Research on the Factors Influencing the Spatial Quality of High-Density Urban Streets: A Framework Using Deep Learning, Street Scene Images, and Principal Component Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Machine Learning and Street View Images
2.2. Street View Image Indicators
2.3. Research Gap
- (1)
- To explore the manifestations of various street space quality indicators in high-density cities. The research employs multivariate analysis methods, which, while enhancing the complexity and difficulty of the analysis, also allows for the identification of indicators of significant relevance to the research topic through principal component analysis.
- (2)
- To evaluate the distribution and variability of various street space quality indicators in high-density cities. By calculating the coefficients of variation, the study assesses the stability and consistency of each indicator, offering a reference for policymakers to improve and manage street quality.
- (3)
- To investigate the interrelationships among various street space quality indicators in high-density cities. Correlation analysis will reveal the relationships between different indicators, particularly within the context of high-density urban street space indicators.
- (4)
- To discuss the weighting and cluster analysis of various street space quality indicators in high-density cities. Principal component analysis and cluster analysis will be utilized to identify and categorize clusters of indicators with similar characteristics, thereby shedding light on the diversity and complexity of street space quality in high-density urban areas.
3. Materials and Methods
3.1. Research Area
3.2. Data Collection
- (1)
- OSM Road Network
- (2)
- Street View Image
- (3)
- POI Data
3.3. Sample Dataset and Semantic Segmentation
3.4. Construction of Evaluation Indicators System
3.5. Calculation of Coefficient of Variation
3.6. Principal Component Analysis (PCA)
4. Results
4.1. Descriptive Statistical Analysis of Street Spatial Quality Indicators
4.2. Correlation Analysis of Street Spatial Quality Indicators
4.3. Evaluation of Spatial Quality of Streets Based on Principal Component Analysis
4.4. Cluster Analysis of Spatial Quality Indicators for Streets
5. Discussion
5.1. Indicators’ Coefficient of Variation
5.2. Indicators’ Correlation Coefficient
5.3. Street Quality Composite Scores
5.4. Cluster Analysis Results
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Quan, S.J.; Yang, P.P.J. Energy performance simulation for planning a low carbon neighborhood urban district: A case study in the city of Macau. Habitat Int. 2016, 53, 206–214. [Google Scholar] [CrossRef]
- Long, Y.; Liu, L. How green are the streets? An analysis for central areas of Chinese cities using Tencent Street View. PLoS ONE 2017, 12, e0171110. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Richards, D.; Lu, Y.; Song, X.; Zhuang, Y.; Zeng, W.; Zhong, T. Measuring daily accessed street greenery: A human-scale approach for informing better urban planning practices. Landsc. Urban Plan. 2019, 191, 103434. [Google Scholar] [CrossRef]
- Chen, J.; Tian, W.; Xu, K.; Pellegrini, P. Testing Small-Scale Vitality Measurement Based on 5D Model Assessment with Multi-Source Data: A Resettlement Community Case in Suzhou. ISPRS Int. J. Geo-Inf. 2022, 11, 626. [Google Scholar] [CrossRef]
- Wang, M.; He, Y.; Meng, H.; Zhang, Y.; Zhu, B.; Mango, J.; Li, X. Assessing street space quality using street view imagery and function-driven method: The case of Xiamen, China. ISPRS Int. J. Geo-Inf. 2022, 11, 282. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, D.; Liu, Y.; Lin, H. Representing place locales using scene elements. Comput. Environ. Urban Syst. 2018, 71, 153–164. [Google Scholar] [CrossRef]
