Habitat Quality Dynamics in Urumqi over the Last Two Decades: Evidence of Land Use and Land Cover Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
2.3. Habitat Quality Evaluation Indicator System
2.4. PLUS Model
2.5. Multi-Scenario Simulation
3. Results
3.1. Characteristics of Historical and Future Land Use Spatiotemporal Changes
3.2. Spatiotemporal Changes in Habitat Quality in the Past and Future
3.3. The Influence of Land Use Alterations on Habitat Quality Dynamics
4. Discussion
4.1. Spatial and Temporal Variations in Habitat Quality and Driving Mechanisms in the Arid Zone
4.2. Multi-Scenario Projections of Habitat Quality in Arid Zones and Policy Recommendations
4.3. Restriction and Uncertainty
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Duo, L.; Zhang, M.; Wu, Z.; Guan, Y. Assessment and Estimation of the Spatial and Temporal Evolution of Landscape Patterns and Their Impact on Habitat Quality in Nanchang, China. Land 2021, 10, 10. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future scenarios impact on land use change and habitat quality in Lithuania. Environ. Res. 2021, 197, 111101. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Yang, Q.; Wang, L. The evolution of habitat quality and its response to land use change in the coastal China, 1985–2020. Sci. Total Environ. 2024, 952, 175930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Pei, X.; Zhao, X.; Liu, J.; Liu, W.; Zhang, H.; Jiao, J. Habitat degradation changes and disturbance factors in the Tibetan plateau in the 21st century. Environ. Res. 2024, 260, 119616. [Google Scholar] [CrossRef]
- Li, S.; Dong, B.; Gao, X.; Xu, H.; Ren, C.; Liu, Y.; Peng, L. Study on spatio-temporal evolution of habitat quality based on land-use change in Chongming Dongtan, China. Environ. Earth Sci. 2022, 81, 220. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Guan, Y. Optimization of management by analyzing ecosystem service value variations in different watersheds in the Three-River Headwaters Basin. J. Environ. Manag. 2022, 321, 115956. [Google Scholar] [CrossRef]
- Janus, J.; Bozek, P. Land abandonment in Poland after the collapse of socialism: Over a quarter of a century of increasing tree cover on agricultural land. Ecol. Eng. 2019, 138, 106–117. [Google Scholar] [CrossRef]
- Glenz, C.; Massolo, A.; Kuonen, D.; Schlaepfer, R. A wolf habitat suitability prediction study in Valais (Switzerland). Landsc. Urban Plan. 2001, 55, 55–65. [Google Scholar] [CrossRef]
- Bryant, M.D.; Edwards, R.T.; Woodsmith, R.D. An approach to effectiveness monitoring of floodplain channel aquatic habitat: Salmonid relationships. Landsc. Urban Plan. 2005, 72, 157–176. [Google Scholar] [CrossRef]
- Ikauniece, S.; Brūmelis, G.; Zariņš, J. Linking woodland key habitat inventory and forest inventory data to prioritize districts needing conservation efforts. Ecol. Indic. 2012, 14, 18–26. [Google Scholar] [CrossRef]
