Assessment of Urban Green Space Dynamics in Dhaka South City Corporation of Bangladesh Using Geospatial Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Study Approach
2.3. Data Sources
2.4. Data Correction, Mapping and Accuracy Assessment
2.4.1. Image Pre-Processing
2.4.2. Image Classification
2.5. NDVI Analysis
2.6. Accuracy Assessment
3. Results
3.1. Green Space in DSCC
3.2. Changes in Green Space in DSCC
3.3. Green Space Classification and Preserved Spaces in DSCC
3.4. Validation of Image Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heikinheimo, V.; Tenkanen, H.; Bergroth, C.; Järv, O.; Hiippala, T.; Toivonen, T. Understanding the use of urban green spaces from user-generated geographic information. Landsc. Urban Plan. 2020, 201, 103845. [Google Scholar] [CrossRef]
- Rahaman, S.; Jahangir, S.; Haque, M.S.; Chen, R.; Kumar, P. Spatio-temporal changes of green spaces and their impact on urban environment of Mumbai, India. Environ. Dev. Sustain. 2021, 23, 6481–6501. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Al-Hilali, A.A.; Ahmed, A.M.; Falah, M.W.; Abed, S.A.; Falih, K.T.; Khedher, K.M.; Scholz, M.; Yaseen, Z.M. Assessment of urban green space dynamics influencing the surface urban heat stress using advanced geospatial techniques. Agronomy 2022, 12, 2129. [Google Scholar] [CrossRef]
- Addas, A. The importance of urban green spaces in the development of smart cities. Front. Environ. Sci. 2023, 11, 1206372. [Google Scholar] [CrossRef]
- Sathyakumar, V.; Ramsankaran, R.; Bardhan, R. Geospatial approach for assessing spatiotemporal dynamics of urban green space distribution among neighbourhoods: A demonstration in Mumbai. Urban For Urban Green 2020, 48, 126585. [Google Scholar] [CrossRef]
- Nawar, N.; Sorker, R.; Chowdhury, F.J.; Rahman, M.M. Present status and historical changes of urban green space in Dhaka city, Bangladesh: A remote sensing driven approach. Environ. Chall. 2022, 6, 100425. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Namwinbown, T.; Imoro, Z.A.; Weobong, C.A.-A.; Tom-Dery, D.; Baatuuwie, B.N.; Aikins, T.K.; Poreku, G.; Lawer, E.A. Patterns of green space change and fragmentation in a rapidly expanding city of northern Ghana, West Africa. City Environ. Interact. 2024, 21, 100136. [Google Scholar] [CrossRef]
- Siddique, S.; Uddin, M.M. Green space dynamics in response to rapid urbanization: Patterns, transformations and topographic influence in Chattogram city, Bangladesh. Land Use Policy 2022, 114, 105974. [Google Scholar] [CrossRef]
- McDonald, R.I.; Aronson, M.F.; Beatley, T.; Beller, E.; Bazo, M.; Grossinger, R.; Jessup, K.; Mansur, A.V.; Puppim de Oliveira, J.A.; Panlasigui, S. Denser and greener cities: Green interventions to achieve both urban density and nature. People Nat. 2023, 5, 84–102. [Google Scholar] [CrossRef]
- Zarin, T.; Esraz-Ul-Zannat, M. Assessing the potential impacts of LULC change on urban air quality in Dhaka city. Ecol. Indic. 2023, 154, 110746. [Google Scholar] [CrossRef]
- Rahman, K.A.; Zhang, D. Analyzing the level of accessibility of public urban green spaces to different socially vulnerable groups of people. Sustainability 2018, 10, 3917. [Google Scholar] [CrossRef]
- Duku, E.; Mensah, C.A.; Amadu, I.; Adzigbli, W.K. Changes in urban green spaces in coastal cities and human well-being: The case of Cape Coast Metropolis, Ghana. Geo Geogr. Environ. 2023, 10, e00119. [Google Scholar] [CrossRef]
- Gelan, E. GIS-based multi-criteria analysis for sustainable urban green spaces planning in emerging towns of Ethiopia: The case of Sululta town. Environ. Syst. Res. 2021, 10, 13. [Google Scholar] [CrossRef]
- Abulibdeh, A. Analysis of urban heat island characteristics and mitigation strategies for eight arid and semi-arid gulf region cities. Environ. Earth Sci. 2021, 80, 259. [Google Scholar] [CrossRef] [PubMed]
- Morar, C.; Lukić, T.; Valjarević, A.; Niemets, L.; Kostrikov, S.; Sehida, K.; Telebienieva, I.; Kliuchko, L.; Kobylin, P.; Kravchenko, K. Spatiotemporal analysis of urban green areas using change detection: A case study of Kharkiv, Ukraine. Front. Environ. Sci. 2022, 10, 823129. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Doick, K.J.; Peace, A.; Hutchings, T.R. The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci. Total Environ. 2014, 493, 662–671. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.-C. Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban Plann. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics (BBS). Statistical Yearbook of Bangladesh, Bangladesh Bureau of Statistics; Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2022. [Google Scholar]
