Quantitative Analysis of Aeolian Sand Provenance: A Comprehensive Analysis in the Otindag Dune Field, Central Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. QEMSCAN Method for Heavy Minerals Analyses
2.4. Heavy Mineral and Rock Indexes
2.5. Quantitative Provenance Analysis
2.6. Multidimensional Scaling
3. Results
3.1. Heavy Mineral Composition
3.2. Unmixing of the Sand Source Contributions
4. Discussion
4.1. Influencing Factors of Heavy Mineral Tracing
4.2. Spatial Heterogeneity of Aeolian Sand Sources
4.3. Dynamic Process of Provenance Supply in Potential Provenance Areas
4.4. Provenance Implications for the Environment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hara, Y.; Uno, I.; Wang, Z.F. Long-term variation of Asian dust and related climate factors. Atmos. Environ. 2006, 40, 6730–6740. [Google Scholar] [CrossRef]
- Muhs, D.R. Evaluation of simple geochemical indicators of aeolian sand provenance: Late Quaternary dune fields of North America revisited. Quat. Sci. Rev. 2017, 171, 260–296. [Google Scholar] [CrossRef]
- Maher, B.A.; Prospero, J.M.; Mackie, D.; Gaiero, D.; Hesse, P.P.; Balkanski, Y. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth Sci. Rev. 2010, 99, 61–97. [Google Scholar] [CrossRef]
- Sun, Y.B.; Yan, Y.; Nie, J.S.; Li, G.J.; Shi, Z.G.; Qiang, X.K.; Chang, H.; An, Z.S. Source-to-sink fluctuations of Asian aeolian deposits since the late Oligocene. Earth Sci. Rev. 2020, 200, 102963. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.; Walker, B. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Garzanti, E.; Dinis, P.; Vermeesch, P.; Andò, S.; Hahn, A.; Huvi, J.; Limonta, M.; Padoan, M.; Resentini, A.; Rittner, M.; et al. Sedimentary processes controlling ultralong cells of littoral transport: Placer formation and termination of the Orange sand highway in southern Angola. Sedimentology 2018, 65, 431–460. [Google Scholar] [CrossRef]
- Liang, A.M.; Dong, Z.B.; Su, Z.Z.; Qu, J.J.; Zhang, Z.C.; Qian, G.Q.; Wu, B.; Gao, J.L.; Yang, Z.L.; Zhang, C.X. Provenance and transport process for interdune sands in the Kumtagh Sand Sea, Northwest China. Geomorphology 2020, 367, 107310. [Google Scholar] [CrossRef]
- Liu, Z.T.; Yang X, P. Geochemical-geomorphological evidence for the provenance of Aeolian sands and sedimentary environments in the Hunshandake Sandy Land, Eastern Inner Mongolia, China. Acta Geol. Sin.-Engl. 2013, 87, 871–884. [Google Scholar] [CrossRef]
- Xie, J.; Ding, Z.L. Compositions of heavy minerals in Northeastern China sandlands and provenance analysis. Sci. China Ser. D 2007, 50, 1715–1723. [Google Scholar] [CrossRef]
- Vermeesch, P.; Fenton, C.R.; Kober, F.; Wiggs, G.F.S.; Bristow, C.S.; Xu, S. Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides. Nat. Geosci. 2010, 3, 862–865. [Google Scholar] [CrossRef]
- Chang, Q.; Mishima, T.; Yabuki, S.; Takahashi, Y.; Shimizu, H. Sr and Nd isotope ratios and REE abundances of moraines in the mountain areas surrounding the Taklimakan Desert, NW China. Geochem. J. 2000, 34, 407–427. [Google Scholar] [CrossRef]
- Lu, G.; Chen, X.W.; Zou, H.; Preto, N.; Huang, X.T.; Wang, C.C.; Shi, Z.Q.; Jin, X. Provenance of the first terrigenous sediments in the western Sichuan Basin during the Late Triassic: Implications for basin evolution from marine to continental. Mar. Pet. Geol. 2023, 147, 105992. [Google Scholar] [CrossRef]
- Stevens, T.; Palk, C.; Carter, A.; Lu, H.; Clift, P.D. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons. Bulletin 2010, 122, 1331–1344. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.L.; Chen, Q.J.; Dong, S.P.; Yu, X.Y.; Yu, Q. Provenance of eolian sands in the Ulan Buh Desert, northwestern China, revealed by heavy mineral assemblages. Catena 2020, 193, 104624. [Google Scholar] [CrossRef]
