Impact of Typical Land Use Expansion Induced by Ecological Restoration and Protection Projects on Landscape Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Setting
2.2. Data Source
2.3. Landscape Pattern Analysis
2.4. Identification of Typical Landscape Expansion
2.5. Spatial Autocorrelation Analysis Method
2.6. Global Linear Regression Model
2.7. Geographically Weighted Regression Model
2.8. Software and Code
3. Results and Analysis
3.1. Temporal and Spatial Changes of Land Use/Cover
3.2. Expansion Analysis of Typical Land Use Types
3.3. Evolution of Landscape Patterns
- For landscape fragmentation, we analyzed three indicators: PD, DIVISION, and MPS. The trends of PD and DIVISION were similar, while PD and MPS showed opposite trends. Figure 5 illustrates the changes in PD and MPS. The patch density initially decreased, then increased, and decreased again, with patch size showing the opposite pattern. In 2018, fragmentation intensified, but by 2021, it had reduced and was lower than the initial level.
- For landscape connectivity, we used four indicators: CONTAG, CONTIG_AM, CONNECT, and AI. Their overall trends were similar, and Figure 5 displays the trends of CONTAG and AI. From 2018 to 2020, these indicators significantly declined, but they increased in 2021. This suggests a reduction in landscape fragmentation, decreased spatial dispersion of land types, improved connectivity, and the phenomenon of landscape reconnection, indicating ecosystem restoration and reconstruction.
- For landscape complexity, we analyzed the FRAC_AM and the LSI. Both indicators showed consistent trends, which were opposite to those of connectivity at various stages. The initial decrease likely indicated irregular and fragmented landscape structures. The mid-period increase reflected the landscape reshaping under ecological projects, aiding in ecosystem functionality reconstruction. The subsequent decrease indicated some form of disturbance, followed by ecosystem recovery as it adapted to the disturbance.
- For landscape heterogeneity, the SHDI and the SIDI showed similar trends, which were also similar to those of complexity. This indicates that the implementation of ecological restoration and protection projects had a similar impact on heterogeneity.
- For landscape dominance, the LPI index declined after 2018, indicating significant changes in landscape dominance. This change, combined with land use variations, suggests a reduction in dominant patches such as farmland and forest land, leading to landscape structure changes. The subsequent rise indicates a gradual recovery, but not to the 2017 level.
3.4. Spatial Autocorrelation Analysis
3.5. Model Construction and Analysis
4. Discussion
4.1. The Significant Impact of Ecological Restoration and Protection Projects on the Lesser Khingan Mountains–Sanjiang Plain Area
4.2. Spatial Correlation Differences between the Expansion of Typical Land Types and the Evolution of Landscape Patterns
4.3. Limitations and Prospects of the Current Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rindfuss, R.R.; Walsh, S.J.; Turner, B.L.; Fox, J.; Mishra, V. Developing a science of land change: Challenges and methodological issues. Proc. Natl. Acad. Sci. USA 2004, 101, 13976–13981. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Beilin, R.; Lindborg, R.; Stenseke, M.; Pereira, H.M.; Llausàs, A.; Slätmo, E.; Cerqueira, Y.; Navarro, L.; Rodrigues, P.; Reichelt, N.; et al. Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy 2014, 36, 60–72. [Google Scholar] [CrossRef]
- Plieninger, T.; Draux, H.; Fagerholm, N.; Bieling, C.; Bürgi, M.; Kizos, T.; Kuemmerle, T.; Primdahl, J.; Verburg, P.H. The driving forces of landscape change in Europe: A systematic review of the evidence. Land Use Policy 2016, 57, 204–214. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.-H.; Hertel, T.W. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2012, 3, 385–390. [Google Scholar] [CrossRef]
