Determination of Soil Erodibility by Different Methodologies in the Renato and Caiabi River Sub-Basins in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rainfall Simulation to Measure Soil Erosion
2.3. Soil Sampling
2.4. Calculation of Rainfall Kinetic Energy
2.5. Calculation of Soil Components
2.5.1. Soil Erosivity Index and Soil Erodibility
2.5.2. Equation for Soil Loss
2.5.3. Equations Used to Estimate Soil Erodibility
2.6. Soil Erodibility by Soil Textural Class and Soil Organic Matter Content
3. Results
4. Discussion
4.1. Comparisons and Contrasts to Prior Studies
4.2. Implications of Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Zheng, F.; Römkens, M.J.M. Comparison of soil erodibility factors in USLE. RUSLE. EPIC and Dg models based on a Chinese soil erodibility database. Acta Agric. Scand. B 2013, 63, 69–79. [Google Scholar] [CrossRef]
- Shojaei, S.; Kalantari, Z.; Rodrigo-Comino, J. Prediction of factors affecting activation of soil erosion by mathematical modeling at pedon scale under laboratory conditions. Sci. Rep. 2020, 10, 20163. [Google Scholar] [CrossRef] [PubMed]
- Hateffard, F.; Mohammed, S.; Alsafadi, K.; Enaruvbe, G.O.; Heidari, A.; Abdo, H.G.; Rodrigo-Comino, J. CMIP5 climate projections and RUSLE-based soil erosion assessment in the central part of Iran. Sci. Rep. 2021, 11, 7273. [Google Scholar] [CrossRef] [PubMed]
- Marques, V.S.; Ceddia, M.B.; Antunes, M.A.H.; Carvalho, D.F.; Anache, J.A.A.; Rodrigues, D.B.B.; Oliveira, P.T.S. USLE K-Factor Method Selection for a Tropical Catchment. Sustainability 2019, 11, 1840. [Google Scholar] [CrossRef]
- Addis, H.K.; Klik, A. Predicting the spatial distribution of soil erodibility factor using USLE nomograph in an agricultural watershed, Ethiopia. Int. Soil Water Conserv. Res. 2015, 3, 282–290. [Google Scholar] [CrossRef]
- Ojo, A.O.; Nwosu, N.J.; Oshunsanya, S.O.; Ayantayo–Ojo, V.I.; Aladele, S.E. Impacts of soil conservation techniques on soil erodibility on an Alfisol. Heliyon 2023, 9, E13768. [Google Scholar] [CrossRef] [PubMed]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef]
- Anache, J.A.A.; Wendland, E.C.; Oliveira, P.T.S.; Flanagan, D.C.; Nearing, M.A. Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience. Catena 2017, 152, 29–39. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agricultural Handbook 537; Science and Education Administration, U.S. Department of Agriculture: Washington, DC, USA, 1978. Available online: https://www.govinfo.gov/app/details/GOVPUB-A-PURL-gpo31516 (accessed on 4 June 2024).
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agricultural Handbook Number 703; Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1997; pp. 1–64. Available online: https://www3.epa.gov/npdes/pubs/ruslech2.pdf (accessed on 4 June 2024).
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Mahamud, M.A.; Saad, N.A.; Zainal Abidin, R.; Yusof, M.F.; Zakaria, N.A.; Arumugam, M.A.R.M.A.; Desa, S.M.; Noh, M.M.N. Determination of Cover and Land Management Factors for Soil Loss Prediction in Cameron Highlands, Malaysia. Agriculture 2021, 12, 16. [Google Scholar] [CrossRef]
- Lin, B.S.; Chen, C.K.; Thomas, K.; Hsu, C.K.; Ho, H.-C. Improvement of the K-factor of USLE and soil erosion estimation in Shihmen Reservoir Watershed. Sustainability 2019, 11, 355. [Google Scholar] [CrossRef]
- López-García, E.; Torres-Trejo, E.; López-Reyes, L.; Flores-Domínguez, Á.D.; Peña-Moreno, R.D.; López-Olguín, J.F. Estimation of soil erosion using USLE and GIS in the locality of Tzicatlacoyan, Puebla, México. Soil Water Res. 2020, 15, 9–17. [Google Scholar] [CrossRef]
- Pakoksung, K. Assessment of Soil Loss from Land Cover Changes in the Nan River Basin, Thailand. GeoHazards 2024, 5, 1–21. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, X.; Jia, M.; Su, Q.; Kong, D.; Zhang, Y. Integrated Use of GIS and USLE Models for LULC Change Analysis and Soil Erosion Risk Assessment in the Hulan River Basin, Northeastern China. Water 2024, 16, 241. [Google Scholar] [CrossRef]
