Integrated Evaluation of the Ecological Security Pattern in Central Beijing Using InVEST, MSPA, and Multifactor Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Research Methodology
2.3.1. Identification of Ecological Sources
- (1)
- ESP Evaluation Based on InVEST
- (2)
- Landscape Pattern Analysis based on MSPA
2.3.2. Construction of Resistance Surface
2.3.3. Extraction of Ecological Corridors
3. Results
3.1. Identification Results of Ecological Sources
3.1.1. Distribution of the Ecosystem Services
3.1.2. Landscape Pattern Analysis Based on MSPA
3.1.3. Results of the Ecological Source Identification
3.2. Resistance Surface Construction
3.3. Spatial Distribution of CWD and Ecological Corridors
3.4. Identification of Ecological Pinch Points and Barriers
4. Discussion
4.1. Analysis of Ecological Source Identification Based on InVEST, MSPA, and Conefor
4.2. Analysis of the Regional Scope of the Study
4.3. Fragmentation Characteristics of Ecological Sources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Threat Factor | dr-max (km) | Weight wr | Distance–Decay Function |
Cultivated land | 6 | 0.7 | linear |
Construction land | 11 | 1 | exponential |
Railway | 9 | 0.9 | exponential |
Motorway | 10 | 1 | exponential |
Primary roads | 8 | 0.9 | linear |
Secondary roads | 5 | 0.8 | linear |
County roads | 3 | 0.7 | exponential |
Habitat Type | Habitat Suitability | Cultivated Land | Construction Land | Railway | Motorway | Primary Roads | Secondary Roads | County Roads |
Cultivated land | 0.5 | 0.3 | 0.5 | 0.1 | 0.25 | 0.28 | 0.22 | 0.16 |
Woodland | 1 | 0.4 | 0.6 | 0.1 | 0.1 | 0.12 | 0.18 | 0.24 |
Grassland | 0.55 | 0.35 | 0.6 | 0.25 | 0.25 | 0.28 | 0.29 | 0.3 |
Wetland | 0.8 | 0.4 | 0.7 | 0.3 | 0.3 | 0.3 | 0.28 | 0.25 |
Water areas | 0.9 | 0.5 | 0.8 | 0.4 | 0.4 | 0.35 | 0.3 | 0.25 |
Construction land | 0 | 0.5 | 0.8 | 0.3 | 0.3 | 0.32 | 0.31 | 0.3 |
Land Use Type | Cabove | Cbelow | Csoil | Cdead |
Cultivated land | 17 | 87.7 | 92.9 | 9.82 |
Woodland | 42.4 | 115.9 | 158.8 | 14.11 |
Grassland | 35.3 | 86.5 | 99.9 | 7.28 |
Wetland | 7 | 3 | 25 | 0 |
Water areas | 2.29 | 0 | 17.16 | 0 |
Construction land | 7.61 | 4.51 | 42.17 | 0 |
Land Use Type | Cultivated Land | Woodland | Grassland | Wetland | Water Areas | Construction Land |
P | 1 | 0.15 | 1 | 0 | 0 | 0 |
C | 0.23 | 0.02 | 0.043 | 0 | 0 | 0 |
References
- Su, Y.; Chen, X.; Liao, J.; Zhang, H.; Wang, C.; Ye, Y.; Wang, Y. Modeling the optimal ecological security pattern for guiding the urban constructed land expansions. Urban For. Urban Green. 2016, 19, 35–46. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Xiao, W.; Yue, W.; Wu, T. Optimizing ecological security pattern in the coal resource-based city: A case study in Shuozhou City, China. Ecol. Indic. 2021, 130, 108026. [Google Scholar] [CrossRef]
- Kattel, G.R.; Elkadi, H.; Meikle, H. Developing a complementary framework for urban ecology. Urban For. Urban Green. 2013, 12, 498–508. [Google Scholar] [CrossRef]
- Lu, S.; Tang, X.; Guan, X.; Qin, F.; Liu, X.; Zhang, D. The assessment of forest ecological security and its determining indicators: A case study of the Yangtze River Economic Belt in China. J. Environ. Manag. 2020, 258, 110048. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Jian, P.; Huijuan, Z.; Yanxu, L.; Jiansheng, W.U. Research progress and prospect on regional ecological security pattern construction. Geogr. Res. 2017, 36, 407–419. [Google Scholar]
- Su, X.P.; Zhou, Y.; Li, Q. Designing Ecological Security Patterns Based on the Framework of Ecological Quality and Ecological Sensitivity: A Case Study of Jianghan Plain, China. Int. J. Environ. Res. Public Health 2021, 18, 8383. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.Y.; Yu, H.R.; Liu, G.H.; Zhang, X.X.; Feng, Y.; Ji, Y.W.; Zhao, Q.; Jiang, J.Y.; Gu, X.C. Construction and Analysis of Ecological Security Patterns in the Southern Anhui Region of China from a Circuit Theory Perspective. Remote Sens. 2023, 15, 1385. [Google Scholar] [CrossRef]