- Zeng, C.; Song, Y.; He, Q.; Shen, F. Spatially explicit assessment on urban vitality: Case studies in Chicago and Wuhan. Sustain. Cities Soc. 2018, 40, 296–306. [Google Scholar] [CrossRef]
- Garau, C.; Annunziata, A. A method for assessing the vitality potential of urban areas. The case study of the Metropolitan City of Cagliari, Italy. City Territ. Archit. 2022, 9, 7. [Google Scholar] [CrossRef]
- Shi, J.; Miao, W.; Si, H.; Liu, T. Urban vitality evaluation and spatial correlation research: A case study from Shanghai, China. Land 2021, 10, 1195. [Google Scholar] [CrossRef]
- Ye, Y.; Dai, X.L. The possibility of spatial perception and design application under new technologies and new data conditions. Era Archit. 2017, 5, 6–13. [Google Scholar]
- Naik, N.; Philipoom, J.; Raskar, R.; Hidalgo, C. Streetscore-predicting the perceived safety of one million streetscapes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 779–785. [Google Scholar]
- Jiang, B.; Deal, B.; Pan, H.; Larsen, L.; Hsieh, C.H.; Chang, C.Y.; Sullivan, W.C. Remotely-sensed imagery vs. eye-level photography: Evaluating associations among measurements of tree cover density. Landsc. Urban Plan. 2017, 157, 270–281. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Chen, M.; Cai, Y.; Guo, S.; Sun, R.; Song, Y.; Shen, X. Evaluating implied urban nature vitality in San Francisco: An interdisciplinary approach combining census data, street view images, and social media analysis. Urban For. Urban Green. 2024, 95, 128289. [Google Scholar] [CrossRef]
- Shen, Q.; Zeng, W.; Ye, Y.; Arisona, S.M.; Schubiger, S.; Burkhard, R.; Qu, H. StreetVizor: Visual exploration of human-scale urban forms based on street views. IEEE Trans. Vis. Comput. Graph 2017, 24, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, R. Machine learning and big data processing: A technological perspective and review. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018), Cairo, Egypt, 22–24 February 2018; pp. 468–478. [Google Scholar]
- Biljecki, F.; Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, J.; Hong, Y.; Qian, C.; Guan, Q.; Liang, X.; Zhang, J. Discovering the homogeneous geographic domain of human perceptions from street view images. Landsc. Urban Plan. 2021, 212, 104125. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, F.; Gao, S.; Lin, H.; Liu, Y. A review of urban physical environment sensing using street view imagery in public health studies. Ann. GIS 2020, 26, 261–275. [Google Scholar] [CrossRef]
- Kim, H.; Hyungki, K.; Yuna, K.; Soonhung, H. Automatic 3D city modeling using a digital map and panoramic images from a mobile mapping system. Math. Probl. Eng. 2014, 2014, 383270. [Google Scholar] [CrossRef]
- Micusik, B.; Kosecka, J. Piecewise planar city 3D modeling from street view panoramic sequences. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Crandall, D.J.; Backstrom, L.; Huttenlocher, D.; Kleinberg, J. Mapping the world’s photos. In Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 20–24 April 2009; pp. 761–770. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Arietta, S.M.; Efros, A.A.; Ramamoorthi, R.; Agrawala, M. City forensics: Using visual elements to predict non-visual city attributes. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2624–2633. [Google Scholar] [CrossRef]
- Dubey, A.; Naik, N.; Parikh, D.; Raskar, R.; Hidalgo, C.A. Deep learning the city: Quantifying urban perception at a global scale. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 196–212. [Google Scholar]
- Liu, L.; Silva, E.A.; Wu, C.; Wang, H. A machine learning-based method for the large-scale evaluation of the qualities of the urban environment. Comput. Environ. Urban Syst. 2017, 65, 113–125. [Google Scholar] [CrossRef]
