Eco-Spatial Indices as an Effective Tool for Climate Change Adaptation in Residential Neighbourhoods—Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Background
2.2. Eco-Spatial Indices under Consideration
2.3. Simulation Tool
2.4. Research Framework
2.4.1. Calculations of Eco-Spatial Indices
2.4.2. Scenarios Building
2.4.3. Simulation Phase
2.5. Case Study
3. Results
3.1. Calculations of Eco-Spatial Indices of Klobucka Housing Estate
3.2. Scenarios for MGF and OGF
3.3. Adaptive Potential of Studied Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Copernicus: 2023 Is the Hottest Year on Record, with Global Temperatures close to the 1.5 °C Limit. Copernicus. Available online: https://climate.copernicus.eu/copernicus-2023-hottest-year-record (accessed on 9 August 2024).
- Liu, R.; Han, Z.; Wu, J.; Hu, Y.; Li, J. The impacts of urban surface characteristics on radiation balance and meteorological variables in the boundary layer around Beijing in summertime. Atmos. Res. 2017, 197, 167–176. [Google Scholar] [CrossRef]
- Junior, D.P.M.; Bueno, C.; da Silva, C.M. The Effect of Urban Green Spaces on Reduction of Particulate Matter Concentration. Bull. Environ. Contam. Toxicol. 2022, 108, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Ramyar, R.; Ackerman, A.; Johnston, D.M. Adapting cities for climate change through urban green infrastructure planning. Cities 2021, 117, 103316. [Google Scholar] [CrossRef]
- Girard, L.F.; Nocca, F. Climate Change and Health Impacts in Urban Areas: Towards Hybrid Evaluation Tools for New Governance. Atmosphere 2020, 11, 1344. [Google Scholar] [CrossRef]
- Perera, A.; Chathurika, S.; Davies, P.; Graham, P. A global review of urban blue-green planning tools. Land Use Policy 2024, 140, 107093. [Google Scholar] [CrossRef]
- Szulczewska, B.; Giedych, R.; Borowski, J.; Kuchcik, M.; Sikorski, P.; Mazurkiewicz, A.; Stańczyk, T. How much green is needed for a vital neighbourhood? In search for empirical evidence. Land Use Policy 2014, 38, 330–345. [Google Scholar] [CrossRef]
- Stange, E.E.; Barton, D.N.; Andersson, E.; Haase, D. Comparing the implicit valuation of ecosystem services from nature-based solutions in performance-based green area indicators across three European cities. Landsc. Urban Plan. 2022, 219, 104310. [Google Scholar] [CrossRef]
- Reinwald, F.; Brandenburg, C.; Gabor, A.; Hinterkörner, P.; Kainz, A.; Kraus, F.; Ring, Z.; Scharf, B.; Tötzer, T.; Damyanovic, D. Multi-Level Toolset for Steering Urban Green Infrastructure to Support the Development of Climate-Proofed Cities. Sustainability 2021, 13, 12111. [Google Scholar] [CrossRef]
- Pristeri, G.; Peroni, F.; Pappalardo, S.E.; Codato, D.; Castaldo, A.G.; Masi, A.; De Marchi, M. Mapping and Assessing Soil Sealing in Padua Municipality through Biotope Area Factor Index. Sustainability 2020, 12, 5167. [Google Scholar] [CrossRef]
- Slätmo, E.; Nilsson, K.; Turunen, E. Implementing Green Infrastructure in Spatial Planning in Europe. Land 2019, 8, 62. [Google Scholar] [CrossRef]
- Vartholomaios, A.; Kalogirou, N.; Athanassiou, E.; Papadopoulou, M. The green space factor as a tool for regulating the urban microclimate in vegetation-deprived Greek cities. In Proceedings of the International Conference on “Changing Cities“: Spatial, Morphological, Formal & Socio-Economic Dimensions, Skiathos, Greece, 18–21 June 2013. [Google Scholar]
- Khoshkar, S.; Hammer, M.; Borgström, S.; Balfors, B. Ways Forward for Advancing Ecosystem Services in Municipal Planning—Experiences from Stockholm County. Land 2020, 9, 296. [Google Scholar] [CrossRef]