- Shan, N.; Zhou, K.; Pan, Y.; Tang, F. Research advances in design methods of biodiversity conservation corridors. Acta Ecol. Sinica 2019, 39, 411–420. [Google Scholar]
- Hou, Q.; Du, Y.; Dong, W.; Zeng, Z.; Zhang, L.; Duan, Y.; Hou, X. Smart city oriented ecological corridor layout of Sanshui River Basin in arid area of Loess Plateau. Sustain. Energy Technol. Assess. 2021, 44, 100993. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing-Tianjin-Hebei region, China. Urban Ecosyst. 2017, 20, 701–714. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, J.; Dong, J.; Zhang, Z.; Xu, Z.; Meersmans, J. Linking ecological background and demand to identify ecological security patterns across the Guangdong-Hong Kong-Macao Greater Bay Area in China. Landsc. Ecol. 2021, 36, 2135–2150. [Google Scholar] [CrossRef]
- Jia, Q.Q.; Jiao, L.M.; Lian, X.H.; Wang, W.L. Linking supply-demand balance of ecosystem services to identify ecological security patterns in urban agglomerations. Sust. Cities Soc. 2023, 92, 104497. [Google Scholar] [CrossRef]
- Gao, J.B.; Du, F.J.; Zuo, L.Y.; Jiang, Y. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern. Landsc. Ecol. 2021, 36, 2113–2133. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Gani, A.A.; Wu, J.; Dai, Y. Identification of Ecological Security Patterns for the Qiandongnan Ecotourism Area in Southwest China Using InVEST and Circuit Theory. Forests 2023, 14, 1316. [Google Scholar] [CrossRef]
- Cao, C.; Luo, Y.; Xu, L.; Xi, Y.; Zhou, Y. Construction of ecological security pattern based on InVEST-Conefor-MCRM: A case study of Xinjiang, China. Ecol. Indic. 2024, 159, 111647. [Google Scholar] [CrossRef]
- Wei, Q.; Halike, A.; Yao, K.; Chen, L.; Balati, M. Construction and optimization of ecological security pattern in Ebinur Lake Basin based on MSPA-MCR models. Ecol. Indic. 2022, 138, 108857. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Jiang, Z.-Y.; Li, Y.-Y.; Yang, Z.-G.; Wang, X.-H.; Li, X.-B. Construction and Optimization of an Urban Ecological Security Pattern Based on Habitat Quality Assessment and the Minimum Cumulative Resistance Model in Shenzhen City, China. Forests 2021, 12, 847. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.; Luo, X. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 141868. [Google Scholar] [CrossRef]
- Wang, Y.J.; Qu, Z.; Zhong, Q.C.; Zhang, Q.P.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.L.; Li, X.C.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 17. [Google Scholar] [CrossRef]
- Ye, Y.; Su, Y.; Zhang, H.-O.; Liu, K.; Wu, Q. Construction of an ecological resistance surface model and its application in urban expansion simulations. J. Geogr. Sci. 2015, 25, 211–224. [Google Scholar] [CrossRef]
- Santos, J.S.; Claros Leite, C.C.; Candido Viana, J.C.; dos Santos, A.R.; Fernandes, M.M.; Abreu, V.d.S.; do Nascimento, T.P.; dos Santos, L.S.; de Moura Fernandes, M.R.; da Silva, G.F.; et al. Deliinitation of ecological corridors in the Brazilian Atlantic Forest. Ecol. Indic. 2018, 88, 414–424. [Google Scholar] [CrossRef]
- Qin, J.-Z.; Dai, J.-P.; Li, S.-H.; Zhang, J.-Z.; Peng, J.-S. Construction of ecological network in Qujing city based on MSPA and MCR models. Sci. Rep. 2024, 14, 9800. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.A.; Li, Y.L.; Jia, L.J.; Ji, Y.F.; Hu, G.G. Ecological risk assessment and ecological security pattern optimization in the middle reaches of the Yellow River based on ERI plus MCR model. J. Geogr. Sci. 2023, 33, 823–844. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhao, Z.Y.; Yang, Y.Y.; Fu, B.J.; Ma, R.M.; Lue, Y.H.; Wu, X. Identifying ecological security patterns based on the supply, demand and sensitivity of ecosystem service: A case study in the Yellow River Basin, China. J. Environ. Manag. 2022, 315, 11. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Yang, Y.; Liu, Y.X.; Hu, Y.N.; Du, Y.Y.; Meersmans, J.; Qiu, S.J. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef]