- Seiferling, I.; Naik, N.; Ratti, C.; Proulx, R. Green streets- quantifying and mapping urban trees with street-level imagery and computer vision. Landsc. Urban Plan. 2017, 165, 93–101. [Google Scholar] [CrossRef]
- Naik, N.; Kominers, S.D.; Raskar, R.; Glaeser, E.L.; Hidalgo, C.A. Computer vision uncovers predictors of physical urban change. Proc. Natl. Acad. Sci. USA 2017, 114, 7571–7576. [Google Scholar] [CrossRef] [PubMed]
- Hyam, R. Automated image sampling and classification can be used to explore perceived naturalness of urban spaces. PLoS ONE 2017, 12, e0169357. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Zhao, S.; Li, K. Evolution Pattern and Spatial Mismatch of Urban Greenspace and Its Impact Mechanism: Evidence from Parkland of Hunan Province. Land 2023, 12, 2071. [Google Scholar] [CrossRef]
- Peihong, W.; Kai, W.; Kerun, L.; Shufang, F. An evaluation model for the recreational carrying capacity of urban aerial trails. Tour. Manag. Perspect. 2023, 48, 101152. [Google Scholar] [CrossRef]
- Li, K.R.; Yang, Y.Q.; Zheng, Z.Q. Research on color harmony of building façades. Color Res. Appl. 2020, 45, 105–119. [Google Scholar] [CrossRef]
- Li, K.R.; Zheng, Z.Q.; Wang, P.H.; Yan, W.J. Research on the colour preference and harmony of the two-colour combination buildings. Color Res. Appl. 2022, 47, 980–991. [Google Scholar] [CrossRef]
- Mirowski, P.; Grimes, M.K.; Malinowski, M.; Hermann, K.M.; Anderson, K.; Teplyashin, D.; Hadsell, R. Learning to navigate in cities without a map. arXiv 2018, arXiv:1804.00168. [Google Scholar]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Martinez-Gonzalez, P.; Garcia-Rodriguez, J. A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft. Comput. 2018, 70, 41–65. [Google Scholar] [CrossRef]
- Dong, Q.; Cai, J.; Chen, S.; He, P.; Chen, X. Spatiotemporal analysis of urban green spatial vitality and the corresponding influencing factors: A case study of Chengdu, China. Land 2022, 11, 1820. [Google Scholar] [CrossRef]
- Helbich, M.; Yao, Y.; Liu, Y.; Zhang, J.; Liu, P.; Wang, R. Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. Environ. Int. 2019, 126, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Lopez, R.P.; Hynes, H.P. Obesity, physical activity, and the urban environment: Public health research needs. Environ. Health 2006, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- McMichael, A.J. The urban environment and health in a world of increasing globalization: Issues for developing countries. Bull. World Health Organ. 2000, 78, 1117–1126. [Google Scholar] [PubMed]
- Leslie, E.; Cerin, E. Are perceptions of the local environment related to neighbourhood satisfaction and mental health in adults? Prev. Med. 2008, 47, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Zhao, J.; Webster, C.; Lin, H. New metro system and active travel: A natural experiment. Environ. Int. 2020, 138, 105605. [Google Scholar] [CrossRef] [PubMed]
- Hummel, D. The effects of population and housing density in urban areas on income in the United States. Local Econ. 2020, 35, 27–47. [Google Scholar] [CrossRef]
- Ki, D.; Chen, Z.; Lee, S.; Lieu, S. A novel walkability index using google street view and deep learning. Sustain. Cities Soc. 2023, 99, 104896. [Google Scholar] [CrossRef]
- Cleland, V.J.; Timperio, A.; Crawford, D. Are perceptions of the physical and social environment associated with mothers’ walking for leisure and for transport? A longitudinal study. Prev. Med. 2008, 47, 188–193. [Google Scholar] [CrossRef]
- Liu, Z.; Kemperman, A.; Timmermans, H. Correlates of older adults’ walking trip duration. J. Transp. Health 2020, 18, 100889. [Google Scholar] [CrossRef]
