The Clay Minerals in the Soils of the Gypseous Belt of Barbastro, NE Spain
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of the Study Area
2.2. Mineralogical Analysis of Clays
3. Results
3.1. Clay Mineralogy
3.2. Mineralogy in Initial Stages of Pedogenesis (Protosoils)
3.3. Soils with Horizon of Microcrystalline Gypsum
3.4. Soils on Slopes with Forest
3.5. Soils with Calcic Endopedon in Poorly Erodible Positions
3.6. Soils in the Valley Bottoms
3.7. Soils in Plains Dominated by Chesas
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Alphen, J.G.; de los Ríos, F. Gypsiferous Soils. Notes on Their Characteristics and Management; Bulletin 12; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1971; p. 44. [Google Scholar]
- Pashaei, L.; Manafi, S.H. Characterization of gypsiferous soils in the north of Urmia, Iran. Desert 2021, 26, 1–15. [Google Scholar] [CrossRef]
- Herrero, J.; Boixadera, J. Gypsic soils. In Encyclopedia of Soil Science; Lal, R., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Casby-Horton, S.; Herrero, J.; Rolong, N.A. Gypsum soils—Their morphology, classification, function, and landscapes. Adv. Agron. 2015, 130, 231–290. [Google Scholar] [CrossRef]
- Goryachkin, S.V.; Spiridonova, I.A.; Sedov, S.N.; Targulian, V.O. Boreal soils on gypsum rocks: Morphology, properties, and genesis. Eurasian Soil Sci. 2003, 36, 691–703. [Google Scholar]
- Yamnova, I.A.; Chernousenko, G.I. Gypsiferous Gazha Soils of the Subboreal Zone of Eurasia. Eurasian Soil Sci. 2023, 56, 1–15. [Google Scholar] [CrossRef]
- Bockheim, J.G.; Ackert, R.P., Jr. Implications of soils on mid-Miocene-aged drifts in McMurdo Dry Valleys for ice sheet history and paleoclimate reconstruction. Geomorphology 2007, 92, 12–24. [Google Scholar] [CrossRef]
- Moret-Fernández, D.; Herrero, J. Effect of gypsum content on soil water retention. J. Hydrol. 2015, 528, 122–126. [Google Scholar] [CrossRef]
- Halitim, A.; Robert, M.; Berrier, J. Étude expérimentale de l’interaction de la calcite et du gypse avec la montmorillonite: Conséquences sur le rôle de ces deux minéraux dans le comportement de matériaux argileux et l’amendement des sols. Comptes Rendus De L’académie Des Sci. De Paris Série II 1983, 296, 1459–1464. [Google Scholar]
- Mallada, L. Descripción Física y Geológica de la Provincia de Huesca; Facsimile edition; Instituto de Estudios Altoaragoneses: Huesca, Spain, 1878; p. 439. ISBN 978-84-86856-40-3. [Google Scholar]
- Pardo, G.; Villena, J. Aportación a la geología de la región de Barbastro. Acta Geol. Hisp. 1979, 14, 289–292. [Google Scholar]
- Sancho Marcén, C. Deformations associated with the Quaternary diapiric activity of the Barbastro Anticline, Huesca. Cuaternario Y Geomorfol. 1989, 3, 35–43. (In Spanish) [Google Scholar]
- Lucha, P.; Gutiérrez, F.; Galve, J.P.; Guerrero, J. Geomorphic and stratigraphic evidence of incision-induced halokinetic uplift and dissolution subsidence in transverse drainages crossing the evaporite-cored Barbastro-Balaguer Anticline (Ebro Basin, NE Spain). Geomorphology 2012, 171–172, 154–172. [Google Scholar] [CrossRef]
- Santolaria, P.; Ayala, C.; Pueyo, E.L.; Rubio, F.M.; Soto, R.; Calvín, P.; Luzón, A.; Rodríguez, A.; Oliván, C.; Casas, A.M. Structural and geophysical characterization of the western termination of the South Pyrenean triangle zone. Tectonics 2020, 39, e2019TC005891. [Google Scholar] [CrossRef]
- Barnolas, A. (Director) Memoria del Mapa Geológico de España, Escala 1:50000. Hoja 327, Os de Balaguer; Instituto Geológico y Minero de España: Madrid, Spain, 2006; p. 74. [Google Scholar]
- Barnolas, A. (Director) Memoria del Mapa Geológico de España, Escala 1:50000. Hoja 287, Barbastro; Instituto Geológico y Minero de España: Madrid, Spain, 2014; p. 40. [Google Scholar]
