Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies in the Yangtze River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Equivalent Value Correction
2.3.2. Evaluation of Ecosystem Services
2.3.3. Ecosystem Services Trade-Off/Synergy Analysis
2.3.4. Spatial Heterogeneity of Ecosystem Service Trade-Offs/Synergies
3. Results
3.1. Spatial and Temporal Evolution of Ecosystem Services
3.1.1. Temporal Evolution of Ecosystem Services
3.1.2. Spatial Evolution of Ecosystem Services
3.2. Temporal Evolution of Ecosystem Services Trade-Offs/Synergies
3.2.1. Spatial Scale Effects
3.2.2. Temporal Evolution
3.3. Spatial Heterogeneity of Ecosystem Services Trade-Offs/Synergies
4. Discussion
4.1. Spatio-Temporal Evolution and Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies
4.2. Spatial Heterogeneity of Ecosystem Service Trade-Offs/Synergies for Policy Implications
4.3. Research Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ES Type | FP | WR | CR | EP | SC | BM | AL | Total | |
---|---|---|---|---|---|---|---|---|---|
2000 | Dry land | 51.51 | −99.62 | 11.47 | 3.42 | 0.2 | 4.23 | 1.14 | −27.65 |
Irrigated cropland | 32.2 | 0.76 | 7.25 | 2.01 | 20.73 | 2.62 | 0.76 | 66.33 | |
Broad-leaved forest | 10.67 | 12.51 | 130.84 | 38.85 | 53.34 | 48.51 | 13.42 | 308.14 | |
Shrubbery | 6.99 | 8.1 | 85.15 | 25.77 | 34.62 | 31.6 | 8.74 | 200.97 | |
Grassland, dense | 12.5 | 10.2 | 104.88 | 34.62 | 48.31 | 43.88 | 12.16 | 266.55 | |
Grassland, open | 7.24 | 5.92 | 60.79 | 20.13 | 27.98 | 25.56 | 7.09 | 154.71 | |
Wetland | 5.52 | 28.03 | 72.47 | 72.47 | 46.5 | 158.42 | 59.89 | 443.30 | |
Water bodies | 56.19 | 582.27 | 46.1 | 111.72 | 18.72 | 51.33 | 23.93 | 890.26 | |
2005 | Dry land | 65.57 | −126.8 | 17.47 | 5.21 | 0.31 | 6.44 | 2.49 | −29.31 |
Irrigated cropland | 40.98 | 0.96 | 11.03 | 3.07 | 31.57 | 3.98 | 1.66 | 93.25 | |
Broad-leaved forest | 15.38 | 18.03 | 199.23 | 59.16 | 81.22 | 73.87 | 29.33 | 476.22 | |
Shrubbery | 10.07 | 11.66 | 129.65 | 39.23 | 52.72 | 48.12 | 19.09 | 310.54 | |
Grassland, dense | 14.67 | 11.97 | 159.69 | 52.72 | 73.56 | 66.82 | 26.56 | 405.99 | |
Grassland, open | 8.49 | 6.95 | 92.57 | 30.65 | 42.6 | 38.93 | 15.49 | 235.68 | |
Wetland | 8.45 | 42.91 | 110.34 | 110.34 | 70.8 | 241.22 | 130.87 | 714.93 | |
Water bodies | 77.67 | 804.86 | 70.19 | 170.11 | 28.51 | 78.16 | 52.29 | 1281.79 | |
2010 | Dry land | 95.32 | −184.33 | 27.53 | 8.21 | 0.48 | 10.14 | 5.06 | −37.59 |
Irrigated cropland | 59.58 | 1.4 | 17.39 | 4.83 | 49.75 | 6.28 | 3.37 | 142.60 | |
Broad-leaved forest | 22.08 | 25.88 | 313.95 | 93.22 | 128 | 116.4 | 59.55 | 759.08 | |
Shrubbery | 14.46 | 16.75 | 204.31 | 61.82 | 83.08 | 75.83 | 38.76 | 495.01 | |
Grassland, dense | 22.54 | 18.39 | 251.65 | 83.08 | 115.92 | 105.3 | 53.93 | 650.81 | |
Grassland, open | 13.05 | 10.68 | 145.87 | 48.3 | 67.14 | 61.34 | 31.46 | 377.84 | |
Wetland | 13.39 | 67.99 | 173.88 | 173.88 | 111.57 | 380.13 | 265.71 | 1186.55 | |
Water bodies | 116.34 | 1205.59 | 110.61 | 268.07 | 44.92 | 123.17 | 106.17 | 1974.87 | |
2015 | Dry land | 119.55 | −231.2 | 36.16 | 10.78 | 0.63 | 13.32 | 3.07 | −47.69 |
Irrigated cropland | 74.72 | 1.76 | 22.84 | 6.34 | 65.33 | 8.25 | 2.05 | 181.29 | |
Broad-leaved forest | 27.79 | 32.58 | 412.3 | 122.42 | 168.09 | 152.87 | 36.18 | 952.23 | |
Shrubbery | 18.21 | 21.08 | 268.31 | 81.19 | 109.1 | 99.59 | 23.55 | 621.03 | |
