Spatiotemporal Evolution and Coupling Analysis of Human Footprints and Habitat Quality: Evidence of 21 Consecutive Years in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Sources and Preprocessing
2.2.1. Land-Use Data
2.2.2. Human Footprint Data
2.3. Evaluation Analysis Module
2.3.1. InVEST-HQ Model
2.3.2. Mapping of Human Footprints in China
2.4. Dual System Coupling Analysis Module
2.4.1. Four-Quadrant Analysis Model
2.4.2. The Modified Coupling Coordination Degree Model
2.5. Spatiotemporal Change Analysis Module
2.5.1. Grid Transition Matrix (GTM) Method
2.5.2. Theil–Sen Median Analysis
2.5.3. Mann–Kendall Test
2.5.4. Nonlinear Analysis Module
3. Results
3.1. The Spatiotemporal Evolution of HQ and Human Footprints from 2000 to 2020
3.1.1. Spatiotemporal Changes in Land Use
3.1.2. Spatiotemporal Changes in Habitat Quality
3.1.3. Spatiotemporal Changes in Human Footprints
3.2. Coupling Relationship between Human Footprint and Habitat Quality
3.3. Coupling Degree between Human Footprint and Habitat Quality
3.4. Fitting Analysis of the Relationship between Human Footprints and Coupling Index
4. Discussion
4.1. Nonlinear Response Relationship between Coordination Coupling Degree and Human Footprint
4.2. Expand the Potential Application Scenarios of the “Hu Line”
4.3. Relevant Policy Recommendations
5. Conclusions
- (1)
- From a static perspective, from 2000 to 2020, China’s habitat quality and human footprint showed apparent “Hu Line” spatial heterogeneity. From the perspective of habitat quality, very high values are mainly distributed on the left side of the “Hu Line”, such as the Qinghai–Tibet Plateau and the Yellow River Basin. From the perspective of human footprints, very high values are mainly distributed on the right side of the “Hu Line”, such as the Beijing–Tianjin–Hebei, Changchun Triangle, Greater Bay Area, and other urban agglomerations.
- (2)
- From a dynamic perspective, from 2000 to 2020, habitat quality was divided into two evolutionary stages, “degradation–improvement”, with the mutation point in 2013, and the human footprint increasing by 16.75% on average, with the mutation point in 2014. The areas with increased human footprint are mainly distributed in the eastern coastal urban agglomerations; however, the human footprint in areas with excellent habitat quality, such as the Qinghai–Tibet Plateau as well as western and northeastern Sichuan, has shown a significant increase trend.
- (3)
- The areas with high values of the coordinated coupling index of human footprint and habitat quality systems are mainly distributed on the right side of the “Hu Line”. On the left side of the “Hu Line”, the coupling degree is mostly improved, and on the right side of the “Hu Line”, the northeastern region and the southeastern coastal areas show a degradation trend.
- (4)
- Based on the four-quadrant analysis model, the coupling relationship between human footprint and habitat quality in China was obtained. Specifically, with the “Hu line” as the dividing line, there are significant spatial differences in the types of four-quadrant distribution. On the east side of the “Hu Line”, the coupling relationship between China’s human footprint and habitat quality is in Quadrant IV; on the west side of the “Hu Line”, the coupling relationship between the two systems is mainly in Quadrants II and III.