- Zhu, M.; Hoctor, T.S.; Volk, M.; Frank, K.I.; Zwick, P.D.; Carr, M.H.; Linhoss, A.C. Spatial conservation prioritization to conserve biodiversity in response to sea level rise and land use change in the Matanzas River Basin, Northeast Florida. Landsc. Urban Plan. 2015, 144, 103–118. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, Y.; Zhang, Q.; Tao, J.; Huang, Y.; Gao, C.; Lin, J.; Wang, D. Impact of current and future land use change on biodiversity in Nanliu River Basin, Beibu Gulf of South China. Ecol. Indic. 2022, 141, 109093. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Feng, H.; Li, Y.; Yu, J.; Liu, Y.; Du, H. Dynamic evolution and simulation of habitat quality in arid regions: A case study of the Hexi region, China. Ecol. Model. 2024, 493, 110726. [Google Scholar] [CrossRef]
- Dang, H.; Lü, Y.; Guo, J.; Wu, X. Multi-scenario simulation can contribute to identify priorities for regional ecological corridors conservation. Ecol. Indic. 2024, 165, 112166. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X. Spatio-temporal variations of habitat quality and its driving factors in the Yangtze River Delta region of China. Glob. Ecol. Conserv. 2024, 52, e02978. [Google Scholar] [CrossRef]
- Wang, B.; Oguchi, T.; Liang, X. Evaluating future habitat quality responding to land use change under different city compaction scenarios in Southern China. Cities 2023, 140, 104410. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Li, Y. Exploring the spatial and temporal driving mechanisms of landscape patterns on habitat quality in a city undergoing rapid urbanization based on GTWR and MGWR: The case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Zhang, S.; Lei, J.; Zhang, X.; Tong, Y.; Lu, D.; Fan, L.; Duan, Z. Assessment and optimization of urban spatial resilience from the perspective of life circle: A case study of Urumqi, NW China. Sustain. Cities Soc. 2024, 109, 105527. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, Z.; Fang, G.H.; Li, Y.P. Global drought variation and its adaptation. Sci. Technol. Rev. 2024, 1–6. [Google Scholar] [CrossRef]
- Li, P.; Zhang, R.; Xu, L. Three-dimensional ecological footprint based on ecosystem service value and their drivers: A case study of Urumqi. Ecol. Indic. 2021, 131, 108117. [Google Scholar] [CrossRef]
- Shi, L.; Halik, Ü.; Mamat, Z.; Aishan, T.; Abliz, A.; Welp, M. Spatiotemporal investigation of the interactive coercing relationship between urbanization and ecosystem services in arid northwestern China. Land Degrad. Dev. 2021, 32, 4105–4120. [Google Scholar] [CrossRef]
- Aishan, T.; Song, J.; Halik, Ü.; Betz, F.; Yusup, A. Predicting Land-Use Change Trends and Habitat Quality in the Tarim River Basin: A Perspective with Climate Change Scenarios and Multiple Scales. Land 2024, 13, 1146. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Xu, X.; Kong, W.; Wang, L.; Wang, T.; Luo, P.; Cui, J. A novel and dynamic land use/cover change research framework based on an improved PLUS model and a fuzzy multiobjective programming model. Ecol. Inform. 2024, 80, 102460. [Google Scholar] [CrossRef]
- Zhou, Y.D.; Wang, J.; Zhou, F. Evaluation of land use change and ecosystem service value based on multi-scenario analysis of PLUS model. J. Gansu Agric. Univ. 2023, 58, 198–209. [Google Scholar]