- Godoi, R.d.F.; Rodrigues, D.B.B.; Borrelli, P.; Oliveira, P.T.S. High-resolution soil erodibility map of Brazil. Sci. Total Environ. 2021, 781, 146673. [Google Scholar] [CrossRef]
- Denardin, J.E. Erodibilidade do Solo Estimada por Meio de Parâmetros Físicos e Químicos. Ph.D. Thesis, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, Brazil, 1990. [Google Scholar] [CrossRef]
- Gupta, S.; Borrelli, P.; Panagos, P.; Alewell, C. An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity. Sci. Total Environ. 2024, 908, 168249. [Google Scholar] [CrossRef]
- Ngezahayo, E.; Burrow, M.; Ghataora, G. Calibration of the Simple Rainfall Simulator for Investigating Soil Erodibility in Unpaved Roads. Int. J. Civ. Infrastruct. 2021, 4, 144–156. [Google Scholar] [CrossRef]
- Silva, J.R.I.; de Souza, E.S.; Souza, R.; dos Santos, E.S.; Antonino, A.C.D. Effect of different land uses on water erosion in a semi-arid region. Rev. Eng. Agric. 2019, 27, 272–283. [Google Scholar] [CrossRef]
- Alves, M.A.B.; de Souza, A.P.; de Almeida, F.T.; Hoshide, A.K.; Araújo, H.B.; da Silva, A.F.; de Carvalho, D.F. Effects of Land Use and Cropping on Soil Erosion in Agricultural Frontier Areas in the Cerrado-Amazon Ecotone, Brazil, Using a Rainfall Simulator Experiment. Sustainability 2023, 15, 4954. [Google Scholar] [CrossRef]
- Guerra, A.J.T.; Fullen, M.A.; do Carmo Oliveira Jorge, M.; Alexandre, S.T. Soil Erosion and Conservation in Brazil. Anu. Inst. Geociêc. 2014, 37, 81–91. [Google Scholar] [CrossRef]
- Kraeski, A.; de Almeida, F.T.; de Souza, A.P.; de Carvalho, T.M.; de Abreu, D.C.; Hoshide, A.K.; Zolin, C.A. Land Use Changes in the Teles Pires River Basin’s Amazon and Cerrado Biomes, Brazil, 1986–2020. Sustainability 2023, 15, 4611. [Google Scholar] [CrossRef]
- Moratelli, F.A.; Alves, M.A.B.; Borella, D.R.; Kraeski, A.; de Almeida, F.T.; Zolin, C.A.; Hoshide, A.K.; de Souza, A.P. Effects of Land Use on Soil Physical-Hydric Attributes in Two Watersheds in the Southern Amazon, Brazil. Soil Syst. 2023, 7, 103. [Google Scholar] [CrossRef]
- Borella, D.R.; de Souza, A.P.; de Almeida, F.T.; de Abreu, D.C.; Hoshide, A.K.; Carvalho, G.A.; Pereira, R.R.; da Silva, A.F. Dynamics of Sediment Transport in the Teles Pires River Basin in the Cerrado-Amazon, Brazil. Sustainability 2022, 14, 16050. [Google Scholar] [CrossRef]
- Nunes, M.C.M.; Cassol, E.A. Estimation of erodibility in inter-ridge of latosols in Rio Grande do Sul. Rev. Bras. Ciênc. Solo 2008, 32, 2839–2845. [Google Scholar] [CrossRef]
- Batista, P.V.G.; Davies, J.; Silva, M.L.N.; Quinton, J.N. On the evaluation of soil erosion models: Are we doing enough? Earth Sci. Rev. 2019, 197, 102898. [Google Scholar] [CrossRef]
- dos Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; de Araújo Filho, J.C.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa Informação Tecnológica: Brasília, DF, Brazil, 2018; pp. 1–590. ISBN 978-85-7035-800-4. [Google Scholar]
- Sobrinho, T.A.; Gómez-Macpherson, H.; Gómez, J.A. A portable integrated rainfall and overland flow simulator. Soil Use Manag. 2008, 24, 163–170. [Google Scholar] [CrossRef]
- Nephew, T.A.; Vitorino, A.C.T.; de Souza, L.C.F.; Gonçalves, M.C.; de Carvalho, D.F. Water infiltration into the soil in direct and conventional planting systems. Rev. Bras. Eng. Agrícola e Ambient. 2003, 7, 191–196. [Google Scholar] [CrossRef]
- Sabino, M.; de Souza, A.P.; Uliana, E.M.; de Almeida, F.T.; Lisboa, L.; Zolin, C.A. Probability distributions for maximum rainfall in the state of Mato Grosso. Rev. Bras. Climatol. 2021, 29, 321–340. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa Informação Tecnológica: Brasília, DF, Brazil, 2017; pp. 1–573. ISBN 978-85-7035-771-7. Available online: https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1085209/manual-de-metodos-de-analise-de-solo (accessed on 4 June 2024).