- Mooney, H.A.; Duraiappah, A.; Larigauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. USA 2013, 110, 3665–3672. [Google Scholar] [CrossRef]
- Porter, J.R. GLP Science Plan and Implementation Strategy; IGPB Report No. 53/IHDP Report No. 19; University of Copenhagen: Copenhagen, Denmark, 2005. [Google Scholar]
- Garcia-Ayllon, S. Urban transformations as indicators of economic change in post-communist Eastern Europe: Territorial diagnosis through five case studies. Habitat Int. 2018, 71, 29–37. [Google Scholar] [CrossRef]
- Tamm, O.; Maasikamäe, S.; Padari, A.; Tamm, T. Modelling the effects of land use and climate change on the water resources in the eastern Baltic Sea region using the SWAT model. Catena 2018, 167, 78–89. [Google Scholar] [CrossRef]
- Bohlen, S.R.; Halley, R.B.; Hickman, S.H.; Johnson, S.Y.; Lowenstern, J.B.; Muhs, D.R.; Plumlee, G.S.; Thompson, G.A.; Trauger, D.L.; Zoback, M.L. Geology for a Changing World: A Science Strategy for the Geologic Division of the U.S. Geological Survey, 2000–2010; U.S. Government Publishing Office: Washington, DC, USA, 1998. [Google Scholar] [CrossRef]
- Costanza, J.K.; Watling, J.; Sutherland, R.; Belyea, C.; Dilkina, B.; Cayton, H.; Bucklin, D.; Romañach, S.S.; Haddad, N.M. Preserving connectivity under climate and land-use change: No one-size-fits-all approach for focal species in similar habitats. Biol. Conserv. 2020, 248, 108678. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Su, C.; Forsius, M. Linking ecosystem processes and ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 4–10. [Google Scholar] [CrossRef]
- Pereira, P.; Barceló, D.; Panagos, P. Soil and water threats in a changing environment. Environ. Res. 2020, 186, 109501. [Google Scholar] [CrossRef] [PubMed]
- Lyu, R.; Zhang, J.; Xu, M.; Li, J. Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy 2018, 77, 163–173. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future scenarios impact on land use change and habitat quality in Lithuania. Environ. Res. 2021, 197, 111101. [Google Scholar] [CrossRef] [PubMed]
- Braat, L.C. The Cost of Policy Inaction: The Case of Not Meeting the 2010 Biodiversity Target; Wageningen University & Research: Wageningen, The Netherlands, 2008. [Google Scholar]
- Yang, D.; Zhang, P.; Jiang, L.; Zhang, Y.; Liu, Z.; Rong, T. Spatial change and scale dependence of built-up land expansion and landscape pattern evolution—Case study of affected area of the lower Yellow River. Ecol. Indic. 2022, 141, 109123. [Google Scholar] [CrossRef]
- Golden, S.H. The perils of intersectionality: Racial and sexual harassment in medicine. J. Clin. Investig. 2019, 129, 3465–3467. [Google Scholar] [CrossRef]
- Rudge, M.L.M.; Levick, S.R.; Bartolo, R.E.; Erskine, P.D. Developing landscape-scale forest restoration targets that embrace spatial pattern. Landsc. Ecol. 2022, 37, 1747–1760. [Google Scholar] [CrossRef]
- Wu, Z.; Xiong, K.; Zhu, D.; Xiao, J. Revelation of Coupled Ecosystem Quality and Landscape Patterns for Agroforestry Ecosystem Services Sustainability Improvement in the Karst Desertification Control. Agriculture 2022, 13, 43. [Google Scholar] [CrossRef]
- Gilman, J.; Wu, J. The interactions among landscape pattern, climate change, and ecosystem services: Progress and prospects. Reg. Environ. Chang. 2023, 23, 67. [Google Scholar] [CrossRef]
- Bhatta, B.; Saraswati, S.; Bandyopadhyay, D. Quantifying the degree-of-freedom, degree-of-sprawl, and degree-of-goodness of urban growth from remote sensing data. Appl. Geogr. 2010, 30, 96–111. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Jiao, L.; Mao, L.; Liu, Y. Multi-order Landscape Expansion Index: Characterizing urban expansion dynamics. Landsc. Urban Plan. 2015, 137, 30–39. [Google Scholar] [CrossRef]
- Zhu, B.; Zhu, X.; Zhang, R.; Zhao, X. Study of Multiple Land Use Planning Based on the Coordinated Development of Wetland Farmland: A Case Study of Fuyuan City, China. Sustainability 2019, 11, 271. [Google Scholar] [CrossRef]