- Ahmed, B.; Kamruzzaman, M.; Zhu, X.; Rahman, M.S.; Choi, K. Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. Remote Sens. 2013, 5, 5969–5998. [Google Scholar] [CrossRef]
- Chowdhury, S.; Shahriar, S.A.; Böhm, M.; Jain, A.; Aich, U.; Zalucki, M.P.; Fuller, R.A. Urban green spaces in Dhaka, Bangladesh, harbour nearly half the country’s butterfly diversity. J. Urban Ecol. 2021, 7, juab008. [Google Scholar] [CrossRef]
- Jalayer, S.; Sharifi, A.; Abbasi-Moghadam, D.; Tariq, A.; Qin, S. Modeling and predicting land use land cover spatiotemporal changes: A case study in chalus watershed, Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5496–5513. [Google Scholar] [CrossRef]
- Kaur, N.; Kaur, M.; Padhi, S.S.; Singh, K.K. Geospatial analysis of the distribution of urban green spaces: A study of four Indian cities. Cities Health 2022, 6, 443–459. [Google Scholar] [CrossRef]
- Selmy, S.A.; Kucher, D.E.; Mozgeris, G.; Moursy, A.R.; Jimenez-Ballesta, R.; Kucher, O.D.; Fadl, M.E.; Mustafa, A.-r.A. Detecting, analyzing, and predicting land use/land cover (LULC) changes in arid regions using landsat images, CA-Markov hybrid model, and GIS techniques. Remote Sens. 2023, 15, 5522. [Google Scholar] [CrossRef]
- Aljenaid, S.S.; Kadhem, G.R.; Al Khuzaei, M.F.; Alam, J.B. Detecting and assessing the spatio-temporal land use land cover changes of Bahrain Island during 1986–2020 using remote sensing and GIS. Earth Syst. Environ. 2022, 6, 787–802. [Google Scholar] [CrossRef]
- Tsatsaris, A.; Kalogeropoulos, K.; Stathopoulos, N.; Louka, P.; Tsanakas, K.; Tsesmelis, D.E.; Krassanakis, V.; Petropoulos, G.P.; Pappas, V.; Chalkias, C. Geoinformation technologies in support of environmental hazards monitoring under climate change: An extensive review. ISPRS Int. J. Geo-Inf. 2021, 10, 94. [Google Scholar] [CrossRef]
- Bai, H.; Li, Z.; Guo, H.; Chen, H.; Luo, P. Urban green space planning based on remote sensing and geographic information systems. Remote Sens. 2022, 14, 4213. [Google Scholar] [CrossRef]
- Huerta, R.E.; Yépez, F.D.; Lozano-García, D.F.; Guerra Cobian, V.H.; Ferrino Fierro, A.L.; de León Gómez, H.; Cavazos Gonzalez, R.A.; Vargas-Martínez, A. Mapping urban green spaces at the metropolitan level using very high resolution satellite imagery and deep learning techniques for semantic segmentation. Remote Sens. 2021, 13, 2031. [Google Scholar] [CrossRef]
- Ghosh, P.; Singh, K.K. Spatiotemporal dynamics of urban green and blue spaces using geospatial techniques in Chandannagar city, India. GeoJournal 2022, 87, 4671–4688. [Google Scholar] [CrossRef]
- Khan, M.W.; Hossain, M.S.; Alam, M. GIS-based analysis to identify the distribution and accessibility of urban green space in Dhaka Metropolitan city, Bangladesh. J. Geogr. Inf. Syst. 2023, 15, 35–52. [Google Scholar] [CrossRef]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol. Eng. 2012, 8, 45–58. [Google Scholar] [CrossRef]
- Yan, J.; Liu, H.; Yu, S.; Zong, X.; Shan, Y. Classification of Urban Green Space Types Using Machine Learning Optimized by Marine Predators Algorithm. Sustainability 2023, 15, 5634. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Rahaman, M.A.; Kalam, A.; Al-Mamun, M. Unplanned urbanization and health risks of Dhaka City in Bangladesh: Uncovering the associations between urban environment and public health. Front. Public Health 2023, 11, 1269362. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.H.; Quayyum, Z.; Rahman, S. A quantitative assessment of natural and anthropogenic effects on the occurrence of high air pollution loading in Dhaka and neighboring cities and health consequences. Environ. Monit. Assess. 2023, 195, 1509. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). 2024. Using the USGS Landsat Level-1 Data Product. Available online: https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product (accessed on 15 June 2024).