- Foster, G.R.; McCool, D.K.; Renard, K.G.; Moldenhauer, W.C. Conversion of the universal soil loss equation to SI metric units. J. Soil Water Conserv. 1981, 36, 355–359. Available online: https://www.engr.colostate.edu/~pierre/ce_old/Projects/linkfiles/USLE%20Unit%20conversions.pdf (accessed on 4 June 2024).
- Wischmeier, W.H. A Rainfall Erosion Index for a Universal Soil-Loss Equation. Soil Sci. Soc. Am. J. 1959, 23, 246–249. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. The Clay Ratio as a Criterion of Susceptibility of Soils to Erosion. Agronomy J. 1935, 27, 738–741. [Google Scholar] [CrossRef]
- Lima, J.M.; Curi, N.; Resende, M.; Santana, D.P. Dispersion of soil material in water for indirect evaluation of latosol erodibility. Rev. Bras. Ciênc. Solo 1990, 14, 85–90. Available online: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/489138/1/Dispersaomaterial.pdf (accessed on 4 June 2024).
- Marques, J.J.G.S.M.; Curi, N.; de Lima, J.M.; Ferreira, M.M.; Silva, M.L.N.; Ferreira, D.F. Estimation of erodibility from attributes of soils with argillic horizon in Brazil. Rev. Bras Ciênc. Solo 1997, 21, 457–465. [Google Scholar] [CrossRef]
- Secretaria de Planejamento do Estado de Mato Grosso (SEPLAN). Classificação dos solos-Pedologia; Socioeconomic and Ecological Zoning of the State of Mato Grosso (ZSEE): Mato Grosso, Brazil, 1997. Available online: https://geo.mt.gov.br/zsee2018/ (accessed on 4 June 2024).
- Wischmeier, W.H.; Johnson, C.B.; Cross, B.V. Soil erodibility nomograph for farmland and construction sites. J. Soil Water Conserv. 1971, 26, 189–193. [Google Scholar]
- Lombardi Neto, F.; Bertoni, J. Erodibilidade de Solos Paulistas. Boletim técnico, Instituto Agronômico: Campinas, Brazil, 1975; Volume 27, pp. 1–12. [Google Scholar]
- Middleton, H.E. Properties of Soils Which Influence Soil Erosion. Soil Sci. Soc. Am. J. 1930, B11, 1–16. [Google Scholar] [CrossRef]
- Roloff, G.; Denardin, J.E. Estimativa simplificada da erodibilidade do solo. In Reunião Brasileira de Manejo e Conservação do Solo e da Água, Resumos, 10; SBCS: Florianópolis Santa Catarina, Brazil, 1994; pp. 150–151. [Google Scholar]
- McKague, K. Universal Soil Loss Equation (USLE); Ontario Ministry of Agriculture and Food (OMAFRA): Ontario, Canada, 2023; Available online: https://files.ontario.ca/omafra-universal-soil-loss-equation-23-005-en-2023-03-02.pdf (accessed on 4 June 2024).