- Morton, A.; Knox, R.; Frei, D. Heavy mineral and zircon age constraints on provenance of the Sherwood Sandstone Group (Triassic) in the eastern Wessex Basin, UK. Proc. Geol. Assoc. 2016, 127, 514–526. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Andò, S.; Garzanti, E.; Padoan, M.; Limonta, M. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sediment. Geol. 2012, 280, 165–178. [Google Scholar] [CrossRef]
- Huber, B.; Bahlburg, H.; Pfänder, J.A. Single grain heavy mineral provenance of garnet and amphibole in the Surveyor fan and precursor sediments on the Gulf of Alaska abyssal plain Implications for climate-tectonic interactions in the St. Elias orogen. Sediment. Geol. 2018, 372, 173192. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R.; Bahlburg, H.; Floyd, P.A. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–30. [Google Scholar] [CrossRef]
- Klages, M.G.; Hsieh, Y.P. Suspended Solids Carried by the Gallatin River of Southwestern Montana: II. Using Mineralogy for Inferring Sources. J. Environ. Qual. 1975, 4, 68–73. [Google Scholar] [CrossRef]
- Walling, D.E.; Peart, M.R.; Oldfield, F.; Thompson, R. Suspended sediment sources identified by magnetic measurements. Nature 1979, 281, 281110a0. [Google Scholar] [CrossRef]
- Walling, D.W.; Woodward, J.C.; Nicholas, A.P. A multi-parameter approach to fingerprinting suspended-sediment sources. In Tracers in Hydrology. Proceedings of the International Symposium; International Association of Hydrological Sciences: Yokohama, Japan; International Association of Hydrological Sciences: Oxfordshire, UK, 1993; pp. 329–338. [Google Scholar]
- Zhang, X.C.; Liu, B. Using multiple composite fingerprints to quantify fine sediment source contributions: A new direction. Geoderma 2016, 268, 108–118. [Google Scholar] [CrossRef]
- Palaz’on, L.; Gaspar, L.; Latorre, B.; Blake, W.H.; Navas, A. Identifying sediment sources by applying a fingerprinting mixing model in a Pyrenean drainage catchment. J. Soils Sediments 2015, 15, 2067–2085. [Google Scholar] [CrossRef]
- Schuller, P.; Walling, D.E.; Iroumé, A.; Quilodrán, C.; Castillo, A.; Navas, A. Using 137Cs and 210Pbex and other sediment source fingerprints to document suspended sediment sources in small forested catchments in south-central Chile. J. Environ. Radioact. 2013, 124, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Laceby, J.P.; Gellis, A.C.; Koiter, A.J.; Blake, W.H.; Evrard, O. Preface—Evaluating the response of critical zone processes to human impacts with sediment source fingerprinting. J. Soils Sediments 2019, 19, 3245–3254. [Google Scholar] [CrossRef]
- McCarthy, D.T.; Jovanovic, D.; Lintern, A.; Teakle, I.; Barnes, M.; Deletic, A.; Coleman, R.; Rooney, G.; Prosser, T.; Coutts, S.; et al. Source tracking usingmicrobial community fingerprints: Method comparisonwith hydrodynamic modelling. Water Res. 2017, 109, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Evrard, O.; Laceby, J.P.; Ficetola, G.F.; Gielly, L.; Huon, S.; Lefèvre, I.; Onda, Y. Environmental DNA provides information on sediment sources: A study in catchments affected by Fukushima radioactive fallout. Sci. Total. Environ. 2019, 665, 873–881. [Google Scholar] [CrossRef]
- Gholami, H.; Telfer, M.; Blake, W.; Fathabadi, A. Aeolian sediment fingerprinting using a Bayesian mixing model. Earth Surf. Proc. Land. 2017, 42, 2365–2376. [Google Scholar] [CrossRef]
