Short-Term Artificial Revegetation with Herbaceous Species Can Prevent Soil Degradation in a Black Soil Erosion Gully of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Setup
2.3. Runoff Scouring Experiment
2.4. Soil Sampling and Laboratory Analysis
2.5. Statistical Analyses
3. Results
3.1. Adaptability of Artificial Revegetation
3.2. Factors Sensitive to Short-Term Artificial Revegetation
3.3. Effects of Artificial Revegetation on Reducing Soil and Water Loss
3.4. Responses of Soil Physicochemical Characteristics to Artificial Revegetation
3.5. Evaluation of Short-Term Artificial Revegetation
4. Discussion
4.1. The Effects of Artificial Revegetation with Herbaceous Species on Soil Erosion
4.2. Changes in Soil Physicochemical Characteristics
4.3. The Evaluation of Herbaceous Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wen, H.; Ni, S.; Wang, J.; Cai, C. Changes of soil quality induced by different vegetation restoration in the collapsing gully erosion areas of southern China. Int. Soil Water Conserv. Res. 2021, 9, 195–206. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, J.; Yan, X.; Li, J.; Vanmaercke, M.; Wang, N. Response of gully morphology and density to the spatial and rainy-season monthly variation of rainfall at the regional scale of the Chinese Loess Plateau. Catena 2024, 236, 107773. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Zhang, S.; Cruse, R.M.; Zhang, X. Gully Erosion Control Practices in Northeast China: A Review. Sustainability 2019, 11, 5065. [Google Scholar] [CrossRef]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Rickson, R.J. Water induced soil erosion. In Encyclopedia of Soils in the Environment, 2nd ed.; Goss, M.J., Oliver, M., Eds.; Academic Press: Oxford, UK, 2023; pp. 193–207. [Google Scholar]
- Wei, B.; Li, Z.; Duan, L.; Gu, Z.; Liu, X. Vegetation types and rainfall regimes impact on surface runoff and soil erosion over 10 years in karst hillslopes. Catena 2023, 232, 107443. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Abla, M.; Lü, D.; Yan, R.; Ren, Q.; Ren, Z.; Yang, Y.; Zhao, W.; Lin, P.; et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China. Catena 2018, 170, 141–149. [Google Scholar] [CrossRef]
- Kou, M.; Jiao, J. Structure of Erosion-Resistant Plant Community in the Hill-Gully Region of the Loess Plateau. Res. Soil Water Conserv. 2018, 25, 7. [Google Scholar]
- Vásquez-Méndez, R.; Ventura-Ramos, E.; Oleschko, K.; Hernández-Sandoval, L.; Parrot, J.-F.; Nearing, M.A. Soil erosion and runoff in different vegetation patches from semiarid Central Mexico. Catena 2010, 80, 162–169. [Google Scholar] [CrossRef]
- Michaelides, K.; Lister, D.; Wainwright, J.; Parsons, A.J. Vegetation controls on small-scale runoff and erosion dynamics in a degrading dryland environment. Hydrol. Process. 2009, 23, 1617–1630. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-erosion and runoff prevention by plant covers: A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, W.; Chen, L.; Feng, T.; Daryanto, S. Quantifying the effects of precipitation, vegetation, and land preparation techniques on runoff and soil erosion in a Loess watershed of China. Sci. Total. Environ. 2019, 652, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fu, B.; Liu, S.; Dargush, P.; Gao, G.; Liu, J.; Wei, F. Vegetation restoration changes topsoil biophysical regulations of carbon fluxes in an eroding soil landscape. Land Degrad. Dev. 2018, 29, 4061–4070. [Google Scholar] [CrossRef]
