; Graham, J.A.; Vander Bilt, D.J.L.; Redhuis, D.; Battaglia, M.J.; Kennedy, R.E.; French, N.H.F. Using Radiometric and Categorical Change to Create High-Accuracy Maps of Historical Land Cover Change in Watersheds of the Great Lakes Basin. Land 2024, 13, 920. https://doi.org/10.3390/land13070920
Poley AF, Bourgeau-Chavez LL, Graham JA, Vander Bilt DJL, Redhuis D, Battaglia MJ, Kennedy RE, French NHF. Using Radiometric and Categorical Change to Create High-Accuracy Maps of Historical Land Cover Change in Watersheds of the Great Lakes Basin. Land. 2024; 13(7):920. https://doi.org/10.3390/land13070920
Chicago/Turabian StylePoley, Andrew F., Laura L. Bourgeau-Chavez, Jeremy A. Graham, Dorthea J. L. Vander Bilt, Dana Redhuis, Michael J. Battaglia, Robert E. Kennedy, and Nancy H. F. French. 2024. "Using Radiometric and Categorical Change to Create High-Accuracy Maps of Historical Land Cover Change in Watersheds of the Great Lakes Basin" Land 13, no. 7: 920. https://doi.org/10.3390/land13070920
APA StylePoley, A. F., Bourgeau-Chavez, L. L., Graham, J. A., Vander Bilt, D. J. L., Redhuis, D., Battaglia, M. J., Kennedy, R. E., & French, N. H. F. (2024). Using Radiometric and Categorical Change to Create High-Accuracy Maps of Historical Land Cover Change in Watersheds of the Great Lakes Basin. Land, 13(7), 920. https://doi.org/10.3390/land13070920