- Song, Y.G.; Chen, X.L.; Li, Y.; Fan, Y.; Collins, A.L. Quantifying the provenance of dune sediments in the Taklimakan Desert using machine learning, multidimensional scaling and sediment source fingeprinting. Catena 2022, 210, 105902. [Google Scholar] [CrossRef]
- Liang, A.M.; Zhang, Z.C.; Lizaga, I.; Dong, Z.B.; Zhang, Y.F.; Liu, X.K.; Xiao, F.J.; Gao, J.L. Which is the dominant source for the aeolian sand in the Badain Jaran Sand Sea, Northwest China: Fluvial or gobi sediments? Catena 2023, 225, 107011. [Google Scholar] [CrossRef]
- Lizaga, I.; Latorre, B.; Gaspar, L.; Navas, A. Consensus ranking as a method to identify non-conservative and dissenting tracers in fingerprinting studies. Sci. Total Environ. 2020, 720, 137537. [Google Scholar] [CrossRef] [PubMed]
- Latorre, B.; Lizaga, I.; Gaspar, L.; Navas, A. A novel method for analysing consistency and unravelling multiple solutions in sediment fingerprinting. Sci. Total Environ. 2021, 789, 147804. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.J.; Xu, Z.L.; Tang, C.; Jin, R.S.; Duan, M.; Wei, J.L.; Zeng, H.; Zhang, C. Provenance Characteristics of Uranium-bearing Sediments of the Upper Saihan Formation and Its Implications for Sandstone-type Uranium Mineralization in Manite Depression, Erlian Basin. Earth Sci. 2023, 1–25, (In Chinese with English abstract). Available online: https://link.cnki.net/urlid/42.1874.P.20230511.1702.006 (accessed on 1 June 2017).
- Fryberger, S.G.; Dean, G. Dune Forms and Wind Regime. In A Study of Global Sand Seas; McKee, E., Ed.; US Geological Survey Professional Paper 1052; IOP Publishing Ltd.: Washington, DC, USA, 1979; pp. 137–170. Available online: http://iopscience.iop.org/0034-4885/75/10/106901 (accessed on 1 June 2017).
- Wang, Z.G.; Li, K.; Zhang, Z.C.; Tang, J.Z.; Chen, Y. Early Permian magmatism in northern Inner Mongolia, southeastern Central Asian Orogenic Belt: Implications on lithospheric extension in a post-collisional setting. Lithos 2022, 426, 106803. [Google Scholar] [CrossRef]
- Liu, H.C.; Wang, J.C.; Lai, C.-K.; Li, Y.L.; Wang, J.F.; Song, C.Y.; Zhang, J.D.; Zhao, X.Z.; Qin, J.D. Anatomy of two Permian greenschist- to blueschist-facies tectonic mélanges in the Solonker Suture Zone (Inner Mongolia, northeastern China): Evidence for divergent double subduction and soft collision. J. Geol. Soc. 2020, 177, 981–996. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Hao, J.; Zhai, M.G. Accretion leading tocollision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 1069–1088. [Google Scholar] [CrossRef]
- Tong, Y.; Hong, D.; Wang, T.; Shi, X.; Zhang, J.; Zeng, T. Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications. Acta Geosci. Sin. 2010, 31, 395–412, (In Chinese with English abstract). [Google Scholar]
- Song, S.G.; Wang, M.-M.; Xu, X.; Wang, C.; Niu, Y.L.; Allen, M.B.; Su, L. Ophiolites in the Xing’an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events. Tectonics 2015, 34, 2221–2248. [Google Scholar] [CrossRef]
- Fossum, K.; Morton, A.C.; Dypvik, H.; Hudson, W.E. Integrated heavy mineral study of Jurassic to Paleogene sandstones in the Mandawa Basin, Tanzania: Sediment provenance and source-to-sink relations. J. Afr. Earth Sci. 2019, 150, 546–565. [Google Scholar] [CrossRef]
- Nie, J.S.; Peng, W.B. Automated SEM EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau. Aeolian Res. 2014, 13, 71–75. [Google Scholar] [CrossRef]