Grassland, dense | 28.3 | 23.08 | 330.48 | 109.1 | 152.24 | 138.28 | 32.76 | 814.24 | |
Grassland, open | 16.38 | 13.4 | 191.56 | 63.43 | 88.17 | 80.56 | 19.11 | 472.61 | |
Wetland | 17.58 | 89.29 | 228.35 | 228.35 | 146.53 | 499.21 | 161.43 | 1370.74 | |
Water bodies | 145.34 | 1506.09 | 145.26 | 352.04 | 58.99 | 161.75 | 64.5 | 2433.97 | |
2020 | Dry land | 97.75 | −189.03 | 33.59 | 10.02 | 0.59 | 12.37 | 2.54 | −32.17 |
Irrigated cropland | 61.09 | 1.44 | 21.21 | 5.89 | 60.69 | 7.66 | 1.69 | 159.67 | |
Broad-leaved forest | 23.75 | 27.85 | 383.01 | 113.72 | 156.15 | 142.01 | 29.86 | 876.35 | |
Shrubbery | 15.56 | 18.02 | 249.25 | 75.42 | 101.35 | 92.51 | 19.44 | 571.55 | |
Grassland, dense | 20.3 | 16.56 | 307 | 101.35 | 141.42 | 128.46 | 27.04 | 742.13 | |
Grassland, open | 11.75 | 9.62 | 177.95 | 58.92 | 81.9 | 74.83 | 15.77 | 430.74 | |
Wetland | 16.51 | 83.85 | 212.13 | 212.13 | 136.12 | 463.73 | 133.23 | 1257.70 | |
Water bodies | 144.53 | 1497.66 | 134.94 | 327.03 | 54.8 | 150.26 | 53.24 | 2362.46 |
References
- Qiu, S.; Peng, J.; Dong, J.; Wang, X.; Meersmans, J. Understanding the relationships between ecosystem services and associated social-ecological drivers in a karst region: A case study of Guizhou province, China. Prog. Phys. Geogr. 2020, 45, 98–114. [Google Scholar] [CrossRef]
- Magdalena, U.R.; Gonçalves De Souza, G.B.; Amorim, R.R. Spatial analysis guiding decision making in environmental conservation: Systematic conservation planning and ecosystem services. Prog. Phys. Geogr. 2022, 47, 123–139. [Google Scholar] [CrossRef]
- Castro, A.J.; Verburg, P.H.; Martín-López, B.; Garcia-Llorente, M.; Cabello, J.; Vaughn, C.C.; López, E. Ecosystem service trade-offs from supply to social demand: A landscape-scale spatial analysis. Landscape Urban Plan. 2014, 132, 102–110. [Google Scholar] [CrossRef]
- Dunford, R.W.; Smith, A.C.; Harrison, P.A.; Hanganu, D. Ecosystem service provision in a changing europe: Adapting to the impacts of combined climate and socio-economic change. Landscape Ecol. 2015, 30, 443–461. [Google Scholar] [CrossRef] [PubMed]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landscape Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Geng, W.; Li, Y.; Zhang, P.; Yang, D.; Jing, W.; Rong, T. Analyzing spatio-temporal changes and trade-offs/synergies among ecosystem services in the Yellow river basin, China. Ecol. Indic. 2022, 138, 108825. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.; Su, J.; Sun, W. Ecosystem service value evaluation method in a complex ecological environment: A case study of Gansu Province, China. PLoS ONE 2021, 16, e240272. [Google Scholar] [CrossRef]
- Torres, A.V.; Tiwari, C.; Atkinson, S.F. Progress in ecosystem services research: A guide for scholars and practitioners. Ecosyst. Serv. 2021, 49, 101267. [Google Scholar] [CrossRef]
- Wang, X.; Peng, J.; Luo, Y.; Qiu, S.; Dong, J.; Zhang, Z.; Vercruysse, K.; Grabowski, R.C.; Meersmans, J.; Cleveland, C.J. Exploring social-ecological impacts on trade-offs and synergies among ecosystem services. Ecol. Econ. 2022, 197, 107438. [Google Scholar] [CrossRef]
- Gong, J.; Xu, C.; Yan, L.; Zhu, Y.; Zhang, Y.; Jin, T. Multi-scale analysis of ecosystem services trade-offs in an ecotone in the eastern margin of the Qinghai-tibetan Plateau. J. Mt. Sci.-Engl. 2021, 18, 2803–2819. [Google Scholar] [CrossRef]