- Lima, J.E.F.W.; da Silva, E.M.; Eid, N.J.; de Souza Martins, E.; Koide, S.; Reatto, A. Development and verification of indirect methods for estimating the Erodibility of Soils in the Alto Rio Jardim Experimental Basin—DF. Rev. Bras. Geomorfol. 2007, 8, 23–36. [Google Scholar] [CrossRef]
- Paulista, R.S.D.; de Almeida, F.T.; de Souza, A.P.; Hoshide, A.K.; de Abreu, D.C.; da Silva Araujo, J.W.; Martim, C.C. Estimating Suspended Sediment Concentration using Remote Sensing for the Teles Pires River, Brazil. Sustainability 2023, 15, 7049. [Google Scholar] [CrossRef]
- Soares, M.D.R.; Campos, M.C.C.; da Cunha, J.M.; Mantovanelli, B.C.; de Oliveira, I.A.; de Brito Filho, E.G.; Leite, A.F.L. Spatial variability of aggregate stability and soil organic matter in archaeological terra preta under pasture. Gaia Sci. 2018, 12, 125–133. [Google Scholar] [CrossRef]
- Pruski, F.F. Soil and Water Conservation: Mechanical Practices for Water Erosion Control, 2nd ed.; Universidade Federal Viçosa: Viçosa, MG, Brazil, 2009; pp. 1–279. ISBN 9788572693646. [Google Scholar]
- Di Raimo, L.A.d.L.; Amorim, R.S.S.; Torres, G.N.; Bocuti, E.D.; Couto, E.G. Spatial variability of erodibility in the state of Mato Grosso, Brazil. Rev. Ciênc. Agrár. 2019, 42, 55–67. [Google Scholar] [CrossRef]
- Girardello, V.C.; Amando, T.J.C.; Santi, A.L.; Lanzanova, M.E.; Tasca, A. Soil penetration resistance and soybean root growth under no till with controlled traffic farming. Rev. Sci. Agrar. 2017, 18, 86–96. Available online: https://www.redalyc.org/pdf/995/99551919009.pdf (accessed on 4 June 2024).
- Freitas, L.; de Oliveira, I.A.; Silva, L.S.; Frare, J.C.V.; Filla, V.A.; Gomes, R.P. Indicators of soil chemical and physical quality under different management systems. Rev. Unimar Ciênc. 2017, 26, 8–25. Available online: http://ojs.unimar.br/index.php/ciencias/article/view/511/278 (accessed on 10 May 2024).
- da Rocha Lima, C.G.; Bacani, V.M.; Montanari, R.; Vick, E.P.; Ferreira, C.C.; dos Santos da Silva, E.R. Indirect methodologies for measurement of soil erodibility and characterization of spatial variability. Mercator 2021, 20, 1–15. Available online: https://www.redalyc.org/journal/2736/273667617013/ (accessed on 4 June 2024).
- Bócoli, F.A.; dos Santos, W.J.R.; Silva, S.H.G.; dos Santos Teixeira, A.F.; Mancini, M.; Curi, N. Study of an abnormal occurrence of Oxisols in strongly undulated relief in the south of Minas Gerais. Brazil. with support of pXRF and geomorphology. Ciênc. e Agrotecnologia 2021, 45, 1–13. [Google Scholar] [CrossRef]
- Silva, M.L.N.; Curi, N.; de Oliveira, M.S.; Ferreira, M.M.; Neto, F.L. Comparison between direct and indirect methods for determining erodibility in latosols under cerrado. Pesqui. Agropecu. Bras. 1994, 29, 1751–1761. Available online: https://seer.sct.embrapa.br/index.php/pab/article/view/4231 (accessed on 4 June 2024).
- Magalhães, W.d.A.; Amorim, R.S.S.; Hunter, M.O.; Bocuti, E.D.; Di Raimo, L.A.D.L.; da Silva, W.M.; Hoshide, A.K.; de Abreu, D.C. Using the GeoWEPP Model to Predict Water Erosion in Micro-Watersheds in the Brazilian Cerrado. Sustainability 2023, 15, 4711. [Google Scholar] [CrossRef]
- Igwe, P.U.; Onuigbo, A.A.; Chinedu, O.C.; Ezeaku, I.I.; Muoneke, M.M. Soil Erosion: A Review of Models and Applications. Int. J. Adv. Eng. Res. Sci. 2017, 4, 138–150. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Q.; Zhang, K.; Pang, G.; Huang, C. Global soil erodibility factor (K) mapping and algorithm applicability analysis. Catena 2024, 239, 107943. [Google Scholar] [CrossRef]
Soil Erodibility (K) in Mg × h × (MJ × mm)−1 | |||
---|---|---|---|
Organic | Organic | ||
Soil Textural Class | Mean | Matter (<2%) | Matter (>2%) |
Very clayey | 0.022 | 0.025 | 0.020 |
Clayey | 0.029 | 0.032 | 0.028 |
Clay loam | 0.040 | 0.043 | 0.037 |
Loam | 0.040 | 0.045 | 0.034 |
Sandy loam | 0.005 | 0.007 | 0.005 |
Sandy | 0.003 | 0.004 | 0.001 |
Sandy clay loam | 0.026 | - | 0.026 |
Sandy loam | 0.017 | 0.018 | 0.016 |
Silty loam | 0.050 | 0.054 | 0.049 |
Silty clay | 0.034 | 0.036 | 0.034 |
Silty clay loam | 0.042 | 0.046 | 0.040 |
Sub-Basin | Renato Sub-Basin (%) 1 | Caiabi Sub-Basin (%) 1 | ||||||
---|---|---|---|---|---|---|---|---|
Land Use | Dispersant | Region | Total Sand | Silt | Clay | Total Sand | Silt | Clay |
Cultivated | NaOH | Source | 75.20 A | 8.62 A | 16.20 A | 42.50 A | 29.60 A | 27.90 A |
Middle | 82.90 B | 4.23 A | 12.90 A | 76.60 B | 5.64 B | 17.80 B | ||
Mouth | 73.90 A | 6.70 A | 19.40 B | 78.50 B | 5.90 B | 15.60 B | ||
CV% | 7 | 56 | 22 | 27 | 87 | 33 | ||
Water | Source | 82.00 A | 10.30 A | 7.69 A | 59.90 A | 27.40 A | 12.60 A | |
Middle | 85.80 B | 8.52 B | 5.70 B | 81.30 B | 11.60 B | 7.15 B | ||
Mouth | 80.70 A | 12.60 A | 6.70 A | 85.00 C | 6.84 C | 8.14 B | ||
CV% | 3 | 20 | 16 | 15 | 61 | 33 | ||
Pasture | NaOH | Source | 80.40 A | 3.67 A | 15.90 A | 49.20 A | 14.70 A | 36.10 A |
Middle | 83.20 A | 3.94 A | 12.90 A | 49.20 A | 16.20 A | 34.60 A | ||
Mouth | 81.90 A | 3.36 A | 14.70 A | 84.40 B | 4.63 B | 11.00 B | ||
CV% | 2 | 29 | 14 | 29 | 51 | 45 | ||
Water | Source | 87.10 A | 7.32 A | 5.58 A | 66.90 A | 17.30 A | 15.80 A | |
Middle | 86.60 A | 6.93 A | 6.43 A | 65.40 A | 15.90 A | 18.70 A | ||
Mouth | 88.40 A | 8.02 A | 3.57 B | 88.40 B | 5.94 B | 5.66 B | ||
CV% | 2 | 13 | 28 | 15 | 43 | 45 |
Renato Sub-Basin (%) 1 | Caiabi Sub-Basin (%) 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Land Use | Disper-sant | Sub- Basin Region | Very Coarse Sand | Coarse Sand | Med. Sand | Fine Sand | Very Fine Sand | Very Coarse Sand | Coarse Sand | Med. Sand | Fine Sand | Very Fine Sand |
Cultivated | NaOH | Source | 0.10 A | 0.15 A | 9.55 A | 7.39 A | 1.33 A | 0.30 A | 0.32 A | 9.73 A | 2.49 A | 1.40 A |
Middle | 0.13 A | 0.16 A | 10.80 A | 7.67 A | 1.73 A | 0.07 B | 0.12 B | 15.14 B | 3.90 B | 0.97 A | ||
Mouth | 0.14 A | 0.13 A | 5.92 B | 11.31 B | 0.61 B | 0.08 B | 0.15 B | 17.93 C | 2.37 A | 0.61 B | ||
CV% | 71 | 52 | 28 | 28 | 45 | 69 | 62 | 40 | 51 | 45 | ||
