Modelling the Control of Groundwater on the Development of Colliery Spoil Tip Failures in Wales
Abstract
:1. Introduction
2. Study Area Description
3. Methods of Analysis
3.1. Investigation of Tip Properties
3.2. Circular Failure Charts
- (1)
- The material forming the slope is homogeneous;
- (2)
- The shear strength () of the material is defined by the cohesion () and friction angle ();
- (3)
- The potential circular slip surface passes through the toe of the slope.
3.3. Three-Dimensional Limit Equilibrium Analysis
3.4. Three-Dimensional Finite-Difference Method
3.5. Sensitivity Analysis
4. Results
4.1. Results of Stability Chart Analysis
4.2. Results of Numerical LE Analysis
4.3. Results of 3D FEM Modelling
4.3.1. Dry Slope
4.3.2. Partially Saturated Slope
4.4. Result of Sensitivity Analysis for Colliery Spoil Properties
4.4.1. Sensitivity Analysis of Soil Cohesion
4.4.2. Sensitivity Analysis of Soil Friction Angle
4.4.3. Sensitivity Analysis of Soil Porosity
5. Discussion
6. Conclusions
- (1)
- The 2020 Wattstown tip landslide was characterised by a shallow rotational failure mode. It occurred in the steepest north face of the tip with the mean inclination of 35°, travelling along a pre-existing trench and spreading out from the source area in a fan-like shape;
- (2)
- Three-dimensional FDM modelling is capable of recreating the landslide and identifying its source area in the north face. The modelling result was validated by field observation and satellite remote-sensing data post event;
- (3)
- Three-dimensional FDM modelling confirms that the rise of the water table following heavy rainfall most likely triggered the landslide;
- (4)
- The modelling results highlight that the landslide was spatially constrained by the critical water table and an underlying geological interface;
- (5)
- The study demonstrates that as a preliminary investigation tool, both the stability chart analysis and 2D LE analysis are able to effectively predict the slope stability condition of the Wattstown tip. Good consistency was observed between the preliminary investigation and the more sophisticated 3D FDM modelling.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Richards, I.G.; Palmer, J.P.; Barratt, P.A. The Reclamation of Former Coal Mines and Steelworks; Elsevier: New York, NY, USA; Amsterdam, The Netherlands, 1993. [Google Scholar]
- Welsh Government. Coal Tip Safety|GOV.WALES. Available online: https://www.gov.wales/coal-tip-safety (accessed on 24 March 2023).
- Siddle, H.J.; Wright, M.D.; Hutchinson, J.N. Rapid Failures of Colliery Spoil Heaps in the South Wales Coalfield. Q. J. Eng. Geol. Hydrogeol. 1996, 29, 103–132. [Google Scholar] [CrossRef]
- Lee, R.G. Disused Coal Tip Management in Wales: Environmental Regulation under Climate Change. Environ. Law Rev. 2023, 25, 135–153. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Z.; Au, S.-K. Efficient Monte Carlo Simulation of Parameter Sensitivity in Probabilistic Slope Stability Analysis. Comput. Geotech. 2010, 37, 1015–1022. [Google Scholar] [CrossRef]
- Vallejo, L.E. Interpretation of the Limits in Shear Strength in Binary Granular Mixtures. Can. Geotech. J. 2001, 38, 1097–1104. [Google Scholar] [CrossRef]
- Hu, J.; Weng, X.; Yang, L.; Lei, S.; Niu, H. Centrifugal Modeling Test on Failure Characteristics of Soil-Rock Mixture Slope under Rainfall. Eng. Fail. Anal. 2022, 142, 106775. [Google Scholar] [CrossRef]
- Curry, A.M.; Black, R. Structure, Sedimentology and Evolution of Rockfall Talus, Mynydd Du, South Wales. Proc. Geol. Assoc. 2003, 114, 49–64. [Google Scholar] [CrossRef]
- Pande, G.N.; Pietruszczak, S.; Wang, M. Role of Gradation Curve in Description of Mechanical Behavior of Unsaturated Soils. Int. J. Geomech. 2020, 20, 04019159. [Google Scholar] [CrossRef]
- Zhai, X.; Horn, R. Effect of Static and Cyclic Loading Including Spatial Variation Caused by Vertical Holes on Changes in Soil Aeration. Soil Tillage Res. 2018, 177, 61–67. [Google Scholar] [CrossRef]
- Masoudian, M.S.; Zevgolis, I.E.; Deliveris, A.V.; Marshall, A.M.; Heron, C.M.; Koukouzas, N.C. Stability and Characterisation of Spoil Heaps in European Surface Lignite Mines: A State-of-the-Art Review in Light of New Data. Environ. Earth Sci. 2019, 78, 505. [Google Scholar] [CrossRef]
- Cui, Y.; Chan, D.; Nouri, A. Coupling of Solid Deformation and Pore Pressure for Undrained Deformation-a Discrete Element Method Approach. Int. J. Numer. Anal. Methods Geomech. 2017, 41, 1943–1961. [Google Scholar] [CrossRef]
- Di Maio, C.; Vassallo, R. Geotechnical Characterization of a Landslide in a Blue Clay Slope. Landslides 2011, 8, 17–32. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Furuya, G.; Yang, J. Pore-Pressure Generation and Fluidization in a Loess Landslide Triggered by the 1920 Haiyuan Earthquake, China: A Case Study. Eng. Geol. 2014, 174, 36–45. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Gariano, S.L.; Melillo, M.; Rossi, M.; Guzzetti, F. Rainfall Thresholds for Possible Landslide Occurrence in Italy. Geomorphology 2017, 290, 39–57. [Google Scholar] [CrossRef]
- Horacio, J.; Muñoz-Narciso, E.; Trenhaile, A.S.; Pérez-Alberti, A. Remote Sensing Monitoring of a Coastal-Valley Earthflow in Northwestern Galicia, Spain. CATENA 2019, 178, 276–287. [Google Scholar] [CrossRef]
- He, L.; Francioni, M.; Coggan, J.; Calamita, F.; Eyre, M. Modelling the Influence of Geological Structures in Paleo Rock Avalanche Failures Using Field and Remote Sensing Data. Remote Sens. 2022, 14, 4090. [Google Scholar] [CrossRef]
- Geertsema, M.; Menounos, B.; Bullard, G.; Carrivick, J.L.; Clague, J.J.; Dai, C.; Donati, D.; Ekstrom, G.; Jackson, J.M.; Lynett, P.; et al. The 28 November 2020 Landslide, Tsunami, and Outburst Flood—A Hazard Cascade Associated With Rapid Deglaciation at Elliot Creek, British Columbia, Canada. Geophys. Res. Lett. 2022, 49, e2021GL096716. [Google Scholar] [CrossRef]
- Sanz de Ojeda, P.; Sanz Pérez, E.; Galindo, R.; Sanz Riaguas, C. Retrospective Modeling of a Large Paleo-Landslide Related to Deglaciation in the Sierra de Urbión, Cordillera Ibérica, Spain. Appl. Sci. 2021, 11, 4277. [Google Scholar] [CrossRef]
- Wang, J.-J.; Liang, Y.; Zhang, H.-P.; Wu, Y.; Lin, X. A Loess Landslide Induced by Excavation and Rainfall. Landslides 2014, 11, 141–152. [Google Scholar] [CrossRef]
- Troncone, A.; Pugliese, L.; Conte, E. Analysis of an Excavation-Induced Landslide in Stiff Clay Using the Material Point Method. Eng. Geol. 2022, 296, 106479. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Chen, G.; Zheng, L.; Li, Y. Effects of Vertical Seismic Force on Initiation of the Daguangbao Landslide Induced by the 2008 Wenchuan Earthquake. Soil Dyn. Earthq. Eng. 2015, 73, 91–102. [Google Scholar] [CrossRef]
- Bojadjieva, J.; Sheshov, V.; Bonnard, C. Hazard and Risk Assessment of Earthquake-Induced Landslides—Case Study. Landslides 2018, 15, 161–171. [Google Scholar] [CrossRef]
- Hoek, E.; Bray, J.W. Rock Slope Engineering, 3rd ed.; The Institute of Mining and Metallurgy: London, UK, 1981. [Google Scholar]
- Taylor, D.W. Stability of Earth Slopes. J. Boston Soc. Civ. Eng. 1937, 24, 197–247. [Google Scholar]
- Bishop, A.W. The Use of the Slip Circle in the Stability Analysis of Slopes. Géotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
- Spencer, E. A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces. Géotechnique 1967, 17, 11–26. [Google Scholar] [CrossRef]
- VandenBerge, D.R.; Duncan, J.M.; Brandon, T.L. Limitations of Transient Seepage Analyses for Calculating Pore Pressures during External Water Level Changes. J. Geotech. Geoenvironmental Eng. 2015, 141, 04015005. [Google Scholar] [CrossRef]
- Prakasam, C.; Aravinth, R.; Nagarajan, B.; Kanwar, V.S. Site-Specific Geological and Geotechnical Investigation of a Debris Landslide along Unstable Road Cut Slopes in the Himalayan Region, India. Geomat. Nat. Hazards Risk 2020, 11, 1827–1848. [Google Scholar] [CrossRef]
- Dastpak, P.; Jamshidi Chenari, R.; Cami, B.; Javankhoshdel, S. Noncircular Deterministic and Stochastic Slope Stability Analyses and Design of Simple Geosynthetic-Reinforced Soil Slopes. Int. J. Geomech. 2021, 21, 04021155. [Google Scholar] [CrossRef]
- Stead, D.; Wolter, A. A Critical Review of Rock Slope Failure Mechanisms: The Importance of Structural Geology. J. Struct. Geol. 2015, 74, 1–23. [Google Scholar] [CrossRef]
- Hammouri, N.A.; Malkawi, A.I.H.; Yamin, M.M.A. Stability Analysis of Slopes Using the Finite Element Method and Limiting Equilibrium Approach. Bull. Eng. Geol. Environ. 2008, 67, 471–478. [Google Scholar] [CrossRef]
- Jian, W.; Wang, Z.; Yin, K. Mechanism of the Anlesi Landslide in the Three Gorges Reservoir, China. Eng. Geol. 2009, 108, 86–95. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Zhang, L.; Zhu, Z.; Hu, J.; Wei, H. Probabilistic Stability Analyses of Undrained Slopes by 3D Random Fields and Finite Element Methods. Geosci. Front. 2018, 9, 1657–1664. [Google Scholar] [CrossRef]
- Li, T.Z.; Yang, X.L. Stability of Plane Strain Tunnel Headings in Soils with Tensile Strength Cut-Off. Tunn. Undergr. Space Technol. 2020, 95, 103138. [Google Scholar] [CrossRef]
- Thimpson, M.; Harding, S.H.; Finey, J.; Vaughan, P.; Briggs, W.; Brown, R.; Rodin, S.; Cochrane, N.; Bishop, A.; Humphreys, J.; et al. DISCUSSION. COLLIERY SPOIL TIPS—AFTER ABERFAN. (ORIGINAL PAPER PUBLISHED AS A SEPARATE DOCUMENT—LOAN COPIES AT 7598). Proc. Inst. Civ. Eng. 1973, 55, 677–712. [Google Scholar]
- Forrester, D.J.; Whittaker, B.N. Effects of Mining Subsidence on Colliery Spoil Heaps. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 113–120. [Google Scholar] [CrossRef]
- Woodland, A.W.; Evan, W.B. The Geology of the South Wales Coalfield-Part 6. In Memoirs of The Geological Survey of Great Britain, 3rd ed.; London Her Majesty’s Stationery Office: London, UK, 1964. [Google Scholar]
- Met Office Hadley Centre. Data: Variables from HadUK-Grid over UK for Daily Data; Met Office Hadley Centre: Exeter, UK, 2023.
- Welsh Government. DataMapWales. Available online: https://datamap.gov.wales/ (accessed on 2 April 2023).
- Taylor, R.K. English and Welsh Colliery Spoil Heaps—Mineralogical and Mechanical Interrelationships. Eng. Geol. 1975, 9, 39–52. [Google Scholar] [CrossRef]
- Holubec, I. Geotechnical Aspects of Coal Waste Embankments. Can. Geotech. J. 1976, 13, 27–39. [Google Scholar] [CrossRef]
- Bentley, S.P.; Davies, M.C.R.; Gallup, M. The Cilfynydd Flow Slide of December 1939. Q. J. Eng. Geol. Hydrogeol. 1998, 31, 273–289. [Google Scholar] [CrossRef]
- Davies, M.C.R.; Johnston, A.G.; Williams, K.P. Stabilised Mixed Colliery Spoil in Land Reclamation. Int. J. Surf. Min. Reclam. Environ. 1998, 12, 1–4. [Google Scholar] [CrossRef]
- Okagbue, C.O. The Geotechnical Characteristics and Stability of a Spoil Heap at a Southwestern Pennsylvania Coal Mine, U.S.A. Eng. Geol. 1984, 20, 325–341. [Google Scholar] [CrossRef]
- Amos, P.W.; Younger, P.L. Substrate Characterisation for a Subsurface Reactive Barrier to Treat Colliery Spoil Leachate. Water Res. 2003, 37, 108–120. [Google Scholar] [CrossRef]
- Rocscience. Slide3|3D Slope Stability Analysis Software—Rocscience. Available online: https://www.rocscience.com/software/slide3 (accessed on 5 April 2023).
- Collin, J.G.; Stark, T.D.; Lucarelli, A.; Taylor, T.P.; Berg, R.R. Stability and Stress-Deformation Analyses of Reinforced Slope Failure at Yeager Airport. J. Geotech. Geoenviron. Eng. 2021, 147, 04020179. [Google Scholar] [CrossRef]
- Firincioglu, B.S.; Ercanoglu, M. Insights and Perspectives into the Limit Equilibrium Method from 2D and 3D Analyses. Eng. Geol. 2021, 281, 105968. [Google Scholar] [CrossRef]
- Lashgari, M.; Ozturk, C.A. Slope Failure and Stability Investigations for an Open Pit Copper Mine in Turkey. Environ. Earth Sci. 2022, 81, 5. [Google Scholar] [CrossRef]
- Janbu, N. Application of Composite Slip Surfaces for Stability Analysis. In Proceedings of the European Conference on Stability of Earth Slopes, Stockholm, Sweden, 20–25 September 1954; pp. 43–49. [Google Scholar]
- Itasca Consulting Group Inc. FLAC3D|US Minneapolis—Itasca Consulting Group, Inc. Available online: https://www.itascacg.com/software/FLAC3D (accessed on 16 April 2023).
- Yang, X.; Hou, D.; Tao, Z.; Peng, Y.; Shi, H. Stability and Remote Real-Time Monitoring of the Slope Slide Body in the Luoshan Mining Area. Int. J. Min. Sci. Technol. 2015, 25, 761–765. [Google Scholar] [CrossRef]
- Yin, Y.; Li, B.; Wang, W. Dynamic Analysis of the Stabilized Wangjiayan Landslide in the Wenchuan Ms 8.0 Earthquake and Aftershocks. Landslides 2015, 12, 537–547. [Google Scholar] [CrossRef]
- Dong, J.; Yang, X.; Yang, J.; Wang, C. Formation Mechanism and Failure Analysis under Fluctuating Reservoir Water Level Conditions of a Large-Scale Accumulation Slope. Bull. Eng. Geol. Environ. 2022, 81, 181. [Google Scholar] [CrossRef]
- Gallage, C.; Uchimura, T. Direct Shear Testing on Unsaturated Silty Soils to Investigate the Effects of Drying and Wetting on Shear Strength Parameters at Low Suction. J. Geotech. Geoenviron. Eng. 2016, 142, 04015081. [Google Scholar] [CrossRef]
- Lei, X.; Yang, Z.; He, S.; Liu, E.; Wong, H.; Li, X. Numerical Investigation of Rainfall-Induced Fines Migration and Its Influences on Slope Stability. Acta Geotech. 2017, 12, 1431–1446. [Google Scholar] [CrossRef]
- Rahardjo, H.; Nio, A.S.; Leong, E.C.; Song, N.Y. Effects of Groundwater Table Position and Soil Properties on Stability of Slope during Rainfall. J. Geotech. Geoenviron. Eng. 2010, 136, 1555–1564. [Google Scholar] [CrossRef]
- Ray, R.L.; Jacobs, J.M.; De Alba, P. Impacts of Unsaturated Zone Soil Moisture and Groundwater Table on Slope Instability. J. Geotech. Geoenviron. Eng. 2010, 136, 1448–1458. [Google Scholar] [CrossRef]
- Peranić, J.; Mihalić Arbanas, S.; Arbanas, Ž. Importance of the Unsaturated Zone in Landslide Reactivation on Flysch Slopes: Observations from Valići Landslide, Croatia. Landslides 2021, 18, 3737–3751. [Google Scholar] [CrossRef]
- Lowe, J.A.; Bernie, D.; Bett, P.; Bricheno, L.; Brown, S.; Calvert, D.; Clark, R.; Edwards, T.; Fosser, G.; Fung, F.; et al. UKCP18 Science Overview Report. 2018. Available online: https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/science/science-reports (accessed on 21 May 2023).
- Met Office Hadley Centre. Data: Variables from Local Projections (2.2 km) Regridded to 5km over UK for Daily Data; Met Office Hadley Centre: Exeter, UK, 2018.
- Wang, H.; Zhang, Y.C.; Hu, H.Y. A Study on Relationship of Landslide Occurrence and Rainfall. Appl. Mech. Mater. 2013, 438–439, 1200–1204. [Google Scholar] [CrossRef]
- Chinkulkijniwat, A.; Salee, R.; Horpibulsuk, S.; Arulrajah, A.; Hoy, M. Landslide Rainfall Threshold for Landslide Warning in Northern Thailand. Geomat. Nat. Hazards Risk 2022, 13, 2425–2441. [Google Scholar] [CrossRef]
- Matsushi, Y.; Matsukura, Y. Cohesion of Unsaturated Residual Soils as a Function of Volumetric Water Content. Bull. Eng. Geol. Environ. 2006, 65, 449–455. [Google Scholar] [CrossRef]
- Ahmadi Naghadeh, R.; Toker, N.K. Exponential Equation for Predicting Shear Strength Envelope of Unsaturated Soils. Int. J. Geomech. 2019, 19, 04019061. [Google Scholar] [CrossRef]
Soil Property | Mean | Minimum | Maximum | Reference |
---|---|---|---|---|
Unit weight (KN/m3) | 19 | 17 | 21 | [37,41,42,43,44,45,46] |
Friction angle (°) | 37 | 32 | 42 | |
Cohesion (KPa) | 10 | 0 | 20 | |
Porosity (%) | 20 | 10 | 30 |
Friction Angle | Cohesion | Tensile Strength | Porosity | |
---|---|---|---|---|
Colliery tip | 37° | 1 × 104 Pa | 0 | 20% |
Natural slope | 40° | 1 × 105 Pa | 5 × 104 Pa | 10% |
Friction Angle | Cohesion | Tensile Strength | Bulk Modulus | Shear Modulus | |
---|---|---|---|---|---|
Colliery spoil | 37° | 1 × 104 Pa | 0 | 1.67 × 108 Pa | 0.77 × 108 Pa |
Natural slope | 40° | 1 × 105 Pa | 5 × 104 Pa | 8.33 × 108 Pa | 4 × 108 Pa |
Method | Dry Slope | Partially Saturated Slope (Regime_1) |
---|---|---|
Simplified Bishop | 1.471 | 1 |
Simplified Janbu | 1.28 | 0.897 |
Spencer | 1.464 | 1.019 |
2024 | 2025 | 2026 | 2027 | 2028 | ||
---|---|---|---|---|---|---|
50–60 mm | 1 | 2 | 3 | 3 | 1 | |
60–70 mm | 1 | 1 | 1 | 0 | 1 | |
≥70 mm | 1 | 1 | 0 | 0 | 1 |
2024 | 2025 | 2026 | 2027 | 2028 | ||
---|---|---|---|---|---|---|
100–115 mm | 0 | 0 | 1 | 2 | 1 | |
115–130 mm | 0 | 1 | 0 | 0 | 0 | |
≥130 mm | 0 | 0 | 0 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Coggan, J.; Foster, P.; Phiri, T.; Eyre, M. Modelling the Control of Groundwater on the Development of Colliery Spoil Tip Failures in Wales. Land 2024, 13, 1311. https://doi.org/10.3390/land13081311
He L, Coggan J, Foster P, Phiri T, Eyre M. Modelling the Control of Groundwater on the Development of Colliery Spoil Tip Failures in Wales. Land. 2024; 13(8):1311. https://doi.org/10.3390/land13081311
Chicago/Turabian StyleHe, Lingfeng, John Coggan, Patrick Foster, Tikondane Phiri, and Matthew Eyre. 2024. "Modelling the Control of Groundwater on the Development of Colliery Spoil Tip Failures in Wales" Land 13, no. 8: 1311. https://doi.org/10.3390/land13081311
APA StyleHe, L., Coggan, J., Foster, P., Phiri, T., & Eyre, M. (2024). Modelling the Control of Groundwater on the Development of Colliery Spoil Tip Failures in Wales. Land, 13(8), 1311. https://doi.org/10.3390/land13081311