- Maisel, J.L. Impact of older adults’ neighborhood perceptions on walking behavior. J. Aging Phys. Act. 2016, 24, 247–255. [Google Scholar] [CrossRef]
- Ewing, R.; Handy, S. Measuring the unmeasurable: Urban design qualities related to walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Adkins, A.; Dill, J.; Luhr, G.; Neal, M. Unpacking walkability: Testing the influence of urban design features on perceptions of walking environment attractiveness. J. Urban Des. 2012, 17, 499–510. [Google Scholar] [CrossRef]
- Hamim, O.F.; Kancharla, S.R.; Ukkusuri, S.V. Mapping sidewalks on a neighborhood scale from street view images. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 823–838. [Google Scholar] [CrossRef]
- Zuniga-Teran, A.A.; Orr, B.J.; Gimblett, R.H.; Chalfoun, N.V.; Marsh, S.E.; Guertin, D.P.; Going, S.B. Designing healthy communities: Testing the walkability model. Front. Archit. Res. 2017, 6, 63–73. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Q.; Hang, T.; Yang, Y.; Wang, Y.; Cao, L. Integrating restorative perception into urban street planning: A framework using street view images, deep learning, and space syntax. Cities 2024, 147, 104791. [Google Scholar] [CrossRef]
- Koo, B.W.; Guhathakurta, S.; Botchwey, N.; Hipp, A. Can good microscale pedestrian streetscapes enhance the benefits of macroscale accessible urban form? An automated audit approach using Google street view images. Landsc. Urban Plan. 2023, 237, 104816. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, R.; Niu, T.; Liu, Y. Using street view images and a geographical detector to understand how street-level built environment is associated with urban poverty: A case study in Guangzhou. Appl. Geogr. 2023, 156, 102980. [Google Scholar] [CrossRef]
- Niu, T.; Chen, Y.; Yuan, Y. Measuring urban poverty using multi-source data and a random forest algorithm: A case study in Guangzhou. Sustain. Cities Soc. 2020, 54, 102014. [Google Scholar] [CrossRef]
- Meng, Y.; Xing, H.; Yuan, Y.; Wong, M.S.; Fan, K. Sensing urban poverty: From the perspective of human perception-based greenery and open-space landscapes. Comput. Environ. Urban Syst. 2020, 84, 101544. [Google Scholar] [CrossRef]
- Goodchild, M.F. Formalizing place in geographic information systems. In Communities, Neighborhoods, and Health: Expanding the Boundaries of Place; Springer: New York, NY, USA, 2010. [Google Scholar]
- Vich, G.; Magadán, J.D.; Miralles-Guasch, C. The composition of green spaces and levels of physical activity of older people in Barcelona. In Congreso Internacional Ciudad y Territorio Virtual (CTV); UPC: Madrid, Spain, 2019. [Google Scholar]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban form and composition of street canyons: A human-centric big data and deep learning approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City; MIT Press: Cambridge, MA, USA, 1960. [Google Scholar]
- Ewing, R.; Cervero, R. Travel and the built environment: A meta-analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Kaplan, S.; Nielsen, T.A.S.; Prato, C.G. Walking, cycling and the urban form: A Heckman selection model of active travel mode and distance by young adolescents. J. Am. Plan. Assoc. 2016, 44, 55–65. [Google Scholar] [CrossRef]
- Moran, M.; Plaut, P.; Baron-Epel, O. Do children walk where they bike? Exploring built environment correlates of children’s walking and bicycling. J. Transp. Land Use 2016, 9, 43–65. [Google Scholar] [CrossRef]
- Dias, A.F.; Gaya, A.R.; Pizarro, A.N.; Brand, C.; Mendes, T.M.; Mota, J.; Gaya, A.C.A. Perceived and objective measures of neighborhood environment: Association with active commuting to school by socioeconomic status in Brazilian adolescents. J. Transp. Health 2019, 14, 100612. [Google Scholar] [CrossRef]