- Mohammad, A.G.; Adam, M.A. The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena 2010, 81, 97–103. [Google Scholar] [CrossRef]
- Bochet, E.; Poesen, J.; Rubio, J.L. Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland: Influence of plant morphology and rainfall intensity. Earth Surf. Process. Landforms 2006, 31, 536–549. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.M.; Tian, J.Y. Effectiveness of plant roots to increase the anti-scouribility of soil on the Loess Plateau. Chin. Sci. Bull. 1991, 36, 2077–2082. [Google Scholar]
- Lin, J.; Huang, Y.; Wang, M.-K.; Jiang, F.; Zhang, X.; Ge, H. Assessing the sources of sediment transported in gully systems using a fingerprinting approach: An example from South-east China. Catena 2015, 129, 9–17. [Google Scholar] [CrossRef]
- Guo, S.; Han, X.; Li, H.; Wang, T.; Tong, X.; Ren, G.; Feng, Y.; Yang, G. Evaluation of soil quality along two revegetation chronosequences on the Loess Hilly Region of China. Sci. Total. Environ. 2018, 633, 808–815. [Google Scholar] [CrossRef]
- Wu, C.; Deng, L.; Huang, C.; Chen, Y.; Peng, C. Effects of vegetation restoration on soil nutrients, plant diversity, and its spatiotemporal heterogeneity in a desert–oasis ecotone. Land Degrad. Dev. 2020, 32, 670–683. [Google Scholar] [CrossRef]
- Raiesi, F.; Kabiri, V. Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment. Ecol. Indic. 2016, 71, 198–207. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; McVicar, T.R.; Zhang, J.; Zhu, J.; Guo, J. An event-based approach to understanding the hydrological impacts of different land uses in semi-arid catchments. J. Hydrol. 2012, 416–417, 50–59. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, X.; Liu, J.; Li, J.; Ding, C.; Qi, Z.; Shen, Q.; Guo, M. The effectiveness of selected vegetation communities in regulating runoff and soil loss from regraded gully banks in the Mollisol region of Northeast China. Land Degrad. Dev. 2021, 32, 2116–2129. [Google Scholar] [CrossRef]
- Marcos, M.S.; Bertiller, M.B.; Cisneros, H.S.; Olivera, N.L. Nitrification and ammonia-oxidizing bacteria shift in response to soil moisture and plant litter quality in arid soils from the Patagonian Monte. Pedobiologia 2016, 59, 1–10. [Google Scholar] [CrossRef]
- Holliday, V.T. Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. In American Society of Agronomy, Agronomy Monographs; Klute, A., Ed.; Wiley Online Library: Madison, WI, USA, 1986; 1188p. [Google Scholar]
- Shi, P.; Arter, C.; Liu, X.; Keller, M.; Schulin, R. Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amendment. Sci. Total. Environ. 2017, 607–608, 95–102. [Google Scholar] [CrossRef]
- Obalum, S.; Uteau-Puschmann, D.; Peth, S. Reduced tillage and compost effects on soil aggregate stability of a silt-loam Luvisol using different aggregate stability tests. Soil Tillage Res. 2019, 189, 217–228. [Google Scholar] [CrossRef]
- Liu, B.; Xie, G.; Zhang, X.; Zhao, Y.; Yin, X.; Cheng, C. Vegetation root system, soil erosion and ecohydrology system: A review. In Proceedings of the 2015 International Forum on Energy, Environment Science and Materials, Shenzhen, China, 25–26 September 2015; Choi, S.B., Ed.; Atlantis Press: Paris, France, 2015; pp. 271–279. [Google Scholar]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Lucas, M.; Schlüter, S.; Vogel, H.-J.; Vetterlein, D. Roots compact the surrounding soil depending on the structures they encounter. Sci. Rep. 2019, 9, 16236. [Google Scholar] [CrossRef]