- (5)
- The trend changes in the four quadrants of the HQ&HF system indicate that “quadrant II continues to increase, quadrant I continues to decrease, and quadrants III and IV remain relatively stable”. The area of quadrant II increased by 3.4% in 2000, while quadrant I decreased by 2.9%. From the perspective of spatial transfer mechanisms among the four quadrants, the transferred area accounts for 7.7% of the total area, predominantly located in the southeastern part of the “Hu Line”. The primary transfer type is from “quadrant I to II”, which constitutes 46.5% of the total transfers, a figure more than four times higher than that of other transfer types. The CCD and human footprints present a weak “inverted U-shaped” nonlinear relationship.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naeem, S.; Chazdon, R.; Duffy, J.E.; Prager, C.; Worm, B. Biodiversity and Human Well-Being: An Essential Link for Sustainable Development. Proc. R. Soc. B Biol. Sci. 2016, 283, 20162091. [Google Scholar] [CrossRef] [PubMed]
- Otero, I.; Farrell, K.N.; Pueyo, S.; Kallis, G.; Kehoe, L.; Haberl, H.; Plutzar, C.; Hobson, P.; García-Márquez, J.; Rodríguez-Labajos, B.; et al. Biodiversity Policy beyond Economic Growth. Conserv. Lett. 2020, 13, e12713. [Google Scholar] [CrossRef] [PubMed]
- Blicharska, M.; Smithers, R.J.; Mikusiński, G.; Rönnbäck, P.; Harrison, P.A.; Nilsson, M.; Sutherland, W.J. Biodiversity’s Contributions to Sustainable Development. Nat. Sustain. 2019, 2, 1083–1093. [Google Scholar] [CrossRef]
- Lin, L.; Wei, X.; Luo, P.; Wang, S.; Kong, D.; Yang, J. Ecological Security Patterns at Different Spatial Scales on the Loess Plateau. Remote Sens. 2023, 15, 1011. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and Spatial Variation Analysis of Habitat Quality on the PLUS-InVEST Model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Tang, F.; Wang, L.; Guo, Y.; Fu, M.; Huang, N.; Duan, W.; Luo, M.; Zhang, J.; Li, W.; Song, W. Spatio-Temporal Variation and Coupling Coordination Relationship between Urbanisation and Habitat Quality in the Grand Canal, China. Land Use Policy 2022, 117, 106119. [Google Scholar] [CrossRef]
- Buchanan, G.M.; Butchart, S.H.M.; Chandler, G.; Gregory, R.D. Assessment of National-Level Progress towards Elements of the Aichi Biodiversity Targets. Ecol. Indic. 2020, 116, 106497. [Google Scholar] [CrossRef]
- Wrobel, V.; Millette, K.; Radulovici, A. COP15. Science 2023, 8, 10. [Google Scholar]
- Xu, H.; Cao, Y.; Yu, D.; Cao, M.; He, Y.; Gill, M.; Pereira, H.M. Ensuring Effective Implementation of the Post-2020 Global Biodiversity Targets. Nat. Ecol. Evol. 2021, 5, 411–418. [Google Scholar] [CrossRef]
- Bandari, R.; Moallemi, E.A.; Lester, R.E.; Downie, D.; Bryan, B.A. Prioritising Sustainable Development Goals, Characterising Interactions, and Identifying Solutions for Local Sustainability. Environ. Sci. Policy 2022, 127, 325–336. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.9.0 User’s Guide; The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund: Minneapolis, MN, USA, 2020. [Google Scholar]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-Temporal Changes in Habitat Quality and Linkage with Landscape Characteristics in the Beressa Watershed, Blue Nile Basin of Ethiopian Highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef]
- Aznarez, C.; Svenning, J.-C.; Taveira, G.; Baró, F.; Pascual, U. Wildness and Habitat Quality Drive Spatial Patterns of Urban Biodiversity. Landsc. Urban Plan. 2022, 228, 104570. [Google Scholar] [CrossRef]
- Yang, L.; Pan, S.; Chen, W.; Zeng, J.; Xu, H.; Gu, T. Spatially Non-Stationary Response of Habitat Quality to Land Use Activities in World’s Protected Areas over 20 Years. J. Clean. Prod. 2023, 419, 138245. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Gou, A. Research on the Evolution Characteristics, Driving Mechanisms and Multi-Scenario Simulation of Habitat Quality in the Guangdong-Hong Kong-Macao Greater Bay Based on Multi-Model Coupling. Sci. Total Environ. 2024, 924, 171263. [Google Scholar] [CrossRef]