- Assefa, W.W.; Eneyew, B.G.; Wondie, A. The driving forces of wetland degradation in Bure and Wonberma Woredas, Upper Blue Nile basin, Ethiopia. Environ. Monit. Assess. 2022, 194, 838. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, L.; Li, X.; Ai, B.; Li, S.; He, Z. Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata. Int. J. Geogr. Inf. Sci. 2013, 28, 148–163. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Shi, X.; Zhang, X.; Chen, Y. Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. Int. J. Geogr. Inf. Sci. 2010, 24, 783–802. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Yan, S.; Wang, R.; Zhang, B.; Liang, X.; Shao, J.a. Transformation of land use and landscape pattern in global mountains: Based on local and regional knowledge. Environ. Earth Sci. 2023, 82, 500. [Google Scholar] [CrossRef]
- Gong, J.; Jiang, C.; Chen, W.; Chen, X.; Liu, Y. Spatiotemporal dynamics in the cultivated and built-up land of Guangzhou: Insights from zoning. Habitat Int. 2018, 82, 104–112. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Chen, Y.; Tan, Z.; Li, S.; Ai, B. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc. Ecol. 2010, 25, 671–682. [Google Scholar] [CrossRef]
- Chettry, V. A Critical Review of Urban Sprawl Studies. J. Geovis. Spat. Anal. 2023, 7, 28. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, F.; Qiu, B. Deciphering the Evolution, Frontier, and Knowledge Clustering in Sustainable City Planning: A 60-Year Interdisciplinary Review. Sustainability 2023, 15, 16854. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, C.; Wang, G.; Bao, S. An integrated sustainable development approach to modeling the eco-environmental effects from urbanization. Ecol. Indic. 2011, 11, 1599–1608. [Google Scholar] [CrossRef]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Alberti, M.; Waddell, P. An integrated urban development and ecological simulation model. Integr. Assess. 2000, 1, 215–227. [Google Scholar] [CrossRef]
- Matsushita, B.; Xu, M.; Fukushima, T. Characterizing the changes in landscape structure in the Lake Kasumigaura Basin, Japan using a high-quality GIS dataset. Landsc. Urban Plan. 2006, 78, 241–250. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Dai, L.; Li, S.; Lewis, B.J.; Wu, J.; Yu, D.; Zhou, W.; Zhou, L.; Wu, S. The influence of land use change on the spatial–temporal variability of habitat quality between 1990 and 2010 in Northeast China. J. For. Res. 2018, 30, 2227–2236. [Google Scholar] [CrossRef]
- Xu, J.; Xie, G.; Xiao, Y.; Li, N.; Yu, F.; Pei, S.; Jiang, Y. Dynamic Analysis of Ecological Environment Quality Combined with Water Conservation Changes in National Key Ecological Function Areas in China. Sustainability 2018, 10, 1202. [Google Scholar] [CrossRef]
- Liao, Z.; Su, K.; Jiang, X.; Zhou, X.; Yu, Z.; Chen, Z.; Wei, C.; Zhang, Y.; Wang, L. Ecosystem and Driving Force Evaluation of Northeast Forest Belt. Land 2022, 11, 1306. [Google Scholar] [CrossRef]
- Gao, F.; Yang, W.; Zhang, S.; Xin, X.; Zhou, J.; Du, G. An Integrated Approach to Constructing Ecological Security Pattern in an Urbanization and Agricultural Intensification Area in Northeast China. Land 2023, 12, 330. [Google Scholar] [CrossRef]
- Sui, L.; Yan, Z.; Li, K.; Wang, C.; Shi, Y.; Du, Y. Prediction of ecological security network in Northeast China based on landscape ecological risk. Ecol. Indic. 2024, 160, 111783. [Google Scholar] [CrossRef]
- Pearson, D.M. The application of local measures of spatial autocorrelation for describing pattern in north Australian landscapes. J. Environ. Manag. 2002, 64, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Mishra, U.; Lal, R.; Liu, D.; Van Meirvenne, M. Predicting the Spatial Variation of the Soil Organic Carbon Pool at a Regional Scale. Soil Sci. Soc. Am. J. 2010, 74, 906–914. [Google Scholar] [CrossRef]
- Karimi, F.; Sultana, S.; Shirzadi Babakan, A.; Suthaharan, S. An enhanced support vector machine model for urban expansion prediction. Comput. Environ. Urban Syst. 2019, 75, 61–75. [Google Scholar] [CrossRef]