- Nie, J.; Peng, W.; Pfaff, K.; Möller, A.; Garzanti, E.; Andò, S.; Stevens, T.; Bird, A.; Chang, H.; Song, Y.; et al. Controlling factors on heavy mineral assemblages in Chinese loess and Red Clay. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 381–382, 110–118. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Lu, H.Y.; Zhou, Y.L.; Cui, Y.Y.; He, J.; Lv, H.Z.; Wang, K.X.; Wang, X.Y. Heavy mineral assemblages and U-Pb detrital zircon geochronology of sediments from the Weihe and Sanmen Basins: New insights into the Pliocene-Pleistocene evolution of the Yellow River. Palaeogeogr. Palaeoclim. Palaeoecol. 2020, 562, 110072. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S. Heavy mineral concentration in modern sands: Implications for provenance interpretation. Dev. Sedimentol. 2007, 58, 517–545. [Google Scholar] [CrossRef]
- Hubert, J.F. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J. Sediment. Res. 1962, 32, 440–450. [Google Scholar] [CrossRef]
- Lizaga, I.; Latorre, B.; Bodé, S.; Gaspar, L.; Boeckx, P.; Navas, A. Combining isotopic and elemental tracers for enhanced sediment source partitioning in complex catchments. J. Hydrol. 2024, 631, 130768. [Google Scholar] [CrossRef]
- Lizaga, I.; Latorre, B.; Gaspar, L.; Navas, A. FingerPro: An R Packae for Sediment Source Tracing; Zenodo: Geneva, Switzerland, 2018. [Google Scholar] [CrossRef]
- Lizaga, I.; Latorre, B.; Gaspar, L.; Navas, A. FingerPro: An R Package for Tracking the Provenance of Sediment. Water Resour. Manag. 2020, 34, 3879–3894. [Google Scholar] [CrossRef]
- Vermeesch, P.; Resentini, A.; Garzanti, E. An R package for statistical provenance analysis. Sediment. Geol. 2016, 336, 14–25. [Google Scholar] [CrossRef]
- Pettijohn, F.J. Sedimentary Rocks; Harper & Row Publish: New York, NY, USA, 1975; pp. 1–523. [Google Scholar]
- Zhang, X.J.; Pease, V.; Omma, J.; Benedictus, A. Provenance of Late Carboniferous to Jurassic sandstones for southern Taimyr, Arctic Russia: A comparison of heavy mineral analysis by optical and QEMSCAN methods. Sediment. Geol. 2015, 329, 166–176. [Google Scholar] [CrossRef]
- Zhang, J.R.; Wei, C.J.; Chu, H. New model for the tectonic evolution of Xing’ an -Inner Mongolia Orogenic Belt: Evidence from four different phases of metamorphism in Central Inner Mongolia. Acta Petrol. Sin. 2018, 34, 2857–2871, (In Chinese with English abstract). [Google Scholar]
- Yang, X.; Zhu, B.; Wang, X.; Li, C.; Zhou, Z.; Chen, J.; Wang, X.; Yin, J.; Lu, Y. Late Quaternary environmental changes and organic carbon density in the Onqin Daga Dune field, eastern Inner Mongolia, China. Glob. Planet. Change 2008, 61, 70–78. [Google Scholar] [CrossRef]
- Long, Q.X. Study on Morphological Changes of Dune Inotindag Dune Field; Shaanxi Normal University: Xi’an, China, 2018; (In Chinese with English abstract). [Google Scholar]
- Williams, M. Climate Change in Deserts: Past, Present and Future; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S. Effects of landscape pattern change on flow and sediment processes in the Luanhe River Basin. Acta Ecol. Sin. 2017, 37, 2463–2485, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yang, X.P.; Li, H.W.; Conacher, A. Large-scale controls on the development of sand seas in northern China. Quat. Int. 2012, 250, 74–83. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Yang, X.P. Geochemical composition and provenance of aeolian sands in the Ordos Deserts, northern China. Geomorphology 2018, 318, 354–374. [Google Scholar] [CrossRef]
- Yang, X.P.; Scuderi, L.; Paillou, P.; Liu, Z.T.; Li, H.W.; Ren, X. Quaternary environmental changes in the drylands of China A critical review. Quat. Sci. Rev. 2011, 30, 3219–3233. [Google Scholar] [CrossRef]