- Frank, L.; Kerr, J.; Chapman, J.; Sallis, J. Urban form relationships with walk trip frequency and distance among youth. Am. J. Health Promot. 2007, 21, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Panter, J.; Corder, K.; Griffin, S.J.; Jones, A.P.; van Sluijs, E.M. Individual, socio-cultural and environmental predictors of uptake and maintenance of active commuting in children: Longitudinal results from the SPEEDY study. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Dalton, M.A.; Longacre, M.R.; Drake, K.M.; Gibson, L.; Adachi-Mejia, A.M.; Swain, K.; Owens, P.M. Built environment predictors of active travel to school among rural adolescents. Am. J. Prev. Med. 2011, 40, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lu, Y.; Yang, L.; Gou, Z.; Zhang, X. Urban greenery, active school transport, and body weight among Hong Kong children. Travel Behav. Soc. 2020, 20, 104–113. [Google Scholar] [CrossRef]
- Fuller, M.; Moore, R. An Analysis of Jane Jacobs’s The Death and Life of Great American Cities; Macat Library: London, UK, 2017. [Google Scholar]
- Jiang, B.; Claramunt, C. Topological analysis of urban street networks. Environ. Plan B-Urban. 2004, 31, 151–162. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, N.; Wu, L.; Liu, Y. Street as a big geo-data assembly and analysis unit in urban studies: A case study using Beijing taxi data. Appl. Geogr. 2017, 86, 152–164. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Shen, J.; Liu, Y. Small and medium-scale street renewal design method based on “quality-vitality” multi-source data. Landsc. Archit. 2023, 9, 105–113. [Google Scholar]
- Li, Y.; Liu, G. Street space quality evaluation based on street view and POI data. Geospat. Inf. 2024, 2, 64–67. [Google Scholar]
- Zhou, H.; He, S.; Cai, Y.; Wang, M.; Su, S. Social inequalities in neighborhood visual walkability: Using street view imagery and deep learning technologies to facilitate healthy city planning. Sustain. Cities Soc. 2019, 50, 101605. [Google Scholar] [CrossRef]
- Ye, C.; Hu, L.; Li, M. Urban green space accessibility changes in a high-density city: A case study of Macau from 2010 to 2015. J. Transp. Geogr. 2018, 66, 106–115. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Z.; Li, J. Residents’ behaviors, attitudes, and willingness to pay for recycling e-waste in Macau. J. Environ. Manag. 2012, 106, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 633–641. [Google Scholar]
- Cheng, B.; Misra, I.; Schwing, A.G.; Kirillov, A.; Girdhar, R. Masked-attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Katz, P. The New Urbanism. Toward an Architecture of Community; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Montgomery, J. Making a city: Urbanity, vitality and urban design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Method Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Kherif, F.; Latypova, A. Principal component analysis. In Machine Learning; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Canchola, J.A.; Tang, S.; Hemyari, P.; Paxinos, E.; Marins, E. Correct use of percent coefficient of variation (% CV) formula for log-transformed data. MOJ Proteom. Bioinform. 2017, 6, 316–317. [Google Scholar] [CrossRef]
- Shechtman, O. The coefficient of variation as an index of measurement reliability. In Methods of Clinical Epidemiology; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Abdi, H.; Williams, L.J. Computational Statistics. In Wiley Interdisciplinary Reviews: Computational Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Hair, J.F. Multivariate Data Analysis, 7th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2009. [Google Scholar]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed.; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Jolliffe, I.T. Principal component analysis. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 1–9. [Google Scholar]