- Aryal, K.; Maraseni, T.; Apan, A. How much do we know about trade-offs in ecosystem services? A systematic review of empirical research observations. Sci. Total Environ. 2022, 806, 151229. [Google Scholar] [CrossRef]
- Huang, L.; Du, Y.; Tang, Y. Ecosystem service trade-offs and synergies and their drivers in severely affected areas of the Wenchuan earthquake, China. Land. Degrad. Dev. 2024, 35, 3881–3896. [Google Scholar] [CrossRef]
- Liu, J.; Pei, X.; Zhu, W.; Jiao, J. Scenario modeling of ecosystem service trade-offs and bundles in a semi-arid valley basin. Sci. Total Environ. 2023, 896, 166413. [Google Scholar] [CrossRef]
- Qiao, X.; Gu, Y.; Zou, C.; Xu, D.; Wang, L.; Ye, X.; Yang, Y.; Huang, X. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Sci. Total Environ. 2019, 651, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yan, W.; Li, Z.; Wende, W.; Xiao, S.; Wan, S.; Li, S. Spatial patterns of associations among ecosystem services across different spatial scales in metropolitan areas: A case study of Shanghai, China. Ecol. Indic. 2022, 136, 108682. [Google Scholar] [CrossRef]
- Petz, K.; Alkemade, R.; Bakkenes, M.; Schulp, C.J.E.; van der Velde, M.; Leemans, R. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob. Environ. Chang. 2014, 29, 223–234. [Google Scholar] [CrossRef]
- Armatas, C.A.; Campbell, R.M.; Watson, A.E.; Borrie, W.T.; Neal, C.; Venn, T.J. An integrated approach to valuation and tradeoff analysis of ecosystem services for national forest decision-making. Ecosyst. Serv. 2018, 33, 1–18. [Google Scholar] [CrossRef]
- Karimi, J.D.; Harris, J.A.; Corstanje, R. Using Bayesian Belief Networks to assess the influence of landscape connectivity on ecosystem service trade-offs and synergies in urban landscapes in the UK. Landscape Ecol. 2021, 36, 3345–3363. [Google Scholar] [CrossRef]
- Su, C.; Dong, M.; Fu, B.; Liu, G. Scale effects of sediment retention, water yield, and net primary production: A case-study of the Chinese Loess Plateau. Land Degrad. Dev. 2020, 31, 1408–1421. [Google Scholar] [CrossRef]
- Xiong, L.; Li, R. Assessing and decoupling ecosystem services evolution in karst areas: A multi-model approach to support land management decision-making. J. Environ. Manag. 2024, 350, 119632. [Google Scholar] [CrossRef]
- Deng, X.; Xiong, K.; Yu, Y.; Zhang, S.; Kong, L.; Zhang, Y. A review of ecosystem service trade-offs/synergies: Enlightenment for the optimization of forest ecosystem functions in karst desertification control. Forests 2023, 14, 88. [Google Scholar] [CrossRef]
- Hou, Y.; Lü, Y.; Chen, W.; Fu, B. Temporal variation and spatial scale dependency of ecosystem service interactions: A case study on the central loess plateau of China. Landscape Ecol. 2017, 32, 1201–1217. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Beard, J.T.D.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 28. [Google Scholar] [CrossRef]
- Li, B.; Wang, W. Trade-offs and synergies in ecosystem services for the Yinchuan basin in China. Ecol. Indic. 2018, 84, 837–846. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.; Xie, G. Ecosystem services research in China: Progress and perspective. Ecol. Econ. 2010, 69, 1389–1395. [Google Scholar] [CrossRef]
- Yang, M.; Gao, X.; Zhao, X.; Wu, P. Scale effect and spatially explicit drivers of interactions between ecosystem services—A case study from the Loess Plateau. Sci. Total Environ. 2021, 785, 147389. [Google Scholar] [CrossRef]