- Yang, X.; Scuderi, L.A.; Wang, X.; Scuderi, L.J.; Zhang, D.; Li, H.; Forman, S.; Xu, Q.; Wang, R.; Huang, W.; et al. Groundwater sapping as the cause of irreversible desertification of Onqin Daga Dune fields, Inner Mongolia, northern China. Proc. Natl. Acad. Sci. USA 2015, 112, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, J.; Wang, X.; Zhao, S.; Chen, J.; Qiang, M.; Liu, B.; Xu, Q.; Xia, D.; Chen, F. Holocene dust storm variations over northern China: Transition from a natural forcing to an anthropogenic forcing. J. Sci. Bull. 2021, 66, 2516–2527. [Google Scholar] [CrossRef] [PubMed]
- Issanova, G.; Kaldybayev, A.; Ge, Y.; Abuduwaili, J.; Ma, L. Spatial and Temporal Characteristics of Dust Storms and Aeolian Processes in the Southern Balkash Deserts in Kazakhstan, Central Asia. Land 2023, 12, 668. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, S.; Qin, Z.; Qi, Z.; Jiao, X.; Li, Z. Differentiation of Carbon Sink Enhancement Potential in the Beijing–Tianjin–Hebei Region of China. Land 2024, 13, 375. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.; Qin, F.C.; Li, Y.H.; Chen, J.X.; Fang, X.N. Ecological policies enhanced ecosystem services in the Hunshandak sandy land of China. Ecol. Indic. 2022, 144, 109450. [Google Scholar] [CrossRef]
- Ping, Y.; Liu, X.J.; Yang, Q.G. Analysis on dust emission characteristics in the western desertificational fringe area of Hunshandake Sand-Land. In Proceedings of the 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, China, 4–5 July 2009; IEEE: Piscataway, NJ, USA, 2009; Volume 3, pp. 617–620. [Google Scholar] [CrossRef]
- Chang, X.T.; Guo, J.Y.; Wang, X.P. Detecting the amount of eroded and deposited sand using DInSAR. TAO 2011, 22, 187–194. [Google Scholar] [CrossRef]
Station | DP (VU) | RDP (VU) | RDP/DP | RDD (°) | PWD | Wind Energy Environment |
---|---|---|---|---|---|---|
Abaga | 711.92 | 306.66 | 0.43 | 118.09 | WN | High |
Erenhot | 393.54 | 279.41 | 0.71 | 269.82 | W | High |
Duolun | 100.46 | 93.63 | 0.93 | 109.42 | WN | Low |
id | w1 | w2 | w3 | Dw1 | Dw2 | Dw3 | cons | Dmax |
---|---|---|---|---|---|---|---|---|
Zo Gt | 0.11 | 0.16 | 0.73 | 0.26 | 0.31 | 0.24 | 0.44 | 0.31 |
Sps Gt | 0.16 | 0.15 | 0.69 | 0.29 | 0.31 | 0.32 | 0.46 | 0.32 |
Ep Sps | 0.02 | 0.52 | 0.46 | 0.32 | 0.36 | 0.34 | 0.45 | 0.36 |
Zo Ap | 0.14 | 0.09 | 0.77 | 0.30 | 0.38 | 0.30 | 0.39 | 0.38 |
Zo Ru | −0.05 | 0.46 | 0.59 | 0.34 | 0.41 | 0.38 | 0.37 | 0.41 |
Ap Sps | 0.19 | 0.08 | 0.73 | 0.30 | 0.42 | 0.35 | 0.42 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Zhou, Y.; Lizaga, I.; Dong, Z.; Zhang, J.; Liang, A.; Lü, P.; Feng, T. Quantitative Analysis of Aeolian Sand Provenance: A Comprehensive Analysis in the Otindag Dune Field, Central Inner Mongolia, China. Land 2024, 13, 1194. https://doi.org/10.3390/land13081194
Cui Y, Zhou Y, Lizaga I, Dong Z, Zhang J, Liang A, Lü P, Feng T. Quantitative Analysis of Aeolian Sand Provenance: A Comprehensive Analysis in the Otindag Dune Field, Central Inner Mongolia, China. Land. 2024; 13(8):1194. https://doi.org/10.3390/land13081194
Chicago/Turabian StyleCui, Yingying, Yali Zhou, Ivan Lizaga, Zhibao Dong, Jin Zhang, Aimin Liang, Ping Lü, and Tong Feng. 2024. "Quantitative Analysis of Aeolian Sand Provenance: A Comprehensive Analysis in the Otindag Dune Field, Central Inner Mongolia, China" Land 13, no. 8: 1194. https://doi.org/10.3390/land13081194
APA StyleCui, Y., Zhou, Y., Lizaga, I., Dong, Z., Zhang, J., Liang, A., Lü, P., & Feng, T. (2024). Quantitative Analysis of Aeolian Sand Provenance: A Comprehensive Analysis in the Otindag Dune Field, Central Inner Mongolia, China. Land, 13(8), 1194. https://doi.org/10.3390/land13081194