- Sullivan, P.; Billings, S.; Hirmas, D.; Li, L.; Zhang, X.; Ziegler, S.; Murenbeeld, K.; Ajami, H.; Guthrie, A.; Singha, K.; et al. Embracing the dynamic nature of soil structure: A paradigm illuminating the role of life in critical zones of the Anthropocene. Earth-Sci. Rev. 2022, 225, 103873. [Google Scholar] [CrossRef]
- Colombi, T.; Torres, L.C.; Walter, A.; Keller, T. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth—A vicious circle. Sci. Total Environ. 2018, 626, 1026–1035. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Siddique, K.H.; Li, S. Root penetration ability and plant growth in agroecosystems. Plant Physiol. Biochem. 2022, 183, 160–168. [Google Scholar] [CrossRef]
- Hallett, P.D.; Marin, M.; Bending, G.D.; George, T.S.; Collins, C.D.; Otten, W. Building soil sustainability from root–soil interface traits. Trends Plant Sci. 2022, 27, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, Q.; Werner, A.D.; Li, Y.; Jiang, S.; Tan, Z. Root-induced changes of soil hydraulic properties—A review. J. Hydrol. 2020, 589, 125203. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Morreale, S.J.; Schneider, R.L.; Li, Z.; Wu, G.-L. Contributions of plant litter to soil microbial activity improvement and soil nutrient enhancement along with herb and shrub colonization expansions in an arid sandy land. Catena 2023, 227, 107098. [Google Scholar] [CrossRef]
- Liu, R.; Wang, D. C:N:P stoichiometric characteristics and seasonal dynamics of leaf-root-litter-soil in plantations on the loess plateau. Ecol. Indic. 2021, 127, 107772. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Li, Z.; Liu, M.; Xu, C.; Zhang, R.; Luo, W. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Sci. Total. Environ. 2019, 650, 2657–2665. [Google Scholar] [CrossRef]
- Deng, L.; Kim, D.; Peng, C.; Shangguan, Z. Controls of soil and aggregate-associated organic carbon variations following natural vegetation restoration on the Loess Plateau in China. Land Degrad. Dev. 2018, 29, 3974–3984. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Six, J.; Guggenberger, G.; Paustian, K.; Haumaier, L.; Elliott, E.T.; Zech, W. Sources and composition of soil organic matter fractions between and within soil aggregates. Eur. J. Soil Sci. 2001, 52, 607–618. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, J.; Shi, Z.; Wang, L. Soil aggregates are key factors that regulate erosion-related carbon loss in citrus orchards of southern China: Bare land vs. grass-covered land. Agric. Ecosyst. Environ. 2021, 309, 107254. [Google Scholar] [CrossRef]
- Cheng, H.; Zhou, X.; Dong, R.; Wang, X.; Liu, G.; Li, Q. Priming of soil organic carbon mineralization and its temperature sensitivity in response to vegetation restoration in a karst area of Southwest China. Sci. Total. Environ. 2022, 851 Pt 2, 158400. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Lü, H.; He, H.; Zhao, J.; Zhang, W.; Xie, H.; Hu, G.; Liu, X.; Wu, Y.; Zhang, X. Dynamics of fertilizer-derived organic nitrogen fractions in an arable soil during a growing season. Plant Soil 2013, 373, 595–607. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Q.; Zhang, C.; Zhou, B.; Li, X.; Zhang, X.; Chen, J.; Liu, K. Soil Organic Nitrogen Components and N−Cycling Enzyme Activities Following Vegetation Restoration of Cropland in Danxia Degraded Region. Forests 2022, 13, 1917. [Google Scholar] [CrossRef]
