Human Appropriation of Net Primary Production (HANPP) in an Agriculturally-Dominated Watershed, Southeastern USA
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Classification of Land Cover Patterns for 1968 and 2011
Land Cover | Estimated Actual NPP (g·C·m−2·y·r−1) | |||||
---|---|---|---|---|---|---|
Percent of Watershed | 1968 | 2011 | ||||
1968 | 2011 | Total | Aboveground | Total | Aboveground | |
Coniferous forests and plantations | 15.7% | 10.0% | 1004.0 | 777.1 | 1004.0 | 777.1 |
Deciduous forests | 7.9% | 39.0% | 1053.0 | 723.2 | 1053.0 | 723.2 |
Mixed forest | 24.2% | NA | 1028.5 | 750.2 | NA | NA |
Transitional | 3.1% | 3.0% | 256.0 | 89.2 | 256.0 | 180.8 |
Row crop | 25.6% | 0.4% | 278.6 | 234.6 | 657.5 | 563.4 |
Pasture, hay, and grasslands | 19.1% | 32.3% | 252.9 | 134.0 | 296.1 | 156.9 |
Golf course turf grass | 0.8% | 1.7% | 1100.5 | 786.1 | 1100.5 | 786.1 |
Low density residential | 2.2% | 10.0% | 608.0 | 325.2 | 608.0 | 325.2 |
Commercial | 0.1% | 0.9% | 75.1 | 36.1 | 75.1 | 36.1 |
Ponds and lakes | 0.2% | 0.6% | 0.0 | 0.0 | 0.0 | 0.0 |
Impervious surface | 1.1% | 2.0% | 0.0 | 0.0 | 0.0 | 0.0 |
Other | NA | 0.2% | NA | NA | 435.9 | 253.0 |
2.3. Calculation of Potential NPP (NPPpot)
2.4. Calculation of Actual NPP (NPPact)
2.4.1. Forest Cover NPPact
2.4.2. Row Crops and Pasture NPPact
2.4.3. Turf Grass NPPact
2.4.4. Residential, Commercial, Transitional, & Other NPPact
2.5. Calculation of Harvested NPP (HANPPharv)
2.6. Calculation of HANPP
2.7. Sensitivity Analysis
3. Results
3.1. Land Cover Change
3.2. Estimates of NPPact
3.3. Estimates of HANPPharv
3.4. Sensitivity Analysis
3.5. Estimates of HANPP
4. Discussion
4.1. Methodological Challenges and Limitations of HANPP at the Watershed Scale
4.2. Comparison to Regional and National Patterns of HANPP
4.3. Agroecological Teleconnections and Feedbacks
4.4. Applications to Land Use Change and Scenario Planning
4.5. Future Work
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sterling, S.; Ducharne, A. Comprehensive data set of global land cover change for land surface model applications. Glob. Biogeochem. Cycles 2008, 22, 1–20. [Google Scholar] [CrossRef]
- Ellis, E.; Ramunkutty, N. Putting people on the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef]
- Crutzen, P. Geology of mankind. Nature 2002, 415, 23. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A 2011, 369, 1010–1035. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, R.J.; Arico, S.; Aronson, J.; Baron, J.S.; Bridgewater, P.; Cramer, V.A.; Epstein, P.R.; Ewel, J.J.; Klink, C.A.; Lugo, A.E.; et al. Novel ecosystems: Theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 2006, 15, 1–7. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Fischer, J.; Felton, A.; Crane, M.; Michael, D.; Macgregor, C.; Montague-Drake, R.; Manning, A.; Hobbs, R.J. Novel ecosystems resulting from landscape transformation create dilemmas for modern conservation practice. Conserv. Lett. 2008, 1, 129–135. [Google Scholar] [CrossRef]
- Ellis, E.; Goldewijk, K.K.; Siebert, S.; Lightman, D.; Ramunkutty, N. Anthropogenic transformation of biomes, 1700–2000. Glob. Ecol. Biogeogr. 2010, 19, 589–606. [Google Scholar] [CrossRef]
- Ramunkutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.-H.; Krausmann, F.; Running, S.; Searchinger, T.D.; Smith, W.K. Bioenergy: How much can we expect for 2050? Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C.; et al. Sustainability. Systems Integration for Global Sustainability. Science 2015, 347. [Google Scholar] [CrossRef] [PubMed]