- Schrade, S.N.; Collomb, N.; Coleman, A. Making GI Count—Tackling Climate Justice and Improving Delivery Using Urban Green Space Factors; Town and Country Planning Association: London, UK, 2021; pp. 385–391. [Google Scholar]
- Ring, Z.; Damyanovic, D.; Reinwald, F. Green and open space factor Vienna: A steering and evaluation tool for urban green infrastructure. Urban For. Urban Green. 2021, 62, 127131. [Google Scholar] [CrossRef]
- Song, B.-H.; Kil, S.-H. Research Trends for Improvement of Biotope Area Index. J. People Plants Environ. 2018, 21, 103–116. [Google Scholar] [CrossRef]
- Bush, J.; Ashley, G.; Foster, B.; Hall, G. Integrating Green Infrastructure into Urban Planning: Developing Melbourne’s Green Factor Tool. Urban Plan. 2021, 6, 20–31. [Google Scholar] [CrossRef]
- Caetano, P.M.D.; Pereira, H.M.S.B.; Figueiredo, L.C.R.; Sepe, P.M.; Giatti, L.L. The City of São Paulo’s Environmental Quota: A Policy to Embrace Urban Environmental Services and Green Infrastructure Inequalities in the Global South. Front. Sustain. Cities 2021, 3, 685875. [Google Scholar] [CrossRef]
- Podhajska, E.; Burszta-Adamiak, E.; Drzeniecka-Osiadacz, A.; Zienowicz, M.; Podhajski, B.; Sawiński, T.; Jasińska, A. Sustainability as a Function of an Area: Application of Multi-Criteria Evaluation in Assessing the Effectiveness of Nature-Based Solutions. Atmosphere 2021, 12, 1464. [Google Scholar] [CrossRef]
- Bulkeley, H.; Naumann, S.; Vojinovic, Z.; Calfapietra, C.; Whiteoak, K.; Freitas, T.; Vandewoestijne, S.; Wild, T. Nature-Based Solutions: State of the Art in EU Funded Projects; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-17334-2. Available online: https://data.europa.eu/doi/10.2777/236007 (accessed on 9 June 2023).
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Nature-Based Solutions. IUCN. Available online: https://iucn.org/our-work/nature-based-solutions (accessed on 9 August 2024).
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- Pauleit, S.; Zölch, T.; Hansen, R.; Randrup, T.; Konijnendijk, C. Nature-Based Solutions and Climate Change—Four Shades of Green. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas. Theory and Practice of Urban Sustainability Transitions; Springer: Cham, Switzerland, 2017; pp. 29–49. ISBN 978-3-319-56091-5. [Google Scholar]
- McPhearson, T.; Andersson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through urban ecosystem services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Chang. Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef]
- Pugliese, F.; Caroppi, G.; Zingraff-Hamed, A.; Lupp, G.; Gerundo, C. Assessment of NBSs effectiveness for flood risk management: The Isar River case study. AQUA J. Water Supply Res. Technol. 2021, 71, 42–61. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Qin, X. A Green Roof Test Bed for Stormwater Management and Reduction of Urban Heat Island Effect in Singapore. Br. J. Environ. Clim. Change 2013, 2, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Marvuglia, A.; Koppelaar, R.; Rugani, B. The effect of green roofs on the reduction of mortality due to heatwaves: Results from the application of a spatial microsimulation model to four European cities. Ecol. Model. 2020, 438, 109351. [Google Scholar] [CrossRef]
- Liu, W.; Engel, B.A.; Feng, Q.; Li, R. Simulating annual runoff retention performance of extensive green roofs: A comparison of four climatic regions in China. J. Hydrol. 2022, 610, 127871. [Google Scholar] [CrossRef]
- Palermo, S.A.; Turco, M.; Principato, F.; Piro, P. Hydrological Effectiveness of an Extensive Green Roof in Mediterranean Climate. Water 2019, 11, 1378. [Google Scholar] [CrossRef]