- Wu, C.; Peng, N.; Ma, X.; Li, S.; Rao, J. Assessing multiscale visual appearance characteristics of neighbourhoods using geographically weighted principal component analysis in Shenzhen, China. Comput. Environ. Urban Syst. 2020, 84, 101547. [Google Scholar] [CrossRef]
NO. | Indicators Layer | Explanation | Data Sources |
---|---|---|---|
1 | Green View Index, GVI | The average proportion of plant elements in street view images within street units reflects the degree of greening from a humanistic perspective. | Semantic segmentation |
2 | Green Coverage Index, GCI | The proportion of green coverage area in the total area of the region reflects the overall greening level of the city. | Remote-sensing data |
3 | Sky View Index, SVI | The average proportion of sky elements in street view images within street units reflects the openness of space. | Semantic segmentation |
4 | Color Richness Index, CRI | Use Simpson index to calculate the diversity of streetscape elements within street units to reflect spatial richness. | Semantic segmentation |
5 | Accessibility of Pavement, AP | The average proportion of image sidewalks and pedestrian elements in the street unit reflects the walkable space of the street. | Semantic segmentation |
6 | Accessibility of Transportation Services, ATS | The POI density of traffic services within a 100 m buffer zone on the road reflects the convenience of traffic services. | POI data |
7 | Road Network Density, RND | The density (or total length) of the road network per unit area reflects route selection and transportation connectivity. | OSM road network data |
8 | Accessibility of Transportation Station, ATS2 | The difficulty for people to reach the nearest public transportation station reflects the location accessibility of street space. | OSM road network data |
9 | Diversity of Commercial Facilities, DCF | Use Shannon’s index to calculate the mixing degree of various POIs to reflect the diversity of commercial facilities. | POI data |
10 | Density of Leisure and Shopping, DLS | The density of leisure shopping POIs within the 100 m buffer zone of the road reflects the convenience of leisure shopping. | POI data |
11 | Accessibility of Life Services, ALS | The density of life service POIs within the 100 m buffer zone of the road reflects the convenience of life services. | POI data |
12 | Diversity of Diverse Functions, DDF | Use Shannon’s diversity index (SHDI) to calculate the mixing degree of various POIs to reflect the diversity of facilities. | POI data |
13 | Street Enclosure, SE | The average proportion of buildings and column elements in street view images within street units reflects the degree of street space congestion. | Semantic segmentation |
14 | Vehicle Traffic Index, VTI | The average proportion of motor vehicles and motor vehicle lane elements in street images within street units reflects the vehicle space. | Semantic segmentation |
15 | Density of Cultural and Educational, DCE | The density of cultural and educational facilities POI within the 100 m buffer zone of the road, and the convenience of counter-cultural education. | POI data |
16 | Medical Facilities Density, MFD | The density of medical facility POIs within the 100 m buffer zone of the road and the convenience of counter-cultural medical care. | POI data |
GVI | GCI | SKI | CRI | AP | ATS | ATS2 | RND | DCF | DLS | ALS | DDF | SE | VTI | DCE | MFD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maximum | 43.50 | 12.12 | 67.00 | 0.78 | 14.08 | 57.00 | 901.99 | 20,218.8 | 1.58 | 214.00 | 74.00 | 2.25 | 65.89 | 24.42 | 33.01 | 112.01 |