- Barnolas, A. (Director) Memoria del Mapa Geológico de España, Escala 1:50000. Hoja 326, Monzón; Instituto Geológico y Minero de España: Madrid, Spain, 2017; p. 39. [Google Scholar]
- Quirantes, J. Estudio Sedimentológico y Estratigráfico del Terciario Continental de Los Monegros; Institución “Fernando El Católico” Diputación Provincial de Zaragoza: Zaragoza, Spain, 1978; p. 208. [Google Scholar]
- Olarieta, J.R.; Rodríguez-Ochoa, R.; Ascaso, E.; Antúnez, M. Rootable depth controls height growth of Pinus halepensis Mill. in gypsiferous and non-gypsiferous soils. Geoderma 2016, 268, 7–13. [Google Scholar] [CrossRef]
- Ferrández-Palacio, J.V. Flora de una geografía diversa. In Comarca de la Litera; Palomares, A., Rovira, J., Eds.; Diputación General de Aragón: Zaragoza, Spain, 2008; pp. 27–38. ISBN 978-84-8380-142-0. [Google Scholar]
- Mota, J.F.; Sánchez-Gómez, P.; Guirado, J.S. (Eds.) Diversidad Vegetal de Las Yeseras Ibéricas. El Reto de Los Archipiélagos Edáficos para la Biología de la Conservación; ADIF—Mediterráneo Asesores Consultores: Almería, Spain, 2011; p. 636. [Google Scholar]
- Mota, J.F.; Martínez-Hernández, F.; Pérez-García, F.J.; Mendoza-Fernández, A.J.; Salmerón-Sánchez, E.; Merlo, M.E. Shipwrecked on the Rock, or Not Quite: Gypsophytes and Edaphic Islands. Plants 2024, 13, 970. [Google Scholar] [CrossRef] [PubMed]
- Egli, M.; Plötze, M.; Tikhomirov, D.; Kraut, T.; Wiesenberg, G.; Lauria, G.; Raimondi, S. Soil development on sediments and evaporites of the Messinian crisis. Catena 2020, 187, 104368. [Google Scholar] [CrossRef]
- Herrero, J. Morfología y Génesis de Suelos Sobre Yesos; nº 77; Monografías INIA: Madrid, Spain, 1991; p. 447. [Google Scholar]
- Herrero, J.; Tierra, M.; Medina, E.T.; Castañeda, C. Gypsum from Soils of Chesas, NE Spain; Mendeley Data; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Herrero, J.; Castañeda, C.; Velayos, M. Salada Farrachuela, a saline wetland in Tamarite de Litera, Spain. Boletín De La Real Soc. Española De Hist. Nat. 2020, 114, 67–80. [Google Scholar] [CrossRef]
- Wilson, M.J. The origin and formation of clay minerals in soils: Past, present and future perspectives. Clay Miner. 1999, 34, 7–25. [Google Scholar] [CrossRef]
- Velde, B.; Meunier, A. The Origin of Clay Minerals in Soils and Weathered Rocks; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-75633-0. [Google Scholar]
- Bonifacio, E.; Falsone, G.; Simonov, G.; Sokolova, T.; Tolpeshta, I. Pedogenic processes and clay transformations in bisequal soils of the Southern Taiga zone. Geoderma 2009, 149, 66–75. [Google Scholar] [CrossRef]
- Caner, L.; Joussein, E.; Salvador-Blanes, S.; Hubert, F.; Schlicht, J.F.; Duigou, N. Short-time clay-mineral evolution in a soil chronosequence in Oléron Island (France). J. Plant Nutr. Soil Sci. 2010, 173, 591–600. [Google Scholar] [CrossRef]
- Watanabe, T.; Hasenaka, Y.; Hartono, A.; Sabiham, S.; Nakao, A.; Funakawa, S. Parent materials and climate control secondary mineral distributions in soils of Kalimantan, Indonesia. Soil Sci. Soc. Am. J. 2017, 81, 124–137. [Google Scholar] [CrossRef]
- Yunta-Mezquita, F.; Van Liedekerke, M.; Fernández Ugalde, O.; Németh, T.; Balázs, R.B.; Keresztes, M.A.; Weiszburg, T.; Rábl, E.; Királyné Tóth, J.; Gazsi, Z.; et al. Clay Mineral Inventory in Soils of Europe Based on LUCAS Survey Soil Samples; Publications Office of the European Union: Luxembourg, 2024; JRC136950. [Google Scholar] [CrossRef]
- Artieda, O.; Herrero, J. Pedogenesis in lutitic Cr horizons of gypsiferous soils. Soil Sci. Soc. Am. J. 2003, 67, 1496–1506. [Google Scholar] [CrossRef]