- Hashim, H.; Abd Latif, Z.; Adnan, N.A. Urban vegetation classification with NDVI threshold value method with very high resolution (VHR) Pleiades imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 237–240. [Google Scholar] [CrossRef]
- Dinda, S.; Chatterjee, N.D.; Ghosh, S. An integrated simulation approach to the assessment of urban growth pattern and loss in urban green space in Kolkata, India: A GIS based analysis. Ecol. Indic. 2021, 121, 107178. [Google Scholar] [CrossRef]
- Zhang, H.; He, J.; Chen, S.; Zhan, Y.; Bai, Y.; Qin, Y. Comparing Three Methods of Selecting Training Samples in Supervised Classification of Multispectral Remote Sensing Images. Sensors 2023, 23, 8530. [Google Scholar] [CrossRef]
- Dutta, S.; Rehman, S.; Chatterjee, S.; Sajjad, H. Analyzing Seasonal Variation in the Vegetation Cover Using NDVI and Rainfall in the Dry Deciduous Forest Region of Eastern India, Forest Resources Resilience and Conflicts; Elsevier: Amsterdam, The Netherlands, 2021; pp. 33–48. [Google Scholar]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Karsch, G.; Mukul, S.A.; Srivastava, S.K. Annual mangrove vegetation cover changes (2014–2020) in Indian Sundarbans National Park using Landsat-8 and Google Earth Engine. Sustainability 2023, 15, 5592. [Google Scholar] [CrossRef]
- Akter, T.; Hoque, M.A.A.; Mukul, S.A.; Pradhan, B. Coastal Flood Induced Salinity Intrusion Risk Assessment Using a Spatial Multi-criteria Approach in South-Western Bangladesh. Earth Syst. Environ. 2024. [Google Scholar] [CrossRef]
- Sorker, R.; Khan, M.W.; Kabir, A.; Nawar, N. Variations in ecosystem service value in response to land use changes in Dhaka and Gazipur Districts of Bangladesh. Environ. Syst. Res. 2023, 12, 32. [Google Scholar] [CrossRef]
- Ramaiah, M.; Avtar, R. Urban green spaces and their need in cities of rapidly urbanizing India: A review. Urban Sci. 2019, 3, 94. [Google Scholar] [CrossRef]
- Alabi, M.O. Encroachment on green open space, its implications on health and socio-economy in Akure, Nigeria. Cities Health 2022, 6, 123–135. [Google Scholar] [CrossRef]
- Hasan, S.; Mulamoottil, G. Environmental problems of Dhaka city, A study of mismanagement. Cities 1994, 11, 195–200. [Google Scholar] [CrossRef]
- Hafiz, R.; Rabbani, A.K.M.G. (Eds.) 400 Years of Capital Dhaka and Beyond, Volume III: Urbanization and Urban Development; Asiatic Society of Bangladesh: Dhaka, Bangladesh, 2011. [Google Scholar]
- Engemann, K.; Pedersen, C.B.; Arge, L.; Tsirogiannis, C.; Mortensen, P.B.; Svenning, J.C. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl. Acad. Sci. USA 2019, 11, 5188–5193. [Google Scholar] [CrossRef] [PubMed]
- Diener, A.; Mudu, P. How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective-with implications for urban planning. Sci. Total Environ. 2021, 796, 148605. [Google Scholar] [CrossRef]
- Salman, A.; Haque, A.; Rahman, M.; Rabby, M.J.; Hossen, S.; Halder, P.; Evan, R.I. NDVI-based Analysis of Green Space Decline and Air Quality in Dhaka: Implications for Sustainable Development Goals. Environ. Earth Sci. Res. J. 2023, 10, 73–83. [Google Scholar] [CrossRef]
- World Bank. A Catalogue of Nature-Based Solutions for Urban Resilience; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Rahman, M.M.; Huq, H.; Mukul, S.A. Implications of Changing Urban Land Use on the Livelihoods of Local People in Northwestern Bangladesh. Sustainability 2023, 15, 11769. [Google Scholar] [CrossRef]