Water | Source | 0.03 A | 0.19 A | 8.60 A | 9.67 A | 1.79 A | 0.27 A | 0.78 A | 7.73 A | 3.77 A | 2.37 A | |
Middle | 0.04 A | 0.16 A | 10.40 A | 8.07 A | 1.73 A | 0.03 B | 0.13 B | 12.78 A | 5.55 B | 1.75 A | ||
Mouth | 0.20 B | 0.22 A | 9.58 A | 7.87 A | 2.22 A | 0.04 B | 0.16 B | 14.10 C | 5.08 B | 1.67 A | ||
CV% | 84 | 55 | 15 | 13 | 17 | 107 | 89 | 25 | 18 | 18 | ||
Pasture | NaOH | Source | 0.03 A | 0.08 A | 11.99 A | 6.31 A | 1.65 A | 0.08 A | 0.24 A | 6.95 A | 4.47 A | 0.79 A |
Middle | 0.10 B | 0.14 A | 11.31 A | 7.04 A | 1.83 A | 0.45 B | 0.26 A | 8.15 A | 3.11 A | 0.67 A | ||
Mouth | 0.14 B | 0.07 A | 16.93 B | 2.31 B | 0.79 B | 0.04 A | 0.08 B | 19.33 B | 1.98 B | 0.63 A | ||
CV% | 74 | 52 | 21 | 51 | 48 | 104 | 47 | 49 | 69 | 22 | ||
Water | Source | 0.01 A | 0.12 A | 10.60 A | 8.63 A | 2.24 A | 0.04 A | 0.43 A | 9.20 A | 5.11 A | 1.89 A | |
Middle | 0.03 A | 0.10 A | 12.90 A | 6.94 A | 1.67 B | 0.09 A | 0.61 B | 9.25 A | 4.83 A | 1.41 A | ||
Mouth | 0.16 B | 0.07 A | 17.80 B | 2.98 B | 1.05 C | 0.10 A | 0.16 C | 13.10 B | 6.53 A | 2.20 A | ||
CV% | 103 | 24 | 24 | 40 | 39 | 72 | 56 | 21 | 22 | 25 |
Renato Sub-Basin (%) 1 | Caiabi Sub-Basin (%) 1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Land Use | Sub- Basin Region | Perm- eability (cm h−1) | Particle Density (Mg m−3) | M Parameter | Ma Parameter | P Code | Structure Code | Perm- Eability (cm h−1) | Particle Density (Mg m−3) | M Parameter | Ma Para-meter | P Code | Structure Code |
Cultivated | Source | 4.49 A | 2.60 A | 854.2 | 1121.3 | 4 | 2 | 5.60 A | 2.09 A | 2258.9 | 2604.9 | 3 | 2 |
Middle | 7.01 A | 2.67 A | 518.4 | 979.5 | 3 | 2 | 5.26 A | 2.47 B | 557.0 | 1244.5 | 4 | 2 | |
Mouth | 3.91 A | 2.57 A | 588.0 | 1384.5 | 4 | 2 | 6.08 A | 2.52 B | 550.3 | 791.6 | 3 | 2 | |
CV% | 65 | 4 | 19 | 9 | |||||||||
Pasture | Source | 8.56 A | 2.58 A | 449.7 | 899.2 | 3 | 2 | 1.55 A | 2.42 A | 989.3 | 1618.2 | 5 | 2 |
Middle | 3.25 A | 2.55 A | 481.6 | 803.8 | 4 | 2 | 3.16 B | 2.31 A | 1105.4 | 1409.8 | 4 | 2 | |
Mouth | 5.21 A | 2.62 B | 354.8 | 859.3 | 3 | 2 | 4.84 B | 2.61 B | 467.0 | 773.9 | 4 | 2 | |
CV% | 66 | 4 | 13 | 6 |
Renato Sub-Basin (%) 1 | Caiabi Sub-Basin (%) 1 | ||||||
---|---|---|---|---|---|---|---|
Land Use | Sub-Basin Region | Organic Matter (dag kg−1) | Fe2O3 (mg dm−3) | Al2O3 (cmolc dm−3) | Organic Matter (dag kg−1) | Fe2O3 (mg dm−3) | Al2O3 (cmolc dm−3) |
Cultivated | Source | 2.76 A | 47.0 A | 0.06 A | 5.14 A | 26.5 A | 0.04 A |
Middle | 2.59 A | 44.5 A | 0.04 B | 3.32 B | 28.0 A | 0.03 A | |
Mouth | 3.46 A | 36.5 B | 0.03 B | 3.07 B | 20.5 A | 0.05 A | |
CV% | 25 | 16 | 49 | 31 | 22 | 30 | |
Pasture | Source | 1.64 A | 63.5 A | 0.36 A | 3.80 A | 75.5 A | 0.05 A |
Middle | 1.92 A | 67.0 A | 0.11 A | 4.87 B | 50.0 B | 0.04 A | |
Mouth | 1.94 A | 92.0 A | 0.36 A | 1.89 C | 42.5 B | 0.07 A | |
CV% | 19 | 25 | 82 | 38 | 26 | 27 |