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C. Soil Survey Staff. Field Book for Describing and Sampling Soils, Version 3.0; Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE, USA, 2021. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2022. [Google Scholar]
- Mehra, O.P.; Jackson, M.L. Iron oxide removal from soils and clay by dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 1960, 7, 317–327. [Google Scholar] [CrossRef]
- Kittrick, J.A.; Hope, E.W. A procedure for the particle-size separation of soils for X-ray diffraction analysis. Soil Sci. 1963, 96, 319–325. [Google Scholar] [CrossRef]
- Robert, M. Principes de détermination qualitative des minéraux argileux à l’aide des rayons X. Ann. Agron. 1975, 26, 363–399. [Google Scholar]
- Robert, M.; Tessier, D. Méthode de preparation des argiles des sols pour des études minéralogiques. Ann. Agron. 1974, 25, 859–882. [Google Scholar]
- Kittrick, J.A.; Hope, E.W. A procedure for identification of small crystals by X-ray diffraction analysis. Am. Mineral. 1967, 52, 286–294. [Google Scholar]
- Grim, R.C.; Bray, R.H.; Bradley, W.F. The mica in argillaceous sediments. Am. Mineral. 1937, 22, 813–819. [Google Scholar]
- Brindley, G.W.; Brown, G. (Eds.) Crystal Structures of Clay Minerals and Their X-ray Identification; Mineralogical Society Monograph No. 5: London, UK, 1980. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Baghernejad, M.; Ghiri, M.N. Clay mineralogy of gypsiferous soils under different soil moisture regimes in Fars Province, Iran. J. Agric. Sci. Technol. 2013, 15, 1053–1068. [Google Scholar]
- Van Ranst, E.; De Coninck, F.; Tavernier, R.; Langohr, R. Mineralogy in silty to loamy soils of central and high Belgium in respect to autochthonous and allochthonous materials. Bull. De La Société Belg. De Géologie 1982, 91, 27–44. [Google Scholar]
- Curtis, C.D. Aspects of climatic influence on the clay mineralogy and geochemistry of soils, palaeosols and clastic sedimentary rocks. J. Geol. Soc. 1990, 147, 351–357. [Google Scholar] [CrossRef]
- Kasanin-Grubin, M. Clay mineralogy as a crucial factor in badland hillslope processes. Catena 2013, 106, 54–67. [Google Scholar] [CrossRef]
- Barré, P.; Fernández-Ugalde, O.; Virto, I.; Velde, B.; Chenu, C. Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: Incomplete knowledge and exciting prospects. Geoderma 2014, 235–236, 382–395. [Google Scholar] [CrossRef]
- Chorom, M.; Rengasamy, P.; Murray, R.S. Clay dispersion influenced by pH and net particle charge of sodium soils. Aust. J. Soil Res. 1994, 32, 1243–1252. [Google Scholar] [CrossRef]
- Fanning, D.S.; Keramidas, V.Z.; El-Desoky, M.A. Micas. In Minerals in Soil Environment; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 551–634. [Google Scholar]
- Borchardt, G. Smectites. In Minerals in Soil Environment; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 675–727. [Google Scholar]
- Khormali, F.; Abtahi, A. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Miner. 2003, 38, 511–527. [Google Scholar] [CrossRef]
- Khademi, H.; Mermut, A.R. Source of palygorskite in gypsiferous Aridisols and associated sediments from central Iran. Clay Miner. 1998, 33, 561–578. [Google Scholar] [CrossRef]
- Gharaee, H.A.; Mahjoory, R.A. Characteristics and geomorphic relationships of some representative aridisols in Southern Iran. Soil Sci. Soc. Am. J. 1984, 48, 1115–1119. [Google Scholar] [CrossRef]
- Banfield, J.F.; Eggleton, R.A. Analytical transmission electron microscope studies of plagioclase. Muscovite and K-feldspar weathering. Clays Clay Miner. 1990, 38, 77–89. [Google Scholar] [CrossRef]
- Boettinger, J.L.; Southard, R.J. Phyllosilicate distribution and origin in Aridisols on a granitic pediment, Western Mojave Desert. Soil Sci. Soc. Am. J. 1995, 59, 1189–1198. [Google Scholar] [CrossRef]