- Ji, X.; Sun, Y.; Guo, W.; Zhao, C.; Li, K. Land Use and Habitat Quality Change in the Yellow River Basin: A Perspective with Different CMIP6-Based Scenarios and Multiple Scales. J. Environ. Manag. 2023, 345, 118729. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qu, Z.; Zhang, Y.; Ao, Y.; Han, L.; Kang, S.; Sun, Y. Effects of Human Activity Intensity on Habitat Quality Based on Nighttime Light Remote Sensing: A Case Study of Northern Shaanxi, China. Sci. Total Environ. 2022, 851, 158037. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Z.; Liu, B.; Zhang, X.; Zhang, W.; Chen, L. Spatiotemporal Variations and Driving Factors of Habitat Quality in the Loess Hilly Area of the Yellow River Basin: A Case Study of Lanzhou City, China. J. Arid Land 2022, 14, 637–652. [Google Scholar] [CrossRef]
- Chen, L.; Wei, Q.; Fu, Q.; Feng, D. Spatiotemporal Evolution Analysis of Habitat Quality under High-Speed Urbanization: A Case Study of Urban Core Area of China Lin-Gang Free Trade Zone (2002–2019). Land 2021, 10, 167. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Cao, Y.; Xu, Y.; Zhao, Z.; Zhuang, Y.; Liu, X.; Du, Z.; Liu, T.; Yang, B.; et al. Habitat Quality Dynamics in China’s First Group of National Parks in Recent Four Decades: Evidence from Land Use and Land Cover Changes. J. Environ. Manag. 2023, 325, 116505. [Google Scholar] [CrossRef]
- Yang, Y. Evolution of Habitat Quality and Association with Land-Use Changes in Mountainous Areas: A Case Study of the Taihang Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [Google Scholar] [CrossRef]
- Wu, J.; Bai, Z. Spatial and Temporal Changes of the Ecological Footprint of China’s Resource-Based Cities in the Process of Urbanization. Resour. Policy 2022, 75, 102491. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Global Terrestrial Human Footprint Maps for 1993 and 2009. Sci. Data 2016, 3, 160067. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.A.; Venter, O.; Allan, J.R.; Atkinson, S.C.; Rehbein, J.A.; Ward, M.; Di Marco, M.; Grantham, H.S.; Ervin, J.; Goetz, S.J.; et al. Change in Terrestrial Human Footprint Drives Continued Loss of Intact Ecosystems. One Earth 2020, 3, 371–382. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity Redistribution under Climate Change: Impacts on Ecosystems and Human Well-Being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, S.; Zhou, Y.; Liu, W.; Hou, Y.; Zhu, J.; Wang, F. Mapping Population Density in China between 1990 and 2010 Using Remote Sensing. Remote Sens. Environ. 2018, 210, 269–281. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Z.; Chen, B.; Gong, P.; Xu, B.; Fu, H. A Prolonged Artificial Nighttime-Light Dataset of China (1984–2020). Sci. Data 2024, 11, 414. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The Human Footprint and the Last of the Wild: The Human Footprint Is a Global Map of Human Influence on the Land Surface, Which Suggests That Human Beings Are Stewards of Nature, Whether We like It or Not. BioScience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen Years of Change in the Global Terrestrial Human Footprint and Implications for Biodiversity Conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef]
- Qi, Y.; Lian, X.; Wang, H.; Zhang, J.; Yang, R. Dynamic Mechanism between Human Activities and Ecosystem Services: A Case Study of Qinghai Lake Watershed, China. Ecol. Indic. 2020, 117, 106528. [Google Scholar] [CrossRef]
- Correa Ayram, C.A.; Etter, A.; Díaz-Timoté, J.; Rodríguez Buriticá, S.; Ramírez, W.; Corzo, G. Spatiotemporal Evaluation of the Human Footprint in Colombia: Four Decades of Anthropic Impact in Highly Biodiverse Ecosystems. Ecol. Indic. 2020, 117, 106630. [Google Scholar] [CrossRef]
- Su, J.; Yin, H.; Kong, F. Ecological Networks in Response to Climate Change and the Human Footprint in the Yangtze River Delta Urban Agglomeration, China. Landsc. Ecol. 2021, 36, 2095–2112. [Google Scholar] [CrossRef]