- Pan, J.; Wei, S.; Li, Z. Spatiotemporal pattern of trade-offs and synergistic relationships among multiple ecosystem services in an arid inland river basin in NW China. Ecol. Indic. 2020, 114, 106345. [Google Scholar] [CrossRef]
- Li, R.; Kong, L.; Yang, Y.; Wang, Y.; Zheng, H.; Liang, M. Dynamic bundles to detect the spatiotemporal characteristics and impact factors of ecosystem services in northern China. Prog. Phys. Geogr. 2023, 47, 687–701. [Google Scholar] [CrossRef]
- Tao, Y.; Tao, Q.; Sun, X.; Qiu, J.; Pueppke, S.G.; Ou, W.; Guo, J.; Qi, J. Mapping ecosystem service supply and demand dynamics under rapid urban expansion: A case study in the Yangtze River Delta of China. Ecosyst. Serv. 2022, 56, 101448. [Google Scholar] [CrossRef]
- Cai, W.; Gibbs, D.; Zhang, L.; Ferrier, G.; Cai, Y. Identifying hotspots and management of critical ecosystem services in rapidly urbanizing Yangtze river delta region, China. J. Environ. Manag. 2017, 191, 258–267. [Google Scholar] [CrossRef]
- Shu, H.; Xiong, P. Reallocation planning of urban industrial land for structure optimization and emission reduction: A practical analysis of urban agglomeration in China’s Rangtze River Delta. Land. Use Policy 2019, 81, 604–623. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Luo, Q.; Zhang, X.; Li, Z.; Yang, M.; Lin, Y. The effects of China’s ecological control line policy on ecosystem services: The case of Wuhan city. Ecol. Indic. 2018, 93, 292–301. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Liu, Y.; Zhu, Y. Land use optimization based on ecosystem service assessment: A case study in the Yanhe watershed. Land. Use Policy 2018, 72, 303–312. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Li, W. Applying value transfer method for eco-service valuation in China. J. Resour. Ecol. 2010, 1, 51–59. [Google Scholar]
- Xu, S.; Liu, Y. Associations among ecosystem services from local perspectives. Sci. Total Environ. 2019, 690, 790–798. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, Y.; Hao, S.; Xu, W.; Lv, L.; Yu, S. Spatial-temporal variation and tradeoffs/synergies analysis on multiple ecosystem services: A case study in the three-river headwaters region of China. Ecol. Indic. 2020, 116, 106494. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, G.; Zhou, D.; Li, G. Systematically addressing the heterogeneity in the response of ecosystem services to agricultural modernization, industrialization and urbanization in the Qinghai-Tibetan plateau from 2000 to 2018. J. Clean. Prod. 2021, 285, 125323. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Comín, F.A.; Bennett, E.M. Interactions among ecosystem services across land uses in a floodplain agroecosystem. Ecol. Soc. 2014, 19, 20. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Xiao, W.; Yellishetty, M.; Yang, D. Identifying ecosystem service bundles and the spatiotemporal characteristics of trade-offs and synergies in coal mining areas with a high groundwater table. Sci. Total Environ. 2022, 807, 151036. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Feng, X.; Yan, H.; Su, M.; Wu, M. Spatiotemporal variation of essential ecosystem services and their trade-off/synergy along with rapid urbanization in the lower pearl river basin, China. Ecol. Indic. 2021, 133, 108439. [Google Scholar] [CrossRef]