- Rosot, M.A.D.; Maran, J.C.; Luz, N.B.D.; Garrastazú, M.C.; de Oliveira, Y.M.M.; Franciscon, L.; Clerici, N.; Vogt, P.; de Freitas, J.V. Riparian forest corridors: A prioritization analysis to the Landscape Sample Units of the Brazilian National Forest Inventory. Ecol. Indic. 2018, 93, 501–511. [Google Scholar] [CrossRef]
- McRae, B.H. Isolation by resistance. Evolution 2006, 60, 1551–1561. [Google Scholar] [PubMed]
- Liu, X.J.; Liu, D.F.; Zhao, H.Z.; He, J.H.; Liu, Y.L. Exploring the spatio-temporal impacts of farmland reforestation on ecological connectivity using circuit theory: A case study in the agro-pastoral ecotone of North China. J. Geogr. Sci. 2020, 30, 1419–1435. [Google Scholar] [CrossRef]
- Belote, R.T.; Dietz, M.S.; McRae, B.H.; Theobald, D.M.; McClure, M.L.; Irwin, G.H.; McKinley, P.S.; Gage, J.A.; Aplet, G.H. Identifying Corridors among Large Protected Areas in the United States. PLoS ONE 2016, 11, e0154223. [Google Scholar] [CrossRef]
- Dickson, B.G.; Albano, C.M.; Anantharaman, R.; Beier, P.; Fargione, J.; Graves, T.A.; Gray, M.E.; Hall, K.R.; Lawler, J.J.; Leonard, P.B.; et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 2019, 33, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.D.; Han, Z.Y.; Meng, J.J.; Zhu, L.K. Circuit theory-based ecological security pattern could promote ecological protection in the Heihe River Basin of China. Environ. Sci. Pollut. Res. 2022, 17, 27340–27356. [Google Scholar] [CrossRef]
- Yang, L.; Suo, M.M.; Gao, S.Q.; Jiao, H.Z. Construction of an Ecological Network Based on an Integrated Approach and Circuit Theory: A Case Study of Panzhou in Guizhou Province. Sustainability 2022, 14, 9136. [Google Scholar] [CrossRef]
- Yang, Y.P.; Chen, J.J.; Huang, R.J.; Feng, Z.H.; Zhou, G.Q.; You, H.T.; Han, X.W. Construction of Ecological Security Pattern Based on the Importance of Ecological Protection-A Case Study of Guangxi, a Karst Region in China. Int. J. Environ. Res. Public Health 2022, 19, 5699. [Google Scholar] [CrossRef] [PubMed]
- Mu, B.; Tian, G.; Xin, G.; Hu, M.; Yang, P.; Wang, Y.; Xie, H.; Mayer, A.L.; Zhang, Y. Measuring Dynamic Changes in the Spatial Pattern and Connectivity of Surface Waters Based on Landscape and Graph Metrics: A Case Study of Henan Province in Central China. Land 2021, 10, 471. [Google Scholar] [CrossRef]
- Peng, Y.; Meng, M.; Huang, Z.; Wang, R.; Cui, G. Landscape Connectivity Analysis and Optimization of Qianjiangyuan National Park, Zhejiang Province, China. Sustainability 2021, 13, 5944. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.; Huang, F.; He, L.; Li, H. Dynamic simulation of functional connectivity and identification of conservation priorities for grassland in China?s Poyang Lake considering ecological processes. Ecol. Indic. 2023, 149, 110163. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the Characteristic Spatiotemporal Variation in Habitat Quality Using the InVEST Model-A Case Study from Guangdong-Hong Kong-Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Asadolahi, Z.; Salmanmahiny, A.; Sakieh, Y.; Mirkarimi, S.H.; Baral, H.; Azimi, M. Dynamic trade-off analysis of multiple ecosystem services under land use change scenarios: Towards putting ecosystem services into planning in Iran. Ecol. Complex. 2018, 36, 250–260. [Google Scholar] [CrossRef]
- He, Y.T.; Xia, C.Y.; Shao, Z.; Zhao, J. The Spatiotemporal Evolution and Prediction of Carbon Storage: A Case Study of Urban Agglomeration in China’s Beijing-Tianjin-Hebei Region. Land 2022, 11, 858. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.B.; Hou, W.J. Quantitative attribution analysis of soil erosion in different geomorphological types in karst areas: Based on the geodetector method. J. Geogr. Sci. 2019, 29, 271–286. [Google Scholar] [CrossRef]
- Liu, W.; Xu, H.; Zhang, X.T.; Jiang, W.Q. Green Infrastructure Network Identification at a Regional Scale: The Case of Nanjing Metropolitan Area, China. Forests 2022, 13, 735. [Google Scholar] [CrossRef]
- Huang, K.X.; Peng, L.; Wang, X.H.; Deng, W. Integrating circuit theory and landscape pattern index to identify and optimize ecological networks: A case study of the Sichuan Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 66874–66887. [Google Scholar] [CrossRef]
- Fan, F.F.; Wen, X.J.; Feng, Z.M.; Gao, Y.; Li, W.J. Optimizing urban ecological space based on the scenario of ecological security patterns: The case of central Wuhan, China. Appl. Geogr. 2022, 138, 10. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Niu, L.; Zhang, Z.F.; Liang, Y.Z.; Huang, Y.F. Assessing the Impact of Urbanization and Eco-Environmental Quality on Regional Carbon Storage: A Multiscale Spatio-Temporal Analysis Framework. Remote Sens. 2022, 14, 4007. [Google Scholar] [CrossRef]
Data Types | Data Time | Resolution | Data Sources |
---|---|---|---|
Land use type | 2020 | 30 m | https://www.webmap.cn/commres.do?method=globeIndex (accessed on 2 December 2022) |
DEM | - | 30 m | www.gscloud.cn (accessed on 2 March 2023) |
Precipitation | 2011–2020 | 1 km | www.geodata.cn (accessed on 2 March 2023) |
Soil data | 2009 | - | https://data.tpdc.ac.cn/home (accessed on 24 May 2023) |
NDVI | 2020 | 30 m | www.nesdc.org.cn (accessed on 24 May 2023) |
Criterion Layer | Index Layer | Unit | Resolution | Weight | Resistance Value | ||||
---|---|---|---|---|---|---|---|---|---|
1 | 250 | 500 | 750 | 1000 | |||||
Topographic factors | Elevation | m | 30 m | 0.0142 | <80 | 80–200 | 200–400 | 400–650 | >650 |
Slope | (°) | 30 m | 0.0710 | <4 | 4–8 | 8–16 | 16–27 | >27 | |
Natural conditions | Land use type | - | 30 m | 0.4104 | woodland | grassland | cultivated land | wetland, water areas | construction land |
NDVI | - | 30 m | 0.1664 | >0.7 | 0.6–0.7 | 0.4–0.6 | 0.3–0.4 | <0.3 | |
Distance from a water body | km | 30 m | 0.0675 | <1 | 1–3 | 3–5 | 5–10 | >10 | |
Human disturbance | Distance from a road | km | 30 m | 0.0541 | >5 | 2–5 | 1–2 | 0.5–1 | <0.5 |
Distance from a residential area | km | 30 m | 0.2164 | >2.5 | 1.5–2.5 | 1–1.5 | 0.5–1 | <0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Tao, H.; Wang, J.; Zhang, B.; Liu, Z.; Liu, Z.; Li, J. Integrated Evaluation of the Ecological Security Pattern in Central Beijing Using InVEST, MSPA, and Multifactor Indices. Land 2025, 14, 205. https://doi.org/10.3390/land14010205
Li X, Tao H, Wang J, Zhang B, Liu Z, Liu Z, Li J. Integrated Evaluation of the Ecological Security Pattern in Central Beijing Using InVEST, MSPA, and Multifactor Indices. Land. 2025; 14(1):205. https://doi.org/10.3390/land14010205
Chicago/Turabian StyleLi, Xiaodan, Haoyu Tao, Jing Wang, Bo Zhang, Zhen Liu, Zhiping Liu, and Jing Li. 2025. "Integrated Evaluation of the Ecological Security Pattern in Central Beijing Using InVEST, MSPA, and Multifactor Indices" Land 14, no. 1: 205. https://doi.org/10.3390/land14010205
APA StyleLi, X., Tao, H., Wang, J., Zhang, B., Liu, Z., Liu, Z., & Li, J. (2025). Integrated Evaluation of the Ecological Security Pattern in Central Beijing Using InVEST, MSPA, and Multifactor Indices. Land, 14(1), 205. https://doi.org/10.3390/land14010205