- Liu, R.; Wang, D. Soil C, N, P and K stoichiometry affected by vegetation restoration patterns in the alpine region of the Loess Plateau, Northwest China. PLoS ONE 2020, 15, e0241859. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Li, J.; Zhang, Y.; Bing, M.; Liu, Y.; Wu, J.; Hai, X.; Li, A.; Wang, K.; Wu, P.; et al. Effects of vegetation restoration types on soil nutrients and soil erodibility regulated by slope positions on the Loess Plateau. J. Environ. Manag. 2022, 302 Pt A, 113985. [Google Scholar] [CrossRef]
- Bast, A.; Wilcke, W.; Graf, F.; Lüscher, P.; Gärtner, H. The use of mycorrhiza for eco-engineering measures in steep alpine environments: Effects on soil aggregate formation and fine-root development. Earth Surf. Process. Landf. 2014, 39, 1753–1763. [Google Scholar] [CrossRef]
- Rillig, M.C.; Aguilar-Trigueros, C.A.; Bergmann, J.; Verbruggen, E.; Veresoglou, S.D.; Lehmann, A. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 2015, 205, 1385–1388. [Google Scholar] [CrossRef]
- Lázaro-González, A.; Andivia, E.; Hampe, A.; Hasegawa, S.; Marzano, R.; Santos, A.M.; Castro, J.; Leverkus, A.B. Revegetation through seeding or planting: A worldwide systematic map. J. Environ. Manag. 2023, 337, 117713. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Wang, J.; Zhang, X.; Zhao, M.; Zhong, L.; Liu, Y.; Fang, X. Effects of Different Land-Use Types on Soil Erosion Under Natural Rainfall in the Loess Plateau, China. Pedosphere 2016, 26, 243–256. [Google Scholar] [CrossRef]
- Xiao, T.; Li, P.; Fei, W.; Wang, J. Effects of vegetation roots on the structure and hydraulic properties of soils: A perspective review. Sci. Total. Environ. 2023, 906, 167524. [Google Scholar] [CrossRef]
Herbaceous Species | Soil Bulk Density (g cm−3) | Soil Water Content (V/V, %) | Field Capacity (V/V, %) | Soil Porosity (%) | Soil Aeration Porosity (%) | WR0.25 (%) | MWD (mm) | GWD (mm) | Soil Texture | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | |||||||||
RH | 1.34 ± 0.05 | 33.17 ± 1.40 | 38.03 ± 1.80 | 49.32 ± 1.80 | 11.30 ± 1.33 | 79.39 ± 1.78 | 7.38 ± 1.01 | 0.79 ± 0.16 | 0.2 ± 0.0 | 8.0 ± 0.1 | 91.8 ± 0.1 |
AS | 1.34 ± 0.01 | 32.16 ± 0.56 | 37.15 ± 0.36 | 49.25 ± 0.30 | 12.10 ± 0.66 | 82.65 ± 4.41 | 7.87 ± 2.15 | 1.27 ± 0.61 | 0.2 ± 0.0 | 10.0 ± 0.1 | 89.8 ± 0.1 |
ET | 1.63 ± 0.01 | 18.88 ± 4.88 | 21.40 ± 5.95 | 38.39 ± 0.41 | 16.99 ± 5.53 | 91.03 ± 2.47 | 5.97 ± 0.08 | 1.46 ± 0.19 | 0.2 ± 0.0 | 2.0 ± 0.0 | 97.8 ± 0.0 |
ME | 1.41 ± 0.09 | 36.50 ± 0.59 | 38.25 ± 0.27 | 46.78 ± 3.37 | 8.54 ± 3.09 | 90.21 ± 1.93 | 6.75 ± 2.91 | 2.5 ± 1.97 | 2.2 ± 0.1 | 5.8 ± 0.2 | 92.0 ± 0.2 |
GL | 1.37 ± 0.02 | 29.93 ± 0.23 | 33.47 ± 0.30 | 48.40 ± 0.92 | 14.94 ± 1.80 | 88.71 ± 1.76 | 7.12 ± 1.35 | 1.7 ± 0.32 | 2.2 ± 0.2 | 12.0 ± 0.2 | 85.8 ± 0.0 |
EN | 1.40 ± 0.03 | 31.87 ± 0.64 | 35.87 ± 0.45 | 47.28 ± 1.14 | 11.42 ± 1.59 | 82.38 ± 1.76 | 7.97 ± 1.08 | 1.16 ± 0.11 | 2.2 ± 0.0 | 14.1 ± 0.2 | 83.7 ± 0.2 |
TR | 1.30 ± 0.08 | 33.69 ± 0.90 | 36.86 ± 0.98 | 51.08 ± 3.03 | 14.22 ± 2.06 | 87.11 ± 0.78 | 9.75 ± 4.46 | 3.53 ± 3.81 | 2.2 ± 0.0 | 14.0 ± 0.0 | 83.8 ± 0.0 |