- Domingo, D.; Palka, G.; Hersperger, A.M. Effect of zoning plans on urban land-use change: A multi-scenario simulation for supporting sustainable urban growth. Sustain. Cities Soc. 2021, 69, 102833. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 2010, 28, 281–298. [Google Scholar] [CrossRef]
- McGarigal, K.; Plunkett, E.B.; Willey, L.L.; Compton, B.W.; DeLuca, W.V.; Grand, J. Modeling non-stationary urban growth: The SPRAWL model and the ecological impacts of development. Landsc. Urban Plan. 2018, 177, 178–190. [Google Scholar] [CrossRef]
- Georganos, S.; Abdi, A.M.; Tenenbaum, D.E.; Kalogirou, S. Examining the NDVI-rainfall relationship in the semi-arid Sahel using geographically weighted regression. J. Arid Environ. 2017, 146, 64–74. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.L.R.; Weaver, R. Global and Local Modeling of Land Use Change in the Border Cities of Laredo, Texas, USA and Nuevo Laredo, Tamaulipas, Mexico: A Comparative Analysis. Land 2020, 9, 347. [Google Scholar] [CrossRef]
- Dong, R.; Yan, F. Revealing Characteristics of the Spatial Structure of Megacities at Multiple Scales with Jobs-Housing Big Data: A Case Study of Tianjin, China. Land 2021, 10, 1144. [Google Scholar] [CrossRef]
- Eerens, H.; Dong, Q.; Ozer, P.; Li, X. A field-based crop and land use map over Sanjiang plain in Heilongjiang derived from multi-temporal imagery of Landsat7-ETM+. Cybergeo 2003, 247, 4020. [Google Scholar] [CrossRef]
- Guilan, Z. Changes of Soil Labile Organic Carbon in Different Land Uses in Sanjiang Plain, Heilongjiang Province. Chin. Geogr. Sci. 2010, 20, 139–143. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; Volume 10, pp. 4704–4707. [Google Scholar] [CrossRef]
- Plexida, S.G.; Sfougaris, A.I.; Ispikoudis, I.P.; Papanastasis, V.P. Selecting landscape metrics as indicators of spatial heterogeneity—A comparison among Greek landscapes. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 26–35. [Google Scholar] [CrossRef]
- Gustafson, E.J. Minireview: Quantifying Landscape Spatial Pattern: What Is the State of the Art? Ecosystems 1998, 1, 143–156. [Google Scholar] [CrossRef]
- Su, S.; Wang, Y.; Luo, F.; Mai, G.; Pu, J. Peri-urban vegetated landscape pattern changes in relation to socioeconomic development. Ecol. Indic. 2014, 46, 477–486. [Google Scholar] [CrossRef]
- Cheung, A.K.L.; Brierley, G.; O’Sullivan, D. Landscape structure and dynamics on the Qinghai-Tibetan Plateau. Ecol. Model. 2016, 339, 7–22. [Google Scholar] [CrossRef]
- Slager, C.T.J.; de Vries, B. Landscape generator: Method to generate landscape configurations for spatial plan-making. Comput. Environ. Urban Syst. 2013, 39, 1–11. [Google Scholar] [CrossRef]
- Geri, F.; Amici, V.; Rocchini, D. Human activity impact on the heterogeneity of a Mediterranean landscape. Appl. Geogr. 2010, 30, 370–379. [Google Scholar] [CrossRef]
- Lausch, A. Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecol. Indic. 2002, 2, 3–15. [Google Scholar] [CrossRef]
- Cabral, A.I.R.; Costa, F.L. Land cover changes and landscape pattern dynamics in Senegal and Guinea Bissau borderland. Appl. Geogr. 2017, 82, 115–128. [Google Scholar] [CrossRef]
- Mcgarigal, K.S.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. 2002. Available online: www.fragstats.org/index.php/documentation (accessed on 1 August 2024).
- Liu, X.; Li, X.; Chen, Y.; Qin, Y.; Li, S.; Chen, M. Landscape Expansion Index and Its Applications to Quantitative Analysis of Urban Expansion. Acta Geogr. Sin. 2009, 64, 1430–1438. [Google Scholar] [CrossRef]
- Dray, S.; Pélissier, R.; Couteron, P.; Fortin, M.J.; Legendre, P.; Peres-Neto, P.R.; Bellier, E.; Bivand, R.; Blanchet, F.G.; De Cáceres, M.; et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 2012, 82, 257–275. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 2010, 27, 93–115. [Google Scholar] [CrossRef]
- Golub, G.H.; Van Loan, C.F. An Analysis of the Total Least Squares Problem. SIAM J. Numer. Anal. 1980, 17, 883–893. [Google Scholar] [CrossRef]