- Abt, K.L.; Abt, R.C.; Galik, C.S.; Skog, K.E. Effect of Policies on Pellet Production and Forests in the U.S. South: A Technical Document Supporting the Forest Service Update of the 2010 RPA Assessment; General Technical Report SRS-202; US Forest Service, Southern Research Station: Asheville, NC, USA, 2014. [Google Scholar]
- Johansson, D.J.A.; Azar, C. A scenario based analysis of land competition between food and bioenergy production in the U.S. Clim. Chang. 2007, 82, 267–291. [Google Scholar] [CrossRef]
- Miyake, S.; Renouf, M.; Peterson, A.; McAlpine, C.; Smith, C. Land-use and environmental pressures resulting from current and future bioenergy crop expansion: A review. J. Rural Stud. 2012, 28, 650–658. [Google Scholar] [CrossRef]
- Zumkehr, A.; Campbell, J.E. Historical U.S. cropland areas and potential for bioenergy production on abandoned croplands. Environ. Sci. Technol. 2013, 47, 3840–3847. [Google Scholar] [CrossRef] [PubMed]
- Brook, B.W.; Ellis, E.C.; Perring, M.P.; Mackay, A.W.; Blomqvist, L. Does the terrestrial biosphere have planetary tipping points? Trends Ecol. Evol. 2013, 28, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Ehrlich, P.R.; Ehrlich, A.H.; Matson, P.A. Human Appropriation of the Products of Photosynthesis. Bioscience 1986, 36, 368–373. [Google Scholar] [CrossRef]
- Haberl, H.; Wackernagel, M.; Krausmann, F.; Erb, K.H.; Monfreda, C. Ecological footprints and human appropriation of net primary production: A comparison. Land Use Policy 2004, 21, 279–288. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Piutzar, C.; Gingrich, S.; Lucht, W.; Fischer-Kowalski, M. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12947. [Google Scholar] [CrossRef] [PubMed]
- Bishop, J.D.K.; Amaratunga, G.A.J.; Rodriguez, C. Quantifying the limits of HANPP and carbon emissions which prolong total species well-being. Environ. Dev. Sustain. 2010, 12, 213–231. [Google Scholar] [CrossRef]
- Krausmann, F.; Erb, K.H.; Gingrich, S.; Haberl, H.; Bondeau, A.; Gaube, V.; Lauk, C.; Plutzar, C.; Searchinger, T.D. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. USA 2013, 110, 10324–10329. [Google Scholar] [CrossRef] [PubMed]
- Erb, K.H.; Krausmann, F.; Gaube, V.; Gingrich, S.; Bondeau, A.; Fischer-Kowalski, M.; Haberl, H. Analyzing the global human appropriation of net primary production—Processes, trajectories, implications. An introduction. Ecol. Econ. 2009, 69, 250–259. [Google Scholar] [CrossRef]
- Rojstaczer, S.; Sterling, S.M.; Moore, N.J. Human appropriation of photosynthesis products. Science 2001, 294, 2549–2552. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, M.L.; Bounoua, L.; Ricketts, T.; Loucks, C.; Harriss, R.; Lawrence, W.T. Global patterns in human consumption of net primary productivity. Nature 2004, 429, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Krausmann, F.; Gingrich, S.; Haberl, H.; Erb, K.H.; Musel, A.; Kastner, T.; Kohlheb, N.; Niedertscheider, M.; Schwartzmüller, E. Long-term trajectories of the human appropriation of net primary production: Lessons from six national case studies. Ecol. Econ. 2012, 77, 129–138. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, D.W.; Tyedmers, P.H.; Beazley, K.F. Human appropriation of net primary production (HANPP) in Nova Scotia, Canada. Reg. