Assessing the Efficiency of Two Silvicultural Approaches for Soil Erosion Mitigation Using a Novel Monitoring Apparatus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Silvicultural Treatment
2.3. Hydrological and Geological Data
2.4. Experimental Plot
2.5. Collection and Analysis Methodologies
3. Results and Discussion
Leaf Collection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K. Global Potential Soil Erosion with Reference to Land Use and Climate Changes. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, Challenges and Limitations of Soil Erosion Modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Kumar, M.; Sahu, A.; Sahoo, N.; Dash, S.; Raul, S.K.; Panigrahi, B. Global-Scale Application of the RUSLE Model: A Comprehensive Review. Hydrol. Sci. J. 2022, 67, 806–830. [Google Scholar] [CrossRef]
- van der Knijff, J.; Jones, R.; Montanarella, L. Soil Erosion Risk Assessment in Italy. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC19353 (accessed on 22 February 2024).
- FAO. Soil Erosion: The Greatest Challenge for Sustainable Soil Management; FAO: Rome, Italy, 2019. [Google Scholar]
- Panagos, P.; Ballabio, C.; Himics, M.; Scarpa, S.; Matthews, F.; Bogonos, M.; Poesen, J.; Borrelli, P. Projections of Soil Loss by Water Erosion in Europe by 2050. Environ. Sci. Policy 2021, 124, 380–392. [Google Scholar] [CrossRef]
- FAO. ITPS Status of the World’s Soil Resources: Main Report; FAO: Rome, Italy, 2015. [Google Scholar]
- Wuepper, D.; Borrelli, P.; Finger, R. Countries and the Global Rate of Soil Erosion. Nat. Sustain. 2020, 3, 51–55. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Zhou, W.; LaMoreaux, J.W. Hazard Hydrogeology; Environmental Earth Sciences; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-031-48426-1. [Google Scholar]
- Pimentel, D. Soil Erosion: A Food and Environmental Threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Adornado, H.A.; Yoshida, M.; Apolinares, H.A. Erosion Vulnerability Assessment in REINA, Quezon Province, Philippines with Raster-Based Tool Built within GIS Environment. Agric. Inf. Res. 2009, 18, 24–31. [Google Scholar] [CrossRef]
- Karamage, F.; Shao, H.; Chen, X.; Ndayisaba, F.; Nahayo, L.; Kayiranga, A.; Omifolaji, J.K.; Liu, T.; Zhang, C. Deforestation Effects on Soil Erosion in the Lake Kivu Basin, D.R. Congo-Rwanda. Forests 2016, 7, 281. [Google Scholar] [CrossRef]
- Poesen, J. Soil Erosion in the Anthropocene: Research Needs. Earth Surf. Process. Landf. 2018, 43, 64–84. [Google Scholar] [CrossRef]
- Zhao, L.; Hou, R. Human Causes of Soil Loss in Rural Karst Environments: A Case Study of Guizhou, China. Sci. Rep. 2019, 9, 3225. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil Erosion Modelling: A Global Review and Statistical Analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef]
- Kavian, A.; Azmoodeh, A.; Solaimani, K. Deforestation Effects on Soil Properties, Runoff and Erosion in Northern Iran. Arab. J. Geosci. 2014, 7, 1941–1950. [Google Scholar] [CrossRef]
- Borrelli, P.; Panagos, P.; Märker, M.; Modugno, S.; Schütt, B. Assessment of the Impacts of Clear-Cutting on Soil Loss by Water Erosion in Italian Forests: First Comprehensive Monitoring and Modelling Approach. Catena 2017, 149, 770–781. [Google Scholar] [CrossRef]
- Riquetti, N.B.; Beskow, S.; Guo, L.; Mello, C.R. Soil Erosion Assessment in the Amazon Basin in the Last 60 Years of Deforestation. Environ. Res. 2023, 236, 116846. [Google Scholar] [CrossRef]
- Apollonio, C.; Petroselli, A.; Tauro, F.; Cecconi, M.; Biscarini, C.; Zarotti, C.; Grimaldi, S. Hillslope Erosion Mitigation: An Experimental Proof of a Nature-Based Solution. Sustainability 2021, 13, 6058. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation; Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1965.