- Yu, T.; Abulizi, A.; Xu, Z.; Jiang, J.; Akbar, A.; Ou, B.; Xu, F. Evolution of Environmental Quality and Its Response to Human Disturbances of the Urban Agglomeration in the Northern Slope of the Tianshan Mountains. Ecol. Indic. 2023, 153, 110481. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A Global Record of Annual Terrestrial Human Footprint Dataset from 2000 to 2018. Sci. Data 2022, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Xue, Q.; Zhang, J.; Lu, L.; Xiong, S.; Xiao, Y.; Zhang, X.; Wang, J. A Beautiful China Initiative Towards the Harmony between Humanity and the Nature. Front. Environ. Sci. Eng. 2024, 18, 71. [Google Scholar] [CrossRef]
- Lou, H.; Shi, X.; Ren, X.; Yang, S.; Cai, M.; Pan, Z.; Zhu, Y.; Feng, D.; Zhou, B. Limited Terrestrial Carbon Sinks and Increasing Carbon Emissions from the Hu Line Spatial Pattern Perspective in China. Ecol. Indic. 2024, 162, 112035. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy Assessment of Seven Global Land Cover Datasets over China. ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- He, Y.; Liang, Y.; Liu, L.; Yin, Z.; Huang, J. Loss of Green Landscapes Due to Urban Expansion in China. Resour. Conserv. Recycl. 2023, 199, 107228. [Google Scholar] [CrossRef]
- Yang, R.; Ren, F.; Xu, W.; Ma, X.; Zhang, H.; He, W. China’s Ecosystem Service Value in 1992–2018: Pattern and Anthropogenic Driving Factors Detection Using Bayesian Spatiotemporal Hierarchy Model. J. Environ. Manag. 2022, 302, 114089. [Google Scholar] [CrossRef]
- Theobald, D.M.; Kennedy, C.; Chen, B.; Oakleaf, J.; Baruch-Mordo, S.; Kiesecker, J. Earth Transformed: Detailed Mapping of Global Human Modification from 1990 to 2017. Earth Syst. Sci. Data 2020, 12, 1953–1972. [Google Scholar] [CrossRef]
- Liao, Z.; Su, K.; Jiang, X.; Wang, J.; You, Y.; Wang, L.; Chang, S.; Wei, C.; Zhang, Y.; Li, C. Spatiotemporal Variation and Coupling of Grazing Intensity and Ecosystem Based on Four Quadrant Model on the Inner Mongolia. Ecol. Indic. 2023, 152, 110379. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Shi, F.; An, Y.; Li, M.; Liu, Y. Spatio-Temporal Variations and Coupling of Human Activity Intensity and Ecosystem Services Based on the Four-Quadrant Model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Yang, Z.; Marinello, F. Exploration of Eco-Environment and Urbanization Changes in Coastal Zones: A Case Study in China over the Past 20 Years. Ecol. Indic. 2020, 119, 106847. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a Coupling Model of Coordination between Urbanization and the Environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of Land Use and Cover Change (LUCC) on Terrestrial Carbon Stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Lyu, J.; Fu, X.; Lu, C.; Zhang, Y.; Luo, P.; Guo, P.; Huo, A.; Zhou, M. Quantitative Assessment of Spatiotemporal Dynamics in Vegetation NPP, NEP and Carbon Sink Capacity in the Weihe River Basin from 2001 to 2020. J. Clean. Prod. 2023, 428, 139384. [Google Scholar] [CrossRef]
- Yang, D.; Luan, W.; Li, Y.; Zhang, Z.; Tian, C. Multi-Scenario Simulation of Land Use and Land Cover Based on Shared Socioeconomic Pathways: The Case of Coastal Special Economic Zones in China. J. Environ. Manag. 2023, 335, 117536. [Google Scholar] [CrossRef]
- Akritas, M.G.; Murphy, S.A.; Lavalley, M.P. The Theil-Sen Estimator with Doubly Censored Data and Applications to Astronomy. J. Am. Stat. Assoc. 1995, 90, 170–177. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Huang, L.; Fan, J.; Liu, X.; Cao, W.; Liu, H.; Liu, G. Where, When, and How Much Should We Pay for Wind Erosion Prevention Services of the Largest Chinese Grassland Reserve? Environ. Sci. Technol. 2024, 58, 2615–2626. [Google Scholar] [CrossRef]