- Al-Rawi, A.H.; Jackson, M.L.; Hole, F.D. Mineralogy of some arid and semiarid land soils of Iraq. Soil Sci. 1969, 107, 480–486. [Google Scholar] [CrossRef]
- Aba-Husayn, M.M.; Dixon, J.B.; Lee, S.Y. Mineralogy of Saudi Arabian soils: Southwestern region. Soil Sci. Soc. Am. J. 1980, 44, 643–649. [Google Scholar] [CrossRef]
- Lee, S.Y.; Dixon, J.B.; Aba-Husayn, M.M. Mineralogy of Saudi Arabian Soils: Eastern Region. Soil Sci. Soc. Am. J. 1983, 47, 321–326. [Google Scholar] [CrossRef]
- Omdi, F.E.; Daoudi, L.; Fagel, N. Origin and distribution of clay minerals of soils in semi-arid zones: Example of Ksob watershed (Western High Atlas, Morocco). Appl. Clay Sci. 2018, 163, 81–91. [Google Scholar] [CrossRef]
- Derakhshan-Babaei, F.; Nosrati, K.; Tikhomirov, D.; Christl, M.; Sadough, H.; Egli, M. Relating the spatial variability of chemical weathering and erosion to geological and topographical zones. Geomorphology 2020, 363, 107235. [Google Scholar] [CrossRef]
- Herrero, J. On the early irrigation of gypseous lands in Spain. Land Degrad. Dev. 2017, 28, 1152–1155. [Google Scholar] [CrossRef]
Slope Position/ ID | Aspect | Vegetation | Human Intervention | Classification |
---|---|---|---|---|
Saddle/135 | Q. faginea, Ononis tridentata | Forest | Gypsic Haploxerept | |
Saddle/143 | Q. faginea, Q. coccifera, Rosmarinus officinalis, O. tridentata, Genista sp., Thymus sp. | Degraded forest | Entic Humixerept | |
Header of val/22 | W | Barley and almond trees | Terraces, plowing | Typic Haploxerept |
Shoulder/143 | N | Q. faginea, Juniperus sp., Genista sp. | Logging, thinning | Gypsic Haploxerept |
Backslope/136 | E | Quercus coccifera, lichens | Hunting | Lithic Xerorthent |
Footslope/141 | N | Q. faginea, Q. coccifera, R. officinalis, Thymus sp., Genista sp. | Very degraded forest | Gypsic Haploxerept |
Footslope/151 | N | Q. faginea, Buxus sempervirens, R. officinalis, Lavandula sp., moss | Degraded forest | Gypsic Haploxerept |
Bottom of val/ 137 | NE | Cereal | Terraces, lateral gutters, plowing | Gypsic Haploxerept |
Bottom of val/ 138 | Q. faginea, Q. coccifera, Thymus sp., Genista sp. | Plowing, abandoned crop | Gypsic Haploxerept | |
Bottom of val/ 140 | NW | Barley stubble | Plowing | Gypsic Haploxerept |
Cone of dejection from chesa/ 146 | Cereal | Plowing | Gypsic Haploxerept | |
Alluvial plain from chesa/ 147 | Cereal | Plowing | Fluventic Haploxerept |
Profile Identifier | Horizon | XRD Diagrams | Page in [23] |
---|---|---|---|
22 | Cy2 | EG, H | 310 |
134 | Ay | OA, EG | 126 |
By | OA, EG | ||
135 | A1 | OA, EG | 148 |
By | OA, P | ||
136 | A1 | OA, EG | 120 |
137 | By | OA, EG | 194 |
138 | By | OA, EG | 192 |
140 | By2 | OA, EG | 196 |
141 | A1 | OA, EG | 150 |
Bk | OA, EG | ||
Cy | OA, EG | ||
143 | Ck | OA, EG | 152 |
146 | By2 | EG, H | 240 |
147 | Ap | OA, EG | 237 |
Bw | OA, EG | ||
By | OA, EG | ||
151 | A1 | OA, EG | 174 |
Cy | OA, EG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrero, J.; Jiménez-Ballesta, R.; Castañeda, C. The Clay Minerals in the Soils of the Gypseous Belt of Barbastro, NE Spain. Land 2024, 13, 1415. https://doi.org/10.3390/land13091415
Herrero J, Jiménez-Ballesta R, Castañeda C. The Clay Minerals in the Soils of the Gypseous Belt of Barbastro, NE Spain. Land. 2024; 13(9):1415. https://doi.org/10.3390/land13091415
Chicago/Turabian StyleHerrero, Juan, Raimundo Jiménez-Ballesta, and Carmen Castañeda. 2024. "The Clay Minerals in the Soils of the Gypseous Belt of Barbastro, NE Spain" Land 13, no. 9: 1415. https://doi.org/10.3390/land13091415
APA StyleHerrero, J., Jiménez-Ballesta, R., & Castañeda, C. (2024). The Clay Minerals in the Soils of the Gypseous Belt of Barbastro, NE Spain. Land, 13(9), 1415. https://doi.org/10.3390/land13091415