Minimum | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 189.98 | 0.05 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.01 | 0.01 |
Average | 8.16 | 12.07 | 31.45 | 0.69 | 4.72 | 4.64 | 90.17 | 11,684.2 | 0.85 | 20.59 | 6.70 | 1.47 | 31.83 | 15.45 | 2.86 | 9.18 |
Median | 7.11 | 12.12 | 29.26 | 0.70 | 4.77 | 4.00 | 74.90 | 11,634.6 | 0.81 | 11.00 | 4.00 | 1.51 | 31.79 | 16.53 | 2.01 | 4.01 |
Standard Error of Mean | 0.07 | 0.01 | 0.13 | 0.00 | 0.02 | 0.05 | 0.87 | 45.80 | 0.00 | 0.31 | 0.10 | 0.00 | 0.20 | 0.05 | 0.04 | 0.15 |
Standard Error | 6.11 | 0.74 | 10.81 | 0.07 | 1.94 | 4.36 | 70.90 | 3739.33 | 0.30 | 25.08 | 7.87 | 0.35 | 16.20 | 3.99 | 3.44 | 12.29 |
Coefficient of Variation% | 74.87 | 6.14 | 34.36 | 9.96 | 41.17 | 94.01 | 78.63 | 32 | 34.91 | 121.81 | 117.51 | 23.84 | 50.89 | 25.86 | 120.29 | 133.9 |
Indicators | Components | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
SE | 0.863 | −0.105 | −0.222 | 0.032 | 0.082 |
DLS | 0.826 | 0.065 | 0.035 | −0.264 | 0.031 |
ALS | 0.809 | 0.250 | 0.255 | −0.215 | −0.028 |
SVI | −0.799 | 0.163 | 0.124 | −0.289 | −0.060 |
MFD | 0.769 | 0.183 | 0.159 | −0.252 | −0.004 |
AP | 0.655 | 0.002 | −0.379 | 0.344 | 0.318 |
DCE | 0.649 | 0.309 | 0.206 | 0.144 | 0.046 |
ATS | 0.611 | 0.362 | 0.321 | −0.182 | −0.145 |
VTI | −0.548 | 0.543 | 0.316 | −0.295 | −0.180 |
CRI | −0.231 | 0.865 | −0.165 | 0.218 | 0.099 |
GCI | −0.016 | 0.697 | −0.398 | −0.120 | 0.201 |
DCF | −0.132 | −0.149 | 0.629 | 0.308 | 0.132 |
DDF | 0.255 | 0.095 | 0.592 | 0.481 | 0.022 |
GVI | −0.415 | 0.413 | 0.041 | 0.435 | 0.197 |
RND | 0.209 | 0.026 | −0.132 | 0.235 | −0.657 |
ATS2 | −0.179 | −0.183 | 0.246 | −0.315 | 0.617 |
Eigenvalue | 5.218 | 2.129 | 1.555 | 1.256 | 1.087 |
Variance percentage % | 32.613 | 13.305 | 9.720 | 7.849 | 6.793 |
Accumulated contribution rate % | 32.613 | 45.918 | 55.638 | 63.487 | 70.280 |
Indicators | Components | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
SE | 0.378 | −0.072 | −0.178 | 0.029 | 0.079 |
DLS | 0.362 | 0.045 | 0.028 | −0.236 | 0.030 |
ALS | 0.354 | 0.171 | 0.205 | −0.192 | −0.027 |
SVI | −0.350 | 0.112 | 0.099 | −0.258 | −0.058 |
MFD | 0.337 | 0.125 | 0.128 | −0.225 | −0.004 |
AP | 0.287 | 0.001 | −0.304 | 0.307 | 0.305 |
DCE | 0.284 | 0.211 | 0.165 | 0.129 | 0.045 |
ATS | 0.268 | 0.248 | 0.257 | −0.162 | −0.139 |
VTI | −0.240 | 0.372 | 0.253 | −0.263 | −0.172 |
CRI | −0.101 | 0.593 | −0.132 | 0.195 | 0.095 |
GCI | −0.007 | 0.478 | −0.319 | −0.107 | 0.193 |
DCF | −0.058 | −0.102 | 0.504 | 0.275 | 0.127 |
DDF | 0.112 | 0.065 | 0.475 | 0.429 | 0.022 |
GVI | −0.182 | 0.283 | 0.033 | 0.388 | 0.189 |
RND | 0.091 | 0.018 | −0.106 | 0.210 | −0.630 |
ATS2 | −0.078 | −0.125 | 0.197 | −0.281 | 0.591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K. Research on the Factors Influencing the Spatial Quality of High-Density Urban Streets: A Framework Using Deep Learning, Street Scene Images, and Principal Component Analysis. Land 2024, 13, 1161. https://doi.org/10.3390/land13081161
Li K. Research on the Factors Influencing the Spatial Quality of High-Density Urban Streets: A Framework Using Deep Learning, Street Scene Images, and Principal Component Analysis. Land. 2024; 13(8):1161. https://doi.org/10.3390/land13081161
Chicago/Turabian StyleLi, Kerun. 2024. "Research on the Factors Influencing the Spatial Quality of High-Density Urban Streets: A Framework Using Deep Learning, Street Scene Images, and Principal Component Analysis" Land 13, no. 8: 1161. https://doi.org/10.3390/land13081161
APA StyleLi, K. (2024). Research on the Factors Influencing the Spatial Quality of High-Density Urban Streets: A Framework Using Deep Learning, Street Scene Images, and Principal Component Analysis. Land, 13(8), 1161. https://doi.org/10.3390/land13081161