BR | 1.57 ± 0.02 | 29.38 ± 0.54 | 31.81 ± 0.46 | 40.59 ± 0.60 | 9.28 ± 1.06 | 87.81 ± 1.72 | 12.34 ± 2.81 | 4.09 ± 3.59 | 6.2 ± 0.0 | 14.0 ± 0.0 | 79.8 ± 0.0 |
BARE | 1.49 ± 0.06 | 36.68 ± 2.43 | 36.58 ± 1.51 | 43.88 ± 2.32 | 7.31 ± 2.16 | 92.21 ± 2.7 | 12.2 ± 4.09 | 7.89 ± 6.75 | 2.2 ± 0.0 | 10.0 ± 0.0 | 87.8 ± 0.0 |
Soil Layer | Species | pH (mol L−1) | CEC (cmol kg−1) | SOC (g kg−1) | TN (g kg−1) | AN (mg kg−1) | AN/TN | AP (mg kg−1) | TK (g kg−1) |
---|---|---|---|---|---|---|---|---|---|
0–10 cm | RH | 5.95 ± 0.24 | 18.72 ± 1.31 | 16.10 ± 4.20 | 1.37 ± 0.30 | 46.22 ± 3.08 | 0.04 ± 0.01 | 31.91 ± 2.93 | 6.38 ± 2.15 |
AS | 6.17 ± 0.08 | 18.87 ± 0.77 | 8.68 ± 1.31 | 0.92 ± 0.07 | 43.29 ± 3.04 | 0.05 ± 0.00 | 19.12 ± 8.91 | 8.44 ± 1.33 | |
ET | 6.17 ± 0.10 | 19.34 ± 0.90 | 1.03 ± 0.45 | 0.23 ± 0.07 | 37.68 ± 6.05 | 0.19 ± 0.08 | 18.13 ± 8.66 | 3.45 ± 0.44 | |
ME | 5.81 ± 0.18 | 19.37 ± 1.80 | 6.74 ± 5.66 | 0.74 ± 0.53 | 41.83 ± 7.89 | 0.11 ± 0.13 | 31.04 ± 3.48 | 6.11 ± 1.13 | |
GL | 6.03 ± 0.09 | 20.50 ± 1.53 | 6.17 ± 1.61 | 0.54 ± 0.17 | 38.81 ± 1.50 | 0.08 ± 0.03 | 22.22 ± 5.37 | 6.34 ± 3.62 | |
EN | 6.03 ± 0.04 | 19.35 ± 1.05 | 17.80 ± 7.70 | 1.31 ± 0.54 | 47.33 ± 10.79 | 0.04 ± 0.02 | 19.82 ± 7.22 | 8.90 ± 0.68 | |
TR | 5.92 ± 0.13 | 20.51 ± 1.11 | 14.28 ± 6.03 | 1.23 ± 0.44 | 43.18 ± 0.29 | 0.04 ± 0.02 | 28.71 ± 0.40 | 8.60 ± 0.82 | |
BR | 6.00 ± 0.08 | 19.78 ± 0.79 | 12.35 ± 7.19 | 1.06 ± 0.44 | 42.95 ± 3.00 | 0.05 ± 0.02 | 20.61 ± 7.05 | 8.33 ± 0.81 | |
BARE | 6.07 ± 0.05 | 22.94 ± 1.43 | 13.46 ± 0.97 | 1.53 ± 0.35 | 46.00 ± 1.24 | 0.03 ± 0.01 | 36.08 ± 0.84 | 4.43 ± 0.08 | |
Mean value of vegetated treatments | 6.01 ± 0.12 | 19.55 ± 0.67 | 10.39 ± 5.71 | 0.92 ± 0.40 | 42.66 ± 3.28 | 0.07 ± 0.05 | 23.94 ± 5.67 | 7.07 ± 1.86 |
Species | Evaluation Aspects | ||
---|---|---|---|
Soil and Water Conservation | Soil Quality | Vegetation Growth | |
RH | 0.08 | 0.15 | −1.26 |
AS | 3.16 | −0.61 | −0.06 |
ET | −0.01 | −3.42 | −0.26 |
ME | −0.11 | −0.02 | −0.37 |
GL | −0.44 | −0.13 | −1.50 |
EN | −0.97 | 0.87 | 0.86 |
TR | −0.98 | 1.79 | 0.68 |
BR | −0.73 | 1.37 | 1.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhu, Y.; Li, J.; Kong, X.; Zhang, Q.; Wang, X.; Peng, D.; Zhang, X. Short-Term Artificial Revegetation with Herbaceous Species Can Prevent Soil Degradation in a Black Soil Erosion Gully of Northeast China. Land 2024, 13, 1486. https://doi.org/10.3390/land13091486
Liu J, Zhu Y, Li J, Kong X, Zhang Q, Wang X, Peng D, Zhang X. Short-Term Artificial Revegetation with Herbaceous Species Can Prevent Soil Degradation in a Black Soil Erosion Gully of Northeast China. Land. 2024; 13(9):1486. https://doi.org/10.3390/land13091486
Chicago/Turabian StyleLiu, Jielin, Yong Zhu, Jianye Li, Xiaolei Kong, Qiang Zhang, Xueshan Wang, Daqing Peng, and Xingyi Zhang. 2024. "Short-Term Artificial Revegetation with Herbaceous Species Can Prevent Soil Degradation in a Black Soil Erosion Gully of Northeast China" Land 13, no. 9: 1486. https://doi.org/10.3390/land13091486
APA StyleLiu, J., Zhu, Y., Li, J., Kong, X., Zhang, Q., Wang, X., Peng, D., & Zhang, X. (2024). Short-Term Artificial Revegetation with Herbaceous Species Can Prevent Soil Degradation in a Black Soil Erosion Gully of Northeast China. Land, 13(9), 1486. https://doi.org/10.3390/land13091486