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; U.S. Department of Agriculture, Agriculture Handbook No. 537: Washington, DC, USA, 1978.
- Kinnell, P.I.A. Event Soil Loss, Runoff and the Universal Soil Loss Equation Family of Models: A Review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Renard, K.G. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1997; ISBN 978-0-16-048938-9.
- Laflen, J.M.; Flanagan, D.C. The Development of U. S. Soil Erosion Prediction and Modeling. Int. Soil Water Conserv. Res. 2013, 1, 1–11. [Google Scholar] [CrossRef]
- Petroselli, A.; Apollonio, C.; De Luca, D.L.; Salvaneschi, P.; Pecci, M.; Marras, T.; Schirone, B. Comparative Evaluation of the Rainfall Erosivity in the Rieti Province, Central Italy, Using Empirical Formulas and a Stochastic Rainfall Generator. Hydrology 2021, 8, 171. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Piazza, G.V.; Ferro, V.; Giordano, G. Predicting Unit Plot Soil Loss in Sicily, South Italy. Hydrol. Process. 2008, 22, 586–595. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Stefano, C.; Ferro, V.; Pampalone, V. Using Plot Soil Loss Distribution for Soil Conservation Design. Catena 2011, 86, 172–177. [Google Scholar] [CrossRef]
- Stott, T.; Leeks, G.; Marks, S.; Sawyer, A. Environmentally Sensitive Plot-Scale Timber Harvesting: Impacts on Suspended Sediment, Bedload and Bank Erosion Dynamics. J. Environ. Manage. 2001, 63, 3–25. [Google Scholar] [CrossRef]
- An, S.; Zheng, F.; Zhang, F.; Van Pelt, S.; Hamer, U.; Makeschin, F. Soil Quality Degradation Processes along a Deforestation Chronosequence in the Ziwuling Area, China. Catena 2008, 75, 248–256. [Google Scholar] [CrossRef]
- Fernandez, C.; Wu, J.Q.; McCool, D.K.; Stöckle, C.O. Estimating Water Erosion and Sediment Yield with GIS, RUSLE, and SEDD. J. Soil Water Conserv. 2003, 58, 128–136. [Google Scholar]
- Farhan, Y.; Nawaiseh, S. Spatial Assessment of Soil Erosion Risk Using RUSLE and GIS Techniques. Environ. Earth Sci. 2015, 74, 4649–4669. [Google Scholar] [CrossRef]
- Ganasri, B.P.; Ramesh, H. Assessment of Soil Erosion by RUSLE Model Using Remote Sensing and GIS—A Case Study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef]
- Phinzi, K.; Ngetar, N.S. The Assessment of Water-Borne Erosion at Catchment Level Using GIS-Based RUSLE and Remote Sensing: A Review. Int. Soil Water Conserv. Res. 2019, 7, 27–46. [Google Scholar] [CrossRef]
- Eniyew, S.; Teshome, M.; Sisay, E.; Bezabih, T. Integrating RUSLE Model with Remote Sensing and GIS for Evaluation Soil Erosion in Telkwonz Watershed, Northwestern Ethiopia. Remote Sens. Appl. Soc. Environ. 2021, 24, 100623. [Google Scholar] [CrossRef]
- Weslati, O.; Serbaji, M.-M. Spatial Assessment of Soil Erosion by Water Using RUSLE Model, Remote Sensing and GIS: A Case Study of Mellegue Watershed, Algeria–Tunisia. Environ. Monit. Assess. 2023, 196, 14. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. A Review of the Design and Operation of Runoff and Soil Loss Plots. Catena 2016, 145, 257–265. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Lastoria, B.; Bussettini, M.; Barbano, A. Dissesto Idrogeologico in Italia: Pericolosità e Indicatori Di Rischio; ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale: Roma, Italy, 2021; pp. 1–221. ISBN 978-88-448-1085-6.
- EEA Climate Change Adaptation and Disaster Risk Reduction in Europe—European Environment Agency. Available online: https://www.eea.europa.eu/publications/climate-change-adaptation-and-disaster (accessed on 22 February 2024).
- Del Favero, R. Progetto Boschi Del Parco Regionale Dei Colli Euganei. Pubblicazione Del Parco Regionale Dei Colli Euganei; Parco Regionale dei Colli Euganei: Este, Italy, 2001. [Google Scholar]
- Schirone, B.; Salvaneschi, P.; Cianfaglione, K.; Pecci, M.; Andrisano, T.; Vessella, F.; Petroselli, A. A Proposal for Modifying Coppicing Geometry in Order to Reduce Soil Erosion in the Forest Areas. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12325. [Google Scholar] [CrossRef]
- Geoportale Abruzzo Carta Dei Suoli Della Regione Abruzzo, ARSSA. Available online: http://geoportale.regione.abruzzo.it/Cartanet/catalogo/difesa-suolo-geologia/carta-dei-suoli-della-regione-abruzzo-arssa (accessed on 30 December 2023).
- ISPRA Istituto Superiore per La Protezione e La Ricerca Ambientale. Carta Geologica d’Italia Alla Scala 1:50.000, Foglio 369 “Sulmona”. Available online: https://www.isprambiente.gov.it/Media/carg/369_SULMONA/Foglio.html (accessed on 30 December 2023).
- Pesaresi, S.; Galdenzi, D.; Biondi, E.; Casavecchia, S. Bioclimate of Italy: Application of the Worldwide Bioclimatic Classification System. J. Maps 2014, 10, 538–553. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Giuliani, D.; Antenucci, F. Valori Medi Climatici Dal 1951 al 2000 Nella Regione Abruzzo. Servizio Presidi Tecnici di Supporto al Settore Agricolo—DPD023; Ufficio Coordinamento Servizi Vivaistici e Agrimeteo—Scerni (CH): Regione Abruzzo, L’Aquila (AQ), Italy, 2017. [Google Scholar]
- Pirone, G.; Ciaschetti, G.; Frattaroli, A.R. La caratterizzazione Fitosociologica dei boschi in Abruzzo. La Carta Tipologico-Forestale della Regione Abruzzo. Regione Abruzzo, Struttura Speciale di Supporto Sistema Informatico Regionale, Direzione Politiche Agricole e di Sviluppo Rurale, Forestale, Caccia e Pesca, Emigrazione; Regione Abruzzo: L’Aquila, Italy, 2009; Volume Generale, pp. 49–62. [Google Scholar]
- Pirone, G. Alberi, Arbusti e Liane d’Abruzzo, 2nd ed.; Cogecstre Edizioni: Penne, Italy, 2015; pp. 1–624. [Google Scholar]
- Polycam. Available online: https://poly.cam/ (accessed on 3 June 2024).