Renato Sub-Basin (%) 1 | Caiabi Sub-Basin (%) 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Land Use | Sub- Basin Region | Soil Loss (Mg ha−1 h−1) | Precipitation Intensity (MJ × mm × (h × ha × year)−1) | Length and Slope (m) | K (Mg × h × (MJ × mm)−1) | Soil Loss (Mg ha−1 h−1) | Precipitation Intensity (MJ × mm × (h × ha × year)−1) | Length and Slope (m) | K (Mg × h × (MJ × mm)−1) |
Cultivated | Source | 0.676 A | 1174.38 A | 0.114 A | 0.0052 A | 0.306 A | 1206.26 A | 0.082 A | 0.0031 A |
Middle | 0.813 A | 1137.88 A | 0.102 A | 0.0086 A | 0.275 A | 1120.75 A | 0.134 B | 0.0020 A | |
Mouth | 0.622 A | 1065.73 A | 0.102 A | 0.0058 A | 0.205 A | 1145.15 A | 0.143 B | 0.0012 A | |
CV% | 63 | 8 | 8 | 76 | 43 | 5 | 29 | 52 | |
Pasture | Source | 0.431 A | 1157.06 A | 0.143 A | 0.0025 A | 0.359 A | 1141.41 A | 0.204 A | 0.0017 A |
Middle | 0.505 A | 1214.36 A | 0.163 A | 0.0026 A | 0.327 A | 1154.30 A | 0.156 B | 0.0016 A | |
Mouth | 0.178 B | 1150.50 A | 0.177 A | 0.0009 B | 0.205 A | 1126.98 A | 0.137 B | 0.0014 A | |
CV% | 88 | 4 | 17 | 96 | 63 | 6 | 20 | 57 |
Renato Sub-Basin (%) 1 | Caiabi Sub-Basin (%) 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Land Use | Sub- Basin Region | Micro- Porosity (m3 m−3) | Macro- Porosity (m3 m−3) | Total Porosity (m3 m−3) | Soil Density (kg dm−3) | Micro- Porosity (m3 m−3) | Macro- Porosity (m3 m−3) | Total Porosity (m3 m−3) | Soil Density (kg dm−3) |
Cultivated | Source | 0.27 A | 0.09 A | 0.36 A | 1.57 A | 0.43 A | 0.08 A | 0.52 A | 1.03 A |
Middle | 0.27 A | 0.10 A | 0.37 A | 1.51 A | 0.29 B | 0.07 A | 0.36 B | 1.48 B | |
Mouth | 0.36 B | 0.08 A | 0.44 B | 1.57 A | 0.28 B | 0.10 A | 0.38 B | 1.51 B | |
CV% | 15 | 28 | 10 | 4 | 24 | 47 | 19 | 18 | |
Pasture | Source | 0.27 A | 0.11 A | 0.38 A | 1.52 A | 0.40 A | 0.02 A | 0.45 A | 1.41 A |
Middle | 0.35 A | 0.02 B | 0.37 A | 1.59 A | 0.37 A | 0.05 B | 0.48 A | 1.30 B | |
Mouth | 0.26 A | 0.12 A | 0.38 A | 1.74 B | 0.24 B | 0.14 B | 0.50 B | 1.59 C | |
CV% | 17 | 73 | 6 | 8 | 24 | 70 | 9 | 9 |
Source Used for Soil Erodibility Value | Renato Sub-Basin (Mg × h × (MJ × mm)−1) 1 | Caiabi Sub-Basin (Mg × h × (MJ × mm)−1) 1 | |||||||
---|---|---|---|---|---|---|---|---|---|
Land Use | (K Factor) | Source | Middle | Mouth | CV% | Source | Middle | Mouth | CV% |
Cultivated | Boyoucos (1935) [37] | 0.0528 Aa | 0.0681 Aa | 0.0427 Ba | 25 | 0.0282 Aa | 0.0464 Ba | 0.0541 Bb | 31 |
Lima et al. (1990) [38] | 0.0102 Ab | 0.0076 Ab | 0.0122 Ab | 32 | 0.0173 Aa | 0.0088 Ab | 0.0067 Ab | 50 | |
Lombardi Neto and Bertoni (1975) [42] | 0.0811 Aa | 0.0942 Aa | 0.0480 Ba | 38 | 0.0381 Aa | 0.0574 Ba | 0.0846 Ba | 39 | |
Roloff and Denardin (1994) [44] | 0.0188 Ab | 0.0162 Ab | 0.0199 Ab | 21 | 0.0194 Aa | 0.0162 Ab | 0.0174 Ab | 19 | |
Roloff and Denardin (1994) [44] | 0.0073 Ab | 0.0024 Ab | 0.0056 Bb | 85 | 0.0436 Ab | 0.0029 Bb | 0.0023 Bb | 126 | |
Roloff and Denardin (1994) [44] | 0.0083 Ab | 0.0027 Bb | 0.0063 Ab | 85 | 0.0493 Ab | 0.0033 Bb | 0.0026 Bb | 126 | |
McKague (2023) [45] | 0.0160 Ab | 0.0110 Ab | 0.0210 Ab | 38 | 0.0355 Aa | 0.0160 Ab | 0.0165 Bb | 42 | |