- Bergen, S.; Sheppard, L.; Sampson, P.D.; Kim, S.-Y.; Richards, M.; Vedal, S.; Kaufman, J.D.; Szpiro, A.A. A National Prediction Model for PM2.5Component Exposures and Measurement Error–Corrected Health Effect Inference. Environ. Health Perspect. 2013, 121, 1017–1025. [Google Scholar] [CrossRef]
- Song, X.; Mi, N.; Mi, W.; Li, L. Spatial non-stationary characteristics between grass yield and its influencing factors in the Ningxia temperate grasslands based on a mixed geographically weighted regression model. J. Geogr. Sci. 2022, 32, 1076–1102. [Google Scholar] [CrossRef]
- Borja, M.C. An Introduction to Generalized Linear Models. J. R. Stat. Soc. Ser. A Stat. Soc. 2009, 172, 695–696. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environ. Plan. A Econ. Space 2016, 30, 1905–1927. [Google Scholar] [CrossRef]
- Qin, Y.; Ren, G.; Huang, Y.; Zhang, P.; Wen, K. Application of geographically weighted regression model in the estimation of surface air temperature lapse rate. J. Geogr. Sci. 2021, 31, 389–402. [Google Scholar] [CrossRef]
- Yan, K.; Wang, W.; Li, Y.; Wang, X.; Jin, J.; Jiang, J.; Yang, H.; Wang, L. Identifying priority conservation areas based on ecosystem services change driven by Natural Forest Protection Project in Qinghai province, China. J. Clean. Prod. 2022, 362, 132453. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, W.; Wei, H.; Zhang, P.; Ren, J.; Gao, Z.; Ulgiati, S.; Kong, W.; Dong, X. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the Manas River Basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Li, R.; Li, Y.; Li, B.; Fu, D. Landscape change patterns at three stages of the construction and operation of the TGP. Sci. Rep. 2021, 11, 9288. [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Yanxu, L.; Yi’na, H. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Liu, M.; Xu, Y.; Hu, Y.; Li, C.; Sun, F.; Chen, T. A century of the evolution of the urban area in Shenyang, China. PLoS ONE 2014, 9, e98847. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Wu, J. Quantifying the speed, growth modes, and landscape pattern changes of urbanization: A hierarchical patch dynamics approach. Landsc. Ecol. 2013, 28, 1875–1888. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Quantifying landscape pattern and ecosystem service value changes in four rapidly urbanizing hill stations of Southeast Asia. Landsc. Ecol. 2016, 31, 1481–1507. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sandoval, J.S.O.; Maimaitiyiming, M. Drivers of land cover and land use changes in St. Louis metropolitan area over the past 40 years characterized by remote sensing and census population data. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 161–174. [Google Scholar] [CrossRef]
- Du, S.; Wang, Q.; Guo, L. Spatially varying relationships between land-cover change and driving factors at multiple sampling scales. J. Environ. Manag. 2014, 137, 101–110. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.; Zhou, S.; Zhou, J.; Jiang, S.; Zhang, Y.; Feng, T.; Zhang, H.; Zhao, Y.; Lai, Z.; et al. Spatial-temporal patterns of urban expansion by land use/land cover transfer in China. Ecol. Indic. 2023, 155, 111009. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Y.; Zhao, J.; Shen, Y.; Pei, H.; Zhang, H.; Li, Y. Revegetation projects significantly improved ecosystem service values in the agro-pastoral ecotone of northern China in recent 20 years. Sci. Total Environ. 2021, 788, 147756. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Peng, L.; Liu, S.; Wang, Q. Spatio-temporal pattern of net primary productivity in Hengduan Mountains area, China: Impacts of climate change and human activities. Chin. Geogr. Sci. 2017, 27, 948–962. [Google Scholar] [CrossRef]
- Huston, M.A. Local Processes and Regional Patterns: Appropriate Scales for Understanding Variation in the Diversity of Plants and Animals. Oikos 1999, 86, 393. [Google Scholar] [CrossRef]
- Jiang, L.; Deng, X.; Seto, K.C. Multi-level modeling of urban expansion and cultivated land conversion for urban hotspot counties in China. Landsc. Urban Plan. 2012, 108, 131–139. [Google Scholar] [CrossRef]