- Carollo, F.G.; Serio, M.A.; Pampalone, V.; Ferro, V. The Unit Plot of the Universal Soil Loss Equation (USLE): Myth or Reality? J. Hydrol. 2024, 632, 130880. [Google Scholar] [CrossRef]
- Takei, A.; Kobashi, S.; Fukushima, Y. Erosion and Sediment Transport Measurement in a Weathered Granite Mountain Area. In Proceedings of the Symposium on Erosion and Sediment Transport Measurement, Florence, Italy, 22–26 June 1981; International Association of Hydrological Sciences Publication: Wallingford, UK, 1981; Volume 133, pp. 493–502. [Google Scholar]
- Smith, H.G.; Dragovich, D. Post-Fire Hillslope Erosion Response in a Sub-Alpine Environment, South-Eastern Australia. Catena 2008, 73, 274–285. [Google Scholar] [CrossRef]
- Borrelli, P. Risk Assessment of Human-Induced Accelerated Soil Erosion Processes in the Intermountain Watersheds of Central Italy. Ph.D. Dissertation, Freie Universität Berlin, Berlin, Germany, 2011. [Google Scholar]
- Vianney Nsabiyumva, J.M.; Apollonio, C.; Castelli, G.; Petroselli, A.; Sabir, M.; Preti, F. Agricultural Practices for Hillslope Erosion Mitigation: A Case Study in Morocco. Water 2023, 15, 2120. [Google Scholar] [CrossRef]
Plot P1 (SSM) | Plot P2 (BSM) | Total | ||||
---|---|---|---|---|---|---|
N | N/ha | N | N/ha | N | N/ha | |
Average diameter (DBH) | 7.76 | 8.58 | 8.17 | |||
Average height (m) | 13.60 | 13.70 | 13.65 | |||
Standards | 88 | 1760 | 79 | 1580 | 167 | 1670 |
Stumps | 29 | 580 | 28 | 560 | 57 | 570 |
Shoots | 65 | 1300 | 69 | 1380 | 134 | 1340 |
Stems | 153 | 3060 | 148 | 2960 | 301 | 3010 |
Plot P1 (SSM) | Plot P2 (BSM) | ||||
---|---|---|---|---|---|
Species | DBH (cm) | h (m) | Species | DBH (cm) | h (m) |
Quercus pubescens | 20 | 13.5 | Quercus pubescens | 17 | 13.5 |
Quercus pubescens | 23.5 | 14 | Quercus pubescens | 13 | 13 |
Quercus pubescens | 21 | 12.6 | Quercus pubescens | 15 | 14 |
Quercus ilex | 14.5 | 14.4 | Quercus pubescens | 13 | 14.4 |
Ostrya carpinifolia | 15.75 | 13.5 | Quercus pubescens | 17 | 13.5 |
Acer monspessulanum | 27.5 | 14 | Quercus pubescens | 23 | 14 |
Acer monspessulanum * | 23–31.5 | 13.5 | Fraxinus ornus | 9 | 13.5 |
Plot P1 (SSM) | |||||
Sample | 1 | 2 | 3 | 4 | Mean |
% | |||||
Sand | 70.0 | 71.5 | 71.5 | 87.7 | 75.2 |
Silt | 13.2 | 21.0 | 6.9 | 8.2 | 12.3 |
Clay | 16.8 | 7.5 | 21.6 | 4.1 | 12.5 |
TOC | 5.0 | 5.7 | 4.3 | 3.8 | 4.7 |
SOM | 8.5 | 9.8 | 7.3 | 6.6 | 8.0 |
Plot P2 (BSM) | |||||
Sample | 1 | 2 | 3 | 4 | Mean |
% | |||||
Sand | 71.7 | 62.6 | 79.5 | 94.4 | 77.1 |
Silt | 11.6 | 23.4 | 14.0 | 5.6 | 13.7 |
Clay | 16.7 | 14.0 | 6.5 | 0.0 | 9.3 |
TOC | 5.0 | 4.7 | 6.4 | 3.9 | 5.0 |
SOM | 8.7 | 8.1 | 11.1 | 6.7 | 8.7 |
Plot P1 | Plot P2 | ||
---|---|---|---|
Collecting Date | Total Rainfall (mm) | Weight (g) | |
15 December 2022 | 240.6 | 1011 | 464.8 |
19 January 2023 | 56.4 | 632.7 | 588.6 |
16 February 2023 | 94.6 | 303.4 | 249.2 |
22 February 2023 | 0.2 | 330.6 | 159.6 |
8 March 2023 | 26 | 127.9 | 66.5 |
21 April 2023 | 132.8 | 766.1 | 399.5 |
5 May 2023 | 97.8 | 189.9 | 101.7 |
28 August 2023 | 117 | 391.3 | 225.1 |
28 October 2023 | 96 | 712 | 421.1 |
14 November 2023 | 42 | 273.3 | 126.8 |
14 December 2023 | 71.6 | 1670.9 | 947.7 |
Total (g) | - | 6409.1 | 3750.6 |
Total (kg) | - | 6.4 | 3.8 |
Plot slope (%) | - | 47.1 | 49 |
Mean slope (%) | - | 48.2 | 48.2 |
Total considering slope | - | 6.6 | 3.7 |
Area m2 | - | 373.1 | 434.8 |
Total kg/m2 | - | 0.018 | 0.008 |
Sediment Weight, Plot P1, SSM | Sediment Weight, Plot P2, BSM | |||||
---|---|---|---|---|---|---|
Collecting Date | Gravel | Fine Sediment | Total | Gravel | Fine Sediment | Total |
28 August 2023 | 4241.35 | 3202.96 | 3381 | 3672.6 | ||
28 October 2023 | 195.7 | 234.4 | 66.4 | 245.4 | ||
14 December 2023 | 71 | 261 | 38.8 | 121 | ||
Total (g) | 4508.1 | 3698.4 | 8206.4 | 3486.2 | 5039 | 8525.2 |
Slope (%) | 47.13 | 47.13 | 49.03 | 47.13 | ||
Mean slope (%) | 48.17 | 48.17 | 48.17 | 48.17 | ||
Total with slope (g) | 4607.5 | 3780 | 8387.5 | 3425 | 4950.6 | 8375.6 |
Area | 373 | 373 | 435 | 435 | ||
Total g/ha | 123,493.1 | 101,312.5 | 224,805.6 | 78,772 | 113,859.9 | 192,631.9 |
Total kg/ha | 123.5 | 101.3 | 224.8 | 78.8 | 113.9 | 192.6 |
% | 55 | 45 | 41 | 59 |
Sum of Sediments | ||
---|---|---|
Plot P1 | Plot P2 | |
Leaves | 175.58 | 84.75 |
Sediment | 224.8 | 192.6 |
Total kg/ha | 400.37 | 277.35 |
Total t/ha | 0.40 | 0.28 |
Rocks t/ha | 2.07 | |
Absolute total | 0.4 | 2.35 |
Percentage decrease | 30.72% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvaneschi, P.; Pica, A.; Apollonio, C.; Andrisano, T.; Pecci, M.; Petroselli, A.; Schirone, B. Assessing the Efficiency of Two Silvicultural Approaches for Soil Erosion Mitigation Using a Novel Monitoring Apparatus. Land 2024, 13, 1321. https://doi.org/10.3390/land13081321
Salvaneschi P, Pica A, Apollonio C, Andrisano T, Pecci M, Petroselli A, Schirone B. Assessing the Efficiency of Two Silvicultural Approaches for Soil Erosion Mitigation Using a Novel Monitoring Apparatus. Land. 2024; 13(8):1321. https://doi.org/10.3390/land13081321
Chicago/Turabian StyleSalvaneschi, Pietro, Antonio Pica, Ciro Apollonio, Teodoro Andrisano, Massimo Pecci, Andrea Petroselli, and Bartolomeo Schirone. 2024. "Assessing the Efficiency of Two Silvicultural Approaches for Soil Erosion Mitigation Using a Novel Monitoring Apparatus" Land 13, no. 8: 1321. https://doi.org/10.3390/land13081321
APA StyleSalvaneschi, P., Pica, A., Apollonio, C., Andrisano, T., Pecci, M., Petroselli, A., & Schirone, B. (2024). Assessing the Efficiency of Two Silvicultural Approaches for Soil Erosion Mitigation Using a Novel Monitoring Apparatus. Land, 13(8), 1321. https://doi.org/10.3390/land13081321