- Deng, H.; Shao, J.A.; Wang, J.L.; Wei, C.F. Modelling of future land use scenarios in the Three Gorges reservoir area under multi-factor coupling. Acta Geogr. Sin. 2016, 71, 1979–1997. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Z.; Zhao, T.; Tao, H.; Zhu, B. Warmer and wetter climate induced by the continual increase in atmospheric temperature and precipitable water vapor over the arid and semi–arid regions of Northwest China. J. Hydrol. Reg. Stud. 2022, 42, 101151. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Jiang, W.; Qiu, H. Spatial and temporal variation and prediction of ecological carrying capacity based on machine learning and PLUS model. Ecol. Indic. 2023, 154, 110611. [Google Scholar] [CrossRef]
- You, Y.; Jiang, W.; Yi, L.; Zhang, G.; Peng, Z.; Chang, S.; Hou, F. Seeding alpine grasses in low altitude region increases global warming potential during early seedling growth. J. Environ. Manag. 2024, 356, 120679. [Google Scholar] [CrossRef] [PubMed]
- James, C.; Iverson, L.; Woodall, C.W.; Allen, C.D.; Bell, D.M.; Bragg, D.C.; D’Amato, A.W.; Davis, F.W.; Hersh, M.H.; Ibanez, I.; et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 2016, 22, 2329–2352. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, X.; Shi, Y.; Jin, C.; Yang, Y.; Wei, X.; Mu, C.; Wang, J. A slight increase in soil pH benefits soil organic carbon and nitrogen storage in a semi-arid grassland. Ecol. Indic. 2021, 130, 108037. [Google Scholar] [CrossRef]
- Zhao, Y.; Kasimu, A.; Liang, H.; Reheman, R. Construction and Restoration of Landscape Ecological Network in Urumqi City Based on Landscape Ecological Risk Assessment. Sustainability 2022, 14, 8154. [Google Scholar] [CrossRef]
- Fang, C.L.; Huang, J.C.; Bu, W.N. Theoretical study on urbanization process and ecological effect with the restriction of water resource in arid area of northwest China. Arid. Land Geogr. 2004, 27, 1–7. [Google Scholar]
- Xiang, Q.; Yu, H.; Huang, H.; Yan, D.; Yu, C.; Wang, Y.; Xiong, Z. The impact of grazing activities and environmental conditions on the stability of alpine grassland ecosystems. J. Environ. Manag. 2024, 360, 121176. [Google Scholar] [CrossRef]
- Yi, Z.; Zhou, W.; Razzaq, A.; Yang, Y. Land resource management and sustainable development: Evidence from China’s regional data. Resour. Policy 2023, 84, 103732. [Google Scholar] [CrossRef]
Sub-Data | Year(s) | Resolution | Database Sources | Access Date |
---|---|---|---|---|
Land use/Land cover | 2000\2010\2020\2022 | 30 m | https://www.gscloud.cn/ | 20 December 2023 |
DEM/Slope/Elevation | 2020 | 30 m | https://www.gscloud.cn/ | 20 December 2023 |
NDVI/Soil | 2020 | 1000 m | https://www.resdc.cn/ | 25 April 2024 |
Precipitation/Temperature | 2020 | 30 m | http://data.cma.cn/ | 22 April 2024 |
GDP/Population | 2020 | 1000 m | https://www.resdc.cn/ | 22 April 2024 |
Railway/Highway/Road/ Settlement/Water | 2020 | 1:1,000,000 | https://www.webmap.cn/ | 20 December 2023 |
Threat Factors | Weight | Influence Distance (km) | Spatial Decay Type |
---|---|---|---|
Cropland | 0.7 | 8 | linear |
Built-up land | 1 | 10 | exponential |
Bareland | 0.2 | 3 | exponential |
Land Use Type | Habitat Suitability | Threats | ||
---|---|---|---|---|
Cropland | Built-Up Land | Bareland | ||
Cropland | 0.5 | 0 | 0.5 | 0.4 |
Forest land | 1 | 0.8 | 0.9 | 0.5 |
Grassland | 0.7 | 0.5 | 0.6 | 0.5 |
Water body | 0.9 | 0.7 | 0.8 | 0.2 |
Built-up land | 0 | 0 | 0 | 0 |
Bareland | 0.1 | 0.1 | 0.2 | 0 |
Scenarios | Land Use Type | Cropland | Forest | Grassland | Built-Up Land |
---|---|---|---|---|---|
Business-As-Usual | not adjusted | ||||
Cropland Protection | Cropland | −60% | |||