- Zölch, T.; Henze, L.; Keilholz, P.; Pauleit, S. Regulating urban surface runoff through nature-based solutions—An assessment at the micro-scale. Environ. Res. 2017, 157, 135–144. [Google Scholar] [CrossRef]
- Cortinovis, C.; Olsson, P.; Boke-Olén, N.; Hedlund, K. Scaling up nature-based solutions for climate-change adaptation: Potential and benefits in three European cities. Urban For. Urban Green. 2022, 67, 127450. [Google Scholar] [CrossRef]
- Majidi, A.N.; Vojinovic, Z.; Alves, A.; Weesakul, S.; Sanchez, A.; Boogaard, F.; Kluck, J. Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement. Sustainability 2019, 11, 6361. [Google Scholar] [CrossRef]
- Vojinovic, Z.; Alves, A.; Gómez, J.P.; Weesakul, S.; Keerakamolchai, W.; Meesuk, V.; Sanchez, A. Effectiveness of small- and large-scale Nature-Based Solutions for flood mitigation: The case of Ayutthaya, Thailand. Sci. Total Environ. 2021, 789, 147725. [Google Scholar] [CrossRef]
- Thompson, R.; Tjaden, S.; Tilley, D. Stormwater Retention of an In-Series System Composed of a Green Roof, Constructed Wetland, and Bioretention Cell for a Single-Family Home. J. Sustain. Water Built Environ. 2022, 8, 04021023. [Google Scholar] [CrossRef]
- Zuvela-Aloise, M.; Koch, R.; Buchholz, S.; Früh, B. Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. Clim. Chang. 2016, 135, 425–438. [Google Scholar] [CrossRef]
- Ossola, A.; Jenerette, G.D.; McGrath, A.; Chow, W.; Hughes, L.; Leishman, M.R. Small vegetated patches greatly reduce urban surface temperature during a summer heatwave in Adelaide, Australia. Landsc. Urban Plan. 2021, 209, 104046. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Giannakis, E.; Bruggeman, A.; Poulou, D.; Zoumides, C.; Eliades, M. Linear Parks along Urban Rivers: Perceptions of Thermal Comfort and Climate Change Adaptation in Cyprus. Sustainability 2016, 8, 1023. [Google Scholar] [CrossRef]
- Kacmaz, G. The Biotope Area Factor Method for Sustainable Urban Landscapes: The Cases of the Bornova and Bayraklı Districts, İzmir. J. Int. Environ. Appl. Sci. 2021, 16, 82–90. [Google Scholar]
- Juhola, S. Planning for a green city: The Green Factor tool. Urban For. Urban Green. 2018, 34, 254–258. [Google Scholar] [CrossRef]
- Jang, D.; Kim, H.; Kang, B.K. A basic study on Improvement for Biotops Area Ratio through the Post Evaluation Plan for Outdoor Space of Apartment Housings. KIEAE J. 2010, 10, 91–96. [Google Scholar]
- Yeom, D.; Lee, K.-I. Study on the Improvement of G-SEED Management System. J. Archit. Inst. Korea Plan. Des. 2015, 31, 13–22. [Google Scholar] [CrossRef]
- Da Silva, P.W.S.; Benites, H.S.; Monteiro, L.M.; Duarte, D.H.S. INSTRUMENTOS URBANÍSTICOS PARA INCREMENTO DE VEGETAÇÃO EM ÁREAS URBANAS: Análise comparada a partir da quota ambiental do município de São Paulo. Cad. Zygmunt Bauman 2019, 8, 167–187. Available online: https://periodicoseletronicos.ufma.br/index.php/bauman/article/view/10227 (accessed on 9 August 2024).
- Szulczewska, B.; Giedych, R.; Blaszke, M.; Wójcik-Gront, E.; Nowak, M.; Legutko-Kobus, P. Ratio of Biologically Vital Area in Local Spatial Plans as an Instrument of Green Infrastructure Creation in Single—And Multi-Family Residential in Small and Medium-Sized Towns in Poland. Teka Kom. Urban. Archit. Oddziału Pol. Akad. Nauk Krakowie 2022, L, 189–201. [Google Scholar]
- Riktlinjer för Grönytefaktor (Guidelines for the Green Space Factor), Malmö Stad, 2014, Stadsbyggnadskontoret Godkänd av Stadsbyggnadsnämnden 2014. Available online: https://malmo.se/download/18.2b036ae717c5447e582895b/1637596358956/Gr%C3%B6nytefaktordec+2014.pdf (accessed on 15 July 2024).