Wischmeier and Smith (1978) [10] | 0.0083 Ab | 0.0041 Ab | 0.0077 Ab | 48 | 0.0150 Aa | 0.0040 Bb | 0.0050 Bb | 68 | |
Pasture | Boyoucos (1935) [37] | 0.0539 Aa | 0.0679 Aa | 0.0587 Aa | 16 | 0.0178 Aa | 0.0190 Aa | 0.0835 Ba | 84 |
Lima et al. (1990) [38] | 0.0083 Ab | 0.0090 Ab | 0.0086 Ab | 24 | 0.0154 Aa | 0.0111 Ba | 0.0080 Cb | 29 | |
Lombardi Neto and Bertoni (1975) [42] | 0.0573 Aa | 0.0990 Ba | 0.0449 Aa | 40 | 0.0294 Aa | 0.0365 Bb | 0.1260 Ca | 76 | |
Roloff and Denardin (1994) [44] | 0.0174 Ab | 0.0198 Ab | 0.0185 Ab | 16 | 0.0226 Aa | 0.0202 Aa | 0.0186 Ba | 13 | |
Roloff and Denardin (1994) [44] | 0.0019 Ab | 0.0017 Ab | 0.0008 Ab | 52 | 0.0137 Aa | 0.0158 Aa | 0.0014 Bb | 79 | |
Roloff and Denardin (1994) [44] | 0.0021 Ab | 0.0020 Ab | 0.0009 Ab | 52 | 0.0155 Aa | 0.0179 Aa | 0.0016 Bb | 79 | |
McKague (2023) [45] | 0.0175 Ab | 0.0083 Bb | 0.0143 Ab | 41 | 0.0287 Aa | 0.0260 Aa | 0.0093 Bb | 46 | |
Wischmeier and Smith (1978) [10] | 0.0046 Ab | 0.0065 Ab | 0.0047 Ab | 40 | 0.0109 Aa | 0.0092 Aa | 0.0056 Bb | 32 |
Source Used for Soil | Correlation Coefficients | |||
---|---|---|---|---|
Erodibility Value | Renato Sub-Basin 1 | Caiabi Sub-Basin 1 | ||
(K Factor) | Cultivated | Pasture | Cultivated | Pasture |
Boyoucos (1935) [37] | 0.245 | 0.322 | −0.660 * | 0.042 |
Lima et al. (1990) [38] | −0.126 | 0.322 | 0.497 | 0.154 |
Lombardi Neto and Bertoni (1975) [42] | 0.210 | 0.483 | −0.587 * | 0.147 |
Roloff and Denardin (1994) [44] | −0.126 | 0.559 | 0.021 | 0.147 |
Roloff and Denardin (1994) [44] | −0.469 | 0.510 | 0.287 | 0.231 |
Roloff and Denardin (1994) [44] | −0.469 | 0.510 | 0.287 | 0.231 |
McKague (2023) [45] | −0.484 | −0.451 | 0.486 | 0.165 |
Wischmeier and Smith (1978) [10] | −0.035 | 0.441 | 0.217 | 0.224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.A.X.d.; Almeida, F.T.d.; Souza, A.P.d.; Paulista, R.S.D.; Zolin, C.A.; Hoshide, A.K. Determination of Soil Erodibility by Different Methodologies in the Renato and Caiabi River Sub-Basins in Brazil. Land 2024, 13, 1442. https://doi.org/10.3390/land13091442
Oliveira JAXd, Almeida FTd, Souza APd, Paulista RSD, Zolin CA, Hoshide AK. Determination of Soil Erodibility by Different Methodologies in the Renato and Caiabi River Sub-Basins in Brazil. Land. 2024; 13(9):1442. https://doi.org/10.3390/land13091442
Chicago/Turabian StyleOliveira, Jones Anschau Xavier de, Frederico Terra de Almeida, Adilson Pacheco de Souza, Rhavel Salviano Dias Paulista, Cornélio Alberto Zolin, and Aaron Kinyu Hoshide. 2024. "Determination of Soil Erodibility by Different Methodologies in the Renato and Caiabi River Sub-Basins in Brazil" Land 13, no. 9: 1442. https://doi.org/10.3390/land13091442
APA StyleOliveira, J. A. X. d., Almeida, F. T. d., Souza, A. P. d., Paulista, R. S. D., Zolin, C. A., & Hoshide, A. K. (2024). Determination of Soil Erodibility by Different Methodologies in the Renato and Caiabi River Sub-Basins in Brazil. Land, 13(9), 1442. https://doi.org/10.3390/land13091442