- Jiang, L.; Deng, X.; Seto, K.C. The impact of urban expansion on agricultural land use intensity in China. Land Use Policy 2013, 35, 33–39. [Google Scholar] [CrossRef]
- Zhou, T.; Ke, X. Which Should be Conserved According to Priority During Urban Expansion? Ecological Lands or Farmland? Environ. Manag. 2021, 67, 81–90. [Google Scholar] [CrossRef]
- Dai, K.; Shen, S.; Cheng, C.; Ye, S.; Gao, P. Trade-Off Relationship of Arable and Ecological Land in Urban Growth When Altering Urban Form: A Case Study of Shenzhen, China. Sustainability 2020, 12, 10041. [Google Scholar] [CrossRef]
- Zhao, F.; Li, H.; Li, C.; Cai, Y.; Wang, X.; Liu, Q. Analyzing the influence of landscape pattern change on ecological water requirements in an arid/semiarid region of China. J. Hydrol. 2019, 578, 124098. [Google Scholar] [CrossRef]
- Lu, W.; Qin, Z.; Yang, S. Heterogeneity effects of environmental regulation policy synergy on ecological resilience: Considering the moderating role of industrial structure. Environ. Sci. Pollut. Res. 2024, 31, 8566–8584. [Google Scholar] [CrossRef] [PubMed]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Xiao, Y.; Kou, X.; Sang, W. Sustainable land use scenarios generated by optimizing ecosystem distribution based on temporal and spatial patterns of ecosystem services in the southern China hilly region. Ecol. Inform. 2023, 78, 102275. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Ito, A.; Takahashi, K.; Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 2017, 580, 787–796. [Google Scholar] [CrossRef]
Moran’s I | Z Value | p-Value | |
---|---|---|---|
FAEI | 0.34356 | 126.3333 | <0.001 |
AFEI | 0.39680 | 105.1409 | <0.001 |
Residual Standard Error | R2 | Adjusted R2 | p-Value | |
---|---|---|---|---|
DIVISION | 0.003057 | 0.9712 | 0.9548 | 1.778 × 10−5 |
AI | 0.000326 | 0.9746 | 0.9600 | 1.159 × 10−5 |
LSI | 0.016820 | 0.9773 | 0.9643 | 7.837 × 10−6 |
SHDI | 0.000243 | 0.9999 | 0.9999 | 3.979 × 10−15 |
LPI | 0.006479 | 0.9805 | 0.9693 | 4.612 × 10−6 |
Equation | p-Value | |
---|---|---|
DIVISION | DIVISION = exp(8.68580 + 0.01037 × log(Water) + 0.03421 × log(Trees) − 0.77126 × log(Cropland) −0.05492 × log(Built)) | 0.000 ** |
AI | AI = exp(2.075898+0.023982 × log(Water)−0.013259 × log(Trees) + 0.187436 × log(Cropland) + 0.034130 × log(Built) | 0.000 ** |
LSI | LSI = exp(144.3428 − 1.3775 × log(Water) + 0.9147 × log(Trees) − 10.5208 × log(Cropland) − 1.9298 × log(Built)) | 0.000 ** |
SHDI | SHDI = exp(22.83 − 0.00618 × log(Water) − 0.61012 × log(Trees) − 1.39922 × log(Cropland) + 0.04955 × log(Built)) | 0.000 ** |
LPI | LPI = exp(−18.76 + 0.09 × log(Water) − 0.59 × log(Trees) + 2.47 × log(Cropland) − 0.03 × log(Built)) | 0.000 ** |
Parameters | DIVISION | AI | LSI | SHDI | LPI |
---|---|---|---|---|---|
Bandwidth | 17,122.0358 | 17,122.0358 | 17,122.0358 | 17,122.0358 | 17,122.0358 |
AICc | 891,516.9556 | 79,026.4133 | 405,217.2804 | 2,249,135.4451 | −484,923.7670 |
Residual sum of squares | 9.1104 × 1018 | 34,580.8717 | 21,297,093,238.9908 | 1.13654 × 1043 | 45,025.9119 |
R2 | 0.4879 | 0.4986 | 0.2467 | 0.2851 | 0.2299 |
Adjusted R2 | 0.4711 | 0.4822 | 0.2221 | 0.2617 | 0.2046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, X.; Zhao, J.; Sang, W. Impact of Typical Land Use Expansion Induced by Ecological Restoration and Protection Projects on Landscape Patterns. Land 2024, 13, 1513. https://doi.org/10.3390/land13091513
Kou X, Zhao J, Sang W. Impact of Typical Land Use Expansion Induced by Ecological Restoration and Protection Projects on Landscape Patterns. Land. 2024; 13(9):1513. https://doi.org/10.3390/land13091513
Chicago/Turabian StyleKou, Xuyang, Jinqi Zhao, and Weiguo Sang. 2024. "Impact of Typical Land Use Expansion Induced by Ecological Restoration and Protection Projects on Landscape Patterns" Land 13, no. 9: 1513. https://doi.org/10.3390/land13091513
APA StyleKou, X., Zhao, J., & Sang, W. (2024). Impact of Typical Land Use Expansion Induced by Ecological Restoration and Protection Projects on Landscape Patterns. Land, 13(9), 1513. https://doi.org/10.3390/land13091513