- Norm for Vegetasjon og Vannhåndtering—Blågrønn Factor (Norm for Vegetation and Water Management—Blue-Green Factor), Oslo, 2023; Plan-og Bygningsetaten: Oslo, Norway, 2023.
- Rozporządzenie Ministra Rozwoju i Technologii z dnia 8 Grudnia 2023 r. w Sprawie Projektu Planu Ogólnego Gminy, Dokumentowania Prac Planistycznych w Zakresie tego Planu oraz Wydawania z Niego Wypisów i Wyrysów (Ordinance of the Minister of Development and Technology of 8 December 2023 on the Draft General Plan of a Municipality, the Documentation of Planning Work for This Plan and the Issuing of Extracts from It). 2023. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20230002758/O/D20232758.pdf (accessed on 15 July 2024).
- Lenhart, J.; Fitzgerald, J. Eco-Districts as a Transition Pathway to Low-Carbon Cities. In Creating Low Carbon Cities; Dhakal, S., Ruth, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 187–199. ISBN 978-3-319-49730-3. [Google Scholar]
- Horvath, P.; Barton, D.N.; Hauglin, E.A.; Ellefsen, H.W. Blue-Green Factor (BGF) Mapping in QGIS. User Guide and Documentation; Norsk Institutt for Naturforskning (NINA): Trondheim, Norway, 2017; ISBN 978-82-426-3176-3. [Google Scholar]
- Irsalina, N.; Gamal, A. Urban Planning Simulation Game and the Development of Spatial Competence Urban Planning Simulation Game and the Development of Spatial Competence. IOP Conf. Ser. Earth Environ. Sci. 2019, 396, 012016. [Google Scholar]
- Sousa, M.; Antunes, A.P.; Pinto, N.; Zagalo, N. Serious Games in Spatial Planning: Strengths, Limitations and Support Frameworks. Int. J. Serious Games 2022, 9, 115–133. [Google Scholar] [CrossRef]
- Game|Projekt CoAdapt—Communities for Climate Change Action. Available online: https://coadapt.pl/en/game/ (accessed on 9 August 2024).
- Kántor, N.; Kovács, A.; Takács, Á. Small-scale human-biometeorological impacts of shading by a large tree. Open Geosci. 2016, 8, 231–245. [Google Scholar] [CrossRef]
- Srivanit, M.; Hokao, K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build. Environ. 2013, 66, 158–172. [Google Scholar] [CrossRef]
- Gillner, S.; Vogt, J.; Tharang, A.; Dettmann, S.; Roloff, A. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landsc. Urban Plan. 2015, 143, 33–42. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Edmondson, J.L.; Stott, I.; Davies, Z.G.; Gaston, K.J.; Leake, J.R. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Sci. Rep. 2016, 6, 33708. [Google Scholar] [CrossRef]
- Kalkulator Korzyści z Drzew (Trees Benefits Calculator). Available online: https://www.omnicalculator.com/pl/ekologia/korzysci-z-drzew (accessed on 10 June 2024).
- National Database of Topographic Objects. Available online: https://bdot10k.geoportal.gov.pl/ (accessed on 15 June 2024).
- Warsaw City Map Service. Available online: https://mapa.um.warszawa.pl/en/index.html (accessed on 15 June 2024).
- Ilu Nas Jest? A Ilu Będzie? Raporty z Planowania WARSZAWY (How Many of Us Are There, and How Many Will There Be? Warsaw Planning Reports). Available online: https://architektura.um.warszawa.pl/documents/12025039/21022710/RAPORT_Z_PROJEKTOWANIA_WARSZAWY_CZ1_Ilu_nas_jest_a_Ilu_nas_b%C4%99dzie.pdf/68b51821-af6f-ec1c-586e-279eea2fc9ce?t=1619802121397 (accessed on 15 July 2024).