- Wan, H.; Xie, Y.; Li, B.; Cai, Y.; Yang, Z. An Integrated Method to Identify and Evaluate the Impact of Hydropower Development on Terrestrial Ecosystem. Environ. Impact Assess. Rev. 2023, 99, 107042. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, J.; Li, S.; Guo, C.; Yang, X.; Xu, Y.; Yue, F.; Peng, H.; Chen, Y.; Gu, L.; et al. NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 2000 to 2020 in Miaoling Karst Mountain Area, SW China. Land 2023, 12, 1267. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology; Raj, B., Koerts, J., Eds.; Advanced Studies in Theoretical and Applied Econometrics; Springer: Dordrecht, The Netherlands, 1992; pp. 345–381. ISBN 978-94-011-2546-8. [Google Scholar]
- Mao, C.; Ren, Q.; He, C.; Qi, T. Assessing Direct and Indirect Impacts of Human Activities on Natural Habitats in the Qinghai-Tibet Plateau from 2000 to 2020. Ecol. Indic. 2023, 157, 111217. [Google Scholar] [CrossRef]
- Fang, X.; Gao, S. An Empirical Study on Relationship between Island Ecological Environment and Socio-Economic Development from Perspective of Environmental Kuznets Curve (EKC). Ocean Coast. Manag. 2023, 244, 106819. [Google Scholar] [CrossRef]
- Hu, Z.; Gong, J.; Li, J.; Li, R.; Zhang, Z.; Zhong, F.; Wen, C. Valuing the Coordinated Development of Urbanization and Ecosystem Service Value in Border Counties. J. Clean. Prod. 2023, 415, 137799. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, L.; Peng, H.; Zhang, X.; Zhang, S.; Lu, H.; Yao, L.; Xia, J. Relevance Evaluation and Spatial Differentiation Analysis between Green Development and Environmental Footprint in China’s Three Typical Mega-Urban Agglomerations. J. Clean. Prod. 2024, 436, 140644. [Google Scholar] [CrossRef]
- An, Q.; Yuan, X.; Zhang, X.; Yang, Y.; Chen, J.; An, J. Spatio-Temporal Interaction and Constraint Effects between Ecosystem Services and Human Activity Intensity in Shaanxi Province, China. Ecol. Indic. 2024, 160, 111937. [Google Scholar] [CrossRef]
- Yang, L.; Xu, H.; Pan, S.; Chen, W.; Zeng, J. Identifying the Impact of Global Human Activities Expansion on Natural Habitats. J. Clean. Prod. 2024, 434, 140247. [Google Scholar] [CrossRef]
- Xie, M.; Duan, H.; Kang, P.; Qiao, Q.; Bai, L. Toward an Ecological Civilization: China’s Progress as Documented by the Second National General Survey of Pollution Sources. Engineering 2021, 7, 1336–1341. [Google Scholar] [CrossRef]
- Wang, W.; Feng, C.; Liu, F.; Li, J. Biodiversity Conservation in China: A Review of Recent Studies and Practices. Environ. Sci. Ecotechnology 2020, 2, 100025. [Google Scholar] [CrossRef]
- Yushanjiang, A.; Zhou, W.; Wang, J.; Wang, J. Impact of Urbanization on Regional Ecosystem Services—A Case Study in Guangdong-Hong Kong-Macao Greater Bay Area. Ecol. Indic. 2024, 159, 111633. [Google Scholar] [CrossRef]
- Hu, H.Y. The Distribution of Population in China, with Statistics and Maps. Acta Geogr. Sin. 1935, 2, 33–74. [Google Scholar]
- Chen, M.; Gong, Y.; Li, Y.; Lu, D.; Zhang, H. Population Distribution and Urbanization on Both Sides of the Hu Huanyong Line: Answering the Premier’s Question. J. Geogr. Sci. 2016, 26, 1593–1610. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Miao, C. Urbanization Level in Chinese Counties: Imbalance Pattern and Driving Force. Remote Sens. 2022, 14, 2268. [Google Scholar] [CrossRef]
- Kong, X.; Fu, M.; Zhao, X.; Wang, J.; Jiang, P. Ecological Effects of Land-Use Change on Two Sides of the Hu Huanyong Line in China. Land Use Policy 2022, 113, 105895. [Google Scholar] [CrossRef]
- Jiang, H.; Guo, H.; Sun, Z.; Xing, Q.; Zhang, H.; Ma, Y.; Li, S. Projections of Urban Built-up Area Expansion and Urbanization Sustainability in China’s Cities through 2030. J. Clean. Prod. 2022, 367, 133086. [Google Scholar] [CrossRef]
- Liu, R.; Dong, X.; Wang, X.; Zhang, P.; Liu, M.; Zhang, Y. Relationship and Driving Factors between Urbanization and Natural Ecosystem Health in China. Ecol. Indic. 2023, 147, 109972. [Google Scholar] [CrossRef]
- Wu, K.; Wang, D.; Lu, H.; Liu, G. Temporal and Spatial Heterogeneity of Land Use, Urbanization, and Ecosystem Service Value in China: A National-Scale Analysis. J. Clean. Prod. 2023, 418, 137911. [Google Scholar] [CrossRef]
- Di Marco, M.; Ferrier, S.; Harwood, T.D.; Hoskins, A.J.; Watson, J.E.M. Wilderness Areas Halve the Extinction Risk of Terrestrial Biodiversity. Nature 2019, 573, 582–585. [Google Scholar] [CrossRef]