Ecological Protection | Cropland | +30% | +60% | −50% | |
Forest land | −80% | −80% | −90% | ||
Grassland | +20% | −80% | |||
Built-up land | +20% | +20% | +50% | ||
Economic Development | Cropland | +60% | |||
Forest land | +40% | ||||
Grassland | +40% | ||||
Water body | +20% | ||||
Bareland | +10% |
HQ | 2000 | 2010 | 2022 | BAU | CP | EP | ED |
---|---|---|---|---|---|---|---|
Mean | 0.4180 | 0.3937 | 0.3838 | 0.0898 | 0.0893 | 0.0906 | 0.0892 |
Habitat Quality Change Type | Land Use Transfer | BAU | CP | EP | ED | ||||
---|---|---|---|---|---|---|---|---|---|
CA (km2) | CI | CA (km2) | CI | CA (km2) | CI | CA (km2) | CI | ||
Reduction | 12 | 0.22 | −0.01 | 0.22 | −0.04 | 0.22 | −0.01 | 0.22 | −0.01 |
13 | 98.94 | −3.16 | 34.04 | −1.12 | 33.71 | −1.16 | 33.71 | −1.16 | |
14 | 2.27 | −0.08 | 0.48 | −0.02 | 0.49 | −0.02 | 0.49 | −0.02 | |
15 | 109.07 | −3.3 | 173.46 | −5.48 | 148.87 | −4.87 | 148.87 | −4.87 | |
16 | 6.49 | −0.2 | 2.41 | −0.07 | 1.50 | −0.05 | 1.50 | −0.05 | |
21 | 0.21 | −0.01 | 0.22 | −0.01 | 0.23 | −0.01 | 0.23 | −0.01 | |
23 | 27.35 | −1.43 | 27.42 | −1.47 | 27.39 | −1.53 | 27.39 | −1.53 | |
26 | 0.17 | −0.01 | 0.16 | −0.01 | 0.16 | −0.01 | 0.16 | −0.01 | |
31 | 39.28 | −1.09 | 42.35 | −1.22 | 43.24 | −1.30 | 43.24 | −1.30 | |
32 | 63.58 | −2.62 | 63.67 | −2.70 | 63.48 | −2.81 | 63.48 | −2.81 | |
34 | 2.68 | −0.02 | 2.60 | −0.03 | 2.59 | −0.03 | 2.59 | −0.03 | |
35 | 36.12 | −0.89 | 33.13 | −0.85 | 38.52 | −1.02 | 38.52 | −1.02 | |
36 | 712.82 | −25.70 | 635.72 | −23.49 | 667.05 | −25.78 | 667.05 | −25.78 | |
41 | 1.73 | −0.04 | 0.67 | −0.02 | 0.65 | −0.02 | 0.65 | −0.02 | |
43 | 5.62 | −0.23 | 5.54 | −0.23 | 5.54 | −0.24 | 5.54 | −0.24 | |
45 | 20.32 | −0.48 | 0.95 | −0.02 | 1.01 | −0.02 | 1.01 | −0.02 | |
46 | 29.11 | −1.63 | 46.20 | −2.66 | 46.71 | −2.80 | 46.71 | −2.80 | |
53 | 27.14 | −0.02 | 26.23 | −0.02 | 18.92 | −0.01 | 18.92 | −0.01 | |
61 | 1.23 | −0.01 | 2.07 | −0.01 | 5.25 | −0.02 | 5.25 | −0.02 | |
63 | 140.40 | −0.49 | 134.26 | −0.47 | 138.26 | −0.51 | 138.26 | −0.51 | |
65 | 8.70 | −0.06 | 6.50 | 0.05 | 13.37 | −0.10 | 13.37 | −0.10 | |
Improvement | 56 | 73.14 | 0.02 | 46.71 | −2.80 | ||||
64 | 10.45 | 0.43 | 9.16 | 0.38 | 9.22 | 0.40 | 9.22 | 0.40 | |
Total | 1333.88 | −41.03 | 1238.27 | −39.54 | 766.46 | -28.08 | 1257.16 | −42.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Halik, Ü.; Shi, L.; Fu, W.; Gan, L.; Welp, M. Habitat Quality Dynamics in Urumqi over the Last Two Decades: Evidence of Land Use and Land Cover Changes. Land 2025, 14, 84. https://doi.org/10.3390/land14010084
Chen S, Halik Ü, Shi L, Fu W, Gan L, Welp M. Habitat Quality Dynamics in Urumqi over the Last Two Decades: Evidence of Land Use and Land Cover Changes. Land. 2025; 14(1):84. https://doi.org/10.3390/land14010084
Chicago/Turabian StyleChen, Siying, Ümüt Halik, Lei Shi, Wentao Fu, Lu Gan, and Martin Welp. 2025. "Habitat Quality Dynamics in Urumqi over the Last Two Decades: Evidence of Land Use and Land Cover Changes" Land 14, no. 1: 84. https://doi.org/10.3390/land14010084
APA StyleChen, S., Halik, Ü., Shi, L., Fu, W., Gan, L., & Welp, M. (2025). Habitat Quality Dynamics in Urumqi over the Last Two Decades: Evidence of Land Use and Land Cover Changes. Land, 14(1), 84. https://doi.org/10.3390/land14010084