- Podstawowe Informacje o Mieszkalnictwie w Polsce—Ministerstwo Rozwoju i Technologii—Portal Gov.pl. Available online: https://www.gov.pl/web/rozwoj-technologia/podstawowe-informacje-o-mieszkalnictwie-w-polsce (accessed on 9 August 2024).
- Warszawa Ukośna. Available online: https://ukosne.um.warszawa.pl/ (accessed on 9 August 2024).
- Błażejczyk, A.; Błażejczyk, K.; Degórska, B.; Dudek, W.; Kręcisz, B.; Kuchcik, M.; Milewski, P.; Pałczyński, C.; Szmyd, J. (Eds.) Miejska Wyspa Ciepła w Warszawie: Uwarunkowania Klimatyczne i Urbanistyczne; Wydawnictwo Akademickie Sedno: Instytut Geografii i Przestrzennego Zagospodarowania PAN: Warszawa, Poland, 2014; ISBN 978-83-7963-018-9. [Google Scholar]
- Kuchcik, M.; Milewski, P. Miejska wyspa ciepła w Warszawie—Próba oceny z wykorzystaniem Local Climate Zones. Acta Geogr. Lodz. 2016, 104, 21–33. [Google Scholar]
- Barszcz, M. Zastosowanie modelu SWMM do prognozy przepływów prawdopodobnych w zlewni miejskiej. Przegląd Nauk. Inż. Kształt. Śr. 2015, 2015, 209–223. [Google Scholar]
- Peroni, F.; Pristeri, G.; Codato, D.; Pappalardo, S.E.; De Marchi, M. Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy. Sustainability 2020, 12, 150. [Google Scholar] [CrossRef]
- Son, D.P. The preliminary study for the introduction of biotope area ratio in renewal project area: Focused on cost-effectiveness analysis. J. Korea Plan. Assoc. 2015, 50, 109–122. [Google Scholar] [CrossRef]
Characteristics | RBVA | MGF | OGF |
---|---|---|---|
Weighting Factors | |||
Components of the index calculated by area occupied | |||
Vegetation on the ground | 1.0 | 1.0 | 1.0–1.4 |
Vegetation on underground constructions | - | 0.6–0.8 | - |
Green roofs | 0.5 | 0.8 | 0.3–0.9 |
Green walls | - | 0.7 | 0.3–0.6 |
Open water | 1.0 | 1.0 | 3.0 |
Retention basins | - | - | 1.0 |
Sealed surfaces runoff to green areas | - | 0.2 | 0.2 |
Permeable pavements | - | 0.2–0.4 | 0.2–0.4 |
Components of the index calculated in area per piece | |||
Trees | - | 0.4 1 | 1.0 2 |
Shrubs | - | 0.2 3 | - |
Constant variable counted, if any, for the area | |||
Vegetation and water management | - | - | 0.05–0.15 |
Minimal target value | 0.2–0.5 | 0.5–0.6 | 0.7–0.8 |
NbS Categories | “Neighbourhood with Climate” Game Menu | RBVA | MGF | OGF |
---|---|---|---|---|
Areas covered by vegetation on the ground | ☐ | ☐ | ☐ | |
Large trees | ☐ | ☐ | ||
Medium trees | ☐ | ☐ 1 | ☐ | |
Small trees | ☐ | ☐ | ||
Shrubs | ☐ | ☐ 2 | ☐ 3 | |
Unmown lawn | ☐ | ☐ | ||
Mown lawn | ☐ | ☐ | ||
Groundcovers | ☐ | ☐ | ||
Retention pond | ☐ | ☐ | ☐ | ☐ |
Infiltration basin | ☐ | ☐ | ||
Rainwater harvesting | ☐ | ☐ | ||
Green facades | ☐ | ☐ | ☐ | |
Green walls | ☐ | ☐ | ||
Green roofs 4 | ☐ | ☐ | ☐ | ☐ |
Permeable pavement 5 | ☐ | ☐ | ☐ | |
Reinforced lawn | ☐ | ☐ |
Land Cover Categories | Area (m2) | Share in a Total Housing Estate Area (%) |
---|---|---|
Buildings | 4441.57 | 22.37 |