- Ma, L.; Pan, J. Spatial Identification and Priority Conservation Areas Determination of Wilderness in China. J. Clean. Prod. 2024, 451, 142069. [Google Scholar] [CrossRef]
- Xu, M.; Niu, L.; Wang, X.; Zhang, Z. Evolution of Farmland Landscape Fragmentation and Its Driving Factors in the Beijing-Tianjin-Hebei Region. J. Clean. Prod. 2023, 418, 138031. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X. Spatio-Temporal Variations of Habitat Quality and Its Driving Factors in the Yangtze River Delta Region of China. Glob. Ecol. Conserv. 2024, 52, e02978. [Google Scholar] [CrossRef]
- Yang, K.; Han, Q.; Vries, B. de Urbanization Effects on the Food-Water-Energy Nexus within Ecosystem Services: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration in China. Ecol. Indic. 2024, 160, 111845. [Google Scholar] [CrossRef]
- Luo, Y.; Fang, S.; Wu, H.; Zhou, X.; He, Z.; Gao, L. Spatial and Temporal Evolution of Habitat Quality and Its Shrinkage Effect in Shrinking Cities: Evidence from Northeast China. Ecol. Indic. 2024, 161, 111919. [Google Scholar] [CrossRef]
- Yuan, L.; Geng, M.; Li, F.; Xie, Y.; Tian, T.; Chen, Q. Spatiotemporal Characteristics and Drivers of Ecosystem Service Interactions in the Dongting Lake Basin. Sci. Total Environ. 2024, 926, 172012. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, W.; Fan, H.; Dong, X.; Lv, T. Temporal and Spatial Responses of Landscape Patterns to Habitat Quality Changes in the Poyang Lake Region, China. J. Nat. Conserv. 2024, 77, 126546. [Google Scholar] [CrossRef]
- Wang, X.; Luo, P.; Zheng, Y.; Duan, W.; Wang, S.; Zhu, W.; Zhang, Y.; Nover, D. Drought Disasters in China from 1991 to 2018: Analysis of Spatiotemporal Trends and Characteristics. Remote Sens. 2023, 15, 1708. [Google Scholar] [CrossRef]
- Ji, J.; Yu, Y.; Zhang, Z.; Hua, T.; Zhu, Y.; Zhao, H. Notable Conservation Gaps for Biodiversity, Ecosystem Services and Climate Change Adaptation on the Tibetan Plateau, China. Sci. Total Environ. 2023, 895, 165032. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Feng, H.; Li, Y.; Yu, J.; Liu, Y.; Du, H. Dynamic Evolution and Simulation of Habitat Quality in Arid Regions: A Case Study of the Hexi Region, China. Ecol. Model. 2024, 493, 110726. [Google Scholar] [CrossRef]
- Yi, J.; Du, Y.; Liang, F.; Tu, W.; Qi, W.; Ge, Y. Mapping Human’s Digital Footprints on the Tibetan Plateau from Multi-Source Geospatial Big Data. Sci. Total Environ. 2020, 711, 134540. [Google Scholar] [CrossRef]
Model | 2000 | 2005 | 2010 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | Sig. | R2 | Sig. | R2 | Sig. | R2 | Sig. | R2 | Sig. | |
Linear | 0.508 | 0.000 | 0.492 | 0.000 | 0.480 | 0.000 | 0.470 | 0.000 | 0.472 | 0.000 |
Quadratic | 0.720 | 0.000 | 0.720 | 0.000 | 0.720 | 0.000 | 0.723 | 0.000 | 0.741 | 0.000 |
Cubic | 0.836 | 0.000 | 0.831 | 0.000 | 0.828 | 0.000 | 0.828 | 0.000 | 0.831 | 0.000 |
Exponential | 0.393 | 0.000 | 0.378 | 0.000 | 0.367 | 0.000 | 0.359 | 0.000 | 0.359 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Q.; Lu, L.; Zhang, Y.; Qin, C. Spatiotemporal Evolution and Coupling Analysis of Human Footprints and Habitat Quality: Evidence of 21 Consecutive Years in China. Land 2024, 13, 980. https://doi.org/10.3390/land13070980
Xue Q, Lu L, Zhang Y, Qin C. Spatiotemporal Evolution and Coupling Analysis of Human Footprints and Habitat Quality: Evidence of 21 Consecutive Years in China. Land. 2024; 13(7):980. https://doi.org/10.3390/land13070980
Chicago/Turabian StyleXue, Qiang, Lu Lu, Yang Zhang, and Changbo Qin. 2024. "Spatiotemporal Evolution and Coupling Analysis of Human Footprints and Habitat Quality: Evidence of 21 Consecutive Years in China" Land 13, no. 7: 980. https://doi.org/10.3390/land13070980
APA StyleXue, Q., Lu, L., Zhang, Y., & Qin, C. (2024). Spatiotemporal Evolution and Coupling Analysis of Human Footprints and Habitat Quality: Evidence of 21 Consecutive Years in China. Land, 13(7), 980. https://doi.org/10.3390/land13070980