- Xue, C.; Chen, X.; Xue, L.; Zhang, H.; Chen, J.; Li, D. Modeling the spatially heterogeneous relationships between tradeoffs and synergies among ecosystem services and potential drivers considering geographic scale in bairin left banner, China. Sci. Total Environ. 2023, 855, 158834. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhan, J.; Zhao, F.; Wang, C.; Zhang, F.; Teng, Y.; Chu, X.; Kumi, M.A. Spatio-temporal variations of ecosystem services and their drivers in the pearl river delta, China. J. Clean. Prod. 2022, 337, 130466. [Google Scholar] [CrossRef]
- Wang, H.; Liu, L.; Yin, L.; Shen, J.; Li, S. Exploring the complex relationships and drivers of ecosystem services across different geomorphological types in the Beijing-Tianjin-Hebei region, China (2000–2018). Ecol. Indic. 2021, 121, 107116. [Google Scholar] [CrossRef]
Classification in the Land Use Data | Land Use Classification | |
---|---|---|
Xie et al. [32] | This Study | |
Paddy field | Paddy field | Irrigated cropland |
Dry land | Dry land | Dry land |
Marsh, saline–alkaline land, beach, bottom land | Wetland | Wetland |
Canals, lakes, reservoirs and ponds | River system | Water bodies |
Woodland, sparse woodland, other woodlands | Broad-leaved forest | Broad-leaved forest |
Shrubbery | Shrubbery | Shrubbery |
High0cover grassland | Bush | Grassland, dense |
Low- and medium-cover grassland | Meadow | Grassland, open |
Sandy land, bare land, bare rock stony land | Bare land | Barren or sparsely vegetated |
Land Use | FP | WR | CR | EP | SC | BM | AL | |
---|---|---|---|---|---|---|---|---|
Arable land | Dry land | 0.85 | 0.02 | 0.36 | 0.1 | 1.03 | 0.13 | 0.06 |
Irrigated cropland | 1.36 | −2.63 | 0.57 | 0.17 | 0.01 | 0.21 | 0.09 | |
Forest land | Broad-leaved forest | 0.29 | 0.34 | 6.5 | 1.93 | 2.65 | 2.41 | 1.06 |
Shrubbery | 0.19 | 0.22 | 4.23 | 1.28 | 1.72 | 1.57 | 0.69 | |
Grassland | Dense grassland | 0.38 | 0.31 | 5.21 | 1.72 | 2.4 | 2.18 | 0.96 |
Open grassland | 0.22 | 0.18 | 3.02 | 1 | 1.39 | 1.27 | 0.56 | |
Water bodies | Wetland | 0.51 | 2.59 | 3.6 | 3.6 | 2.31 | 7.87 | 4.73 |
Water bodies | 0.8 | 8.29 | 2.29 | 5.55 | 0.93 | 2.55 | 1.89 |
Correction Factor | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
FP of arable land | 3.50 | 2.91 | 2.67 | 2.55 | 2.22 |
FP of forest land | 3.40 | 3.20 | 2.90 | 2.78 | 2.53 |
FP of grassland | 3.04 | 2.33 | 2.26 | 2.16 | 1.65 |
FP of water bodies | 6.49 | 5.86 | 5.54 | 5.27 | 5.58 |
CR, EP, SC, BM | 1.86 | 1.85 | 1.84 | 1.84 | 1.82 |
AL | 1.17 | 1.67 | 2.14 | 0.99 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, W.; Zhao, F.; Zhao, Q.; Xu, Z.; Asiedu Kumi, M. Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies in the Yangtze River Delta. Land 2024, 13, 1462. https://doi.org/10.3390/land13091462
Chen Y, Liu W, Zhao F, Zhao Q, Xu Z, Asiedu Kumi M. Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies in the Yangtze River Delta. Land. 2024; 13(9):1462. https://doi.org/10.3390/land13091462
Chicago/Turabian StyleChen, Yongqi, Wei Liu, Fen Zhao, Qing Zhao, Zhiwei Xu, and Michael Asiedu Kumi. 2024. "Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies in the Yangtze River Delta" Land 13, no. 9: 1462. https://doi.org/10.3390/land13091462
APA StyleChen, Y., Liu, W., Zhao, F., Zhao, Q., Xu, Z., & Asiedu Kumi, M. (2024). Multi-Scale Analysis of Ecosystem Service Trade-Offs/Synergies in the Yangtze River Delta. Land, 13(9), 1462. https://doi.org/10.3390/land13091462