- Swapan, M.S.H.; Zaman, A.U.; Ahsan, T.; Ahmed, F. Transforming Urban Dichotomies and Challenges of South Asian Megacities: Rethinking Sustainable Growth of Dhaka, Bangladesh. Urban Sci. 2017, 1, 31. [Google Scholar] [CrossRef]
- Lahoti, S.; Kefi, M.; Lahoti, A.; Saito, O. Mapping methodology of public urban green spaces using GIS: An example of Nagpur City, India. Sustainability 2019, 11, 2166. [Google Scholar] [CrossRef]
- Miah, M.T.; Fariha, J.N.; Kafy, A.A.; Islam, R.; Biswas, N.; Duti, B.M.; Fattah, A.; Alsulamy, S.; Khedher, K.M.; Salem, M.A. Exploring the nexus between land cover change dynamics and spatial heterogeneity of demographic trajectories in rapidly growing ecosystems of south Asian cities. Ecol. Indic. 2024, 158, 111299. [Google Scholar] [CrossRef]
Satellite Images | Date of Acquisition | Band Name | Wavelength (m) | Day/Night Indicator |
---|---|---|---|---|
Landsat 5 TM | 25 March 1991 | Red (B3) | (0.63–0.69) | Day |
21 March 2001 | Near Infrared (B4) | (0.76–0.90) | Day | |
6 April 2011 | Day | |||
Landsat 8 OLI_TIRS | 23 March 2021 | Red (B4) | (0.64–0.76) | Day |
Near Infrared (B5) | (0.85–0.88) |
Vegetation Classes | Feature | NDVI Range |
---|---|---|
No vegetation | Water bodies, built-up areas, road networks | <0 |
Sparse vegetation | Small plants near roadside, bare land | 0 to 0.33 |
Moderate vegetation | Shrubs and grassland, moderately dense plants in parks | 0.33 to 0.66 |
Dense vegetation | Urban forest, dense plants | 0.66 to 1 |
Classification | 1991 | 2001 | 2011 | 2021 | ||||
---|---|---|---|---|---|---|---|---|
) | % | ) | % | ) | % | ) | % | |
Green space | 20 | 46 | 10.25 | 21.3 | 9.27 | 19.7 | 5.26 | 9.5 |
Urban and others | 25.25 | 54.9 | 35 | 78.7 | 35.8 | 80.3 | 39.1 | 90.5 |
Classification | 1991 | 2001 | 2011 | 2021 | ||||
---|---|---|---|---|---|---|---|---|
) | % | ) | % | ) | % | ) | % | |
No vegetation | 25.25 | 54 | 35 | 78.7 | 35.8 | 80.2 | 39.1 | 90.5 |
Sparse vegetation | 10 | 20.7 | 5 | 13.3 | 5.5 | 13.8 | 3 | 7.3 |
Moderate vegetation | 3 | 11.8 | 3 | 5.8 | 2.7 | 5.1 | 2 | 1 |
Dense vegetation | 7 | 13.6 | 2 | 2.3 | 1.8 | 0.9 | 1 | 0.3 |
Type | 1991 | 2001 | 2011 | 2021 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PA | UA | Overall | Kappa | PA | UA | Overall | Kappa | PA | UA | Overall | Kappa | PA | UA | Overall | Kappa | |
Green space | 84 | 87 | 85% | 0.71 | 74 | 80 | 78% | 0.57 | 82 | 80 | 81% | 0.62 | 84 | 73 | 77% | 0.59 |
Urban and others | 82 | 83 | 76 | 77 | 80 | 82 | 82 | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misty, M.S.; Hoque, M.A.-A.; Mukul, S.A. Assessment of Urban Green Space Dynamics in Dhaka South City Corporation of Bangladesh Using Geospatial Techniques. Land 2024, 13, 1426. https://doi.org/10.3390/land13091426
Misty MS, Hoque MA-A, Mukul SA. Assessment of Urban Green Space Dynamics in Dhaka South City Corporation of Bangladesh Using Geospatial Techniques. Land. 2024; 13(9):1426. https://doi.org/10.3390/land13091426
Chicago/Turabian StyleMisty, Maliha Sanzana, Muhammad Al-Amin Hoque, and Sharif A. Mukul. 2024. "Assessment of Urban Green Space Dynamics in Dhaka South City Corporation of Bangladesh Using Geospatial Techniques" Land 13, no. 9: 1426. https://doi.org/10.3390/land13091426
APA StyleMisty, M. S., Hoque, M. A.-A., & Mukul, S. A. (2024). Assessment of Urban Green Space Dynamics in Dhaka South City Corporation of Bangladesh Using Geospatial Techniques. Land, 13(9), 1426. https://doi.org/10.3390/land13091426