Impervious surfaces | 7026.34 | 35.39 |
Greenery | 8387.65 | 42.24 |
Total area | 19,855.56 | 100.00 |
RBVA | MGF | OGF | |
---|---|---|---|
Spatial planning requirements | Min. 30% | Min. 0.6 | Min. 0.8 |
Existing state | 42.24% | 0.42 | 0.6 |
“Neighbourhood with Climate” Game Menu | Existing State | MGF1 (Miscellaneous) | MGF2 (Vegetation on the Ground, Pavements) | MGF3 (Vegetation on Buildings) | OGF1 (Miscellaneous) | OGF2 (Vegetation on Ground) | OGF3 (Vegetation on Buildings) |
---|---|---|---|---|---|---|---|
Large trees | - | NA | NA | NA | 8 | 89 | - |
Medium trees | - | 12 | 89 | - | - | - | - |
Small trees | 38 | NA | NA | NA | 38 | 38 | 38 |
Shrubs | 1413 m2 | - | 1000 m2 | - | 1413 m2 | 2413 m2 | 1413 m2 |
Mown lawn | 8300 m2 | NA | NA | NA | 8300 m2 | 8300 m2 | 8300 m2 |
Retention pond | - | 30 m2 | - | - | - | - | - |
Rainwater harvesting | - | NA | NA | NA | 20 barrels | - | - |
Green facades | - | 4896 m2 (on 8 buildings) | - | 1836 m2 (on 3 buildings) | 2448 m2 (on 4 buildings) | - | - |
Green walls | - | NA | NA | NA | 2448 m2 (on 4 buildings) | - | 4896 m2 (on 8 buildings) |
Green roofs | - | - | 3200 m2 (on 8 buildings) | 1200 m2 (on 3 buildings) | - | 3900 m2 (on 9 buildings) | |
Permeable pavement | - | - | 4000 m2 | - | - | - | - |
Reinforced lawn | 88 m2 | NA | NA | NA | 88 m2 | 88 m2 | 88 m2 |
Index value | 0.6 | 0.6 | 0.61 | 0.8 | 0.8 | 0.8 |
Existing State | MGF1 | MGF2 | MGF3 | OGF1 | OGF2 | OGF3 | |
---|---|---|---|---|---|---|---|
temperature (°C) | 20.15 | 20.04 | 19.92 | 19.84 | 19.8 | 19.08 | 19.76 |
oxygen production (kg) | 770,480.5 | 843,024.4 | 2,094,981 | 964,531.7 | 1,009,858 | 2,871,481 | 1,045,389 |
CO2 sequestration (kg) | 91,649.79 | 93,588.55 | 166,669.8 | 99,139.92 | 102,353 | 217,709.8 | 100,828 |
water harvesting (l) | 0 | 267.84 | 0 | 793.93 | 2860.35 | 0 | 1007.46 |
biodiversity | 1.52 | 1.8 | 1.74 | 1.85 | 1.83 | 1.88 | 1.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giedych, R.; Maksymiuk, G.; Cieszewska, A. Eco-Spatial Indices as an Effective Tool for Climate Change Adaptation in Residential Neighbourhoods—Comparative Study. Land 2024, 13, 1492. https://doi.org/10.3390/land13091492
Giedych R, Maksymiuk G, Cieszewska A. Eco-Spatial Indices as an Effective Tool for Climate Change Adaptation in Residential Neighbourhoods—Comparative Study. Land. 2024; 13(9):1492. https://doi.org/10.3390/land13091492
Chicago/Turabian StyleGiedych, Renata, Gabriela Maksymiuk, and Agata Cieszewska. 2024. "Eco-Spatial Indices as an Effective Tool for Climate Change Adaptation in Residential Neighbourhoods—Comparative Study" Land 13, no. 9: 1492. https://doi.org/10.3390/land13091492
APA StyleGiedych, R., Maksymiuk, G., & Cieszewska, A. (2024). Eco-Spatial Indices as an Effective Tool for Climate Change Adaptation in Residential Neighbourhoods—Comparative Study. Land, 13(9), 1492. https://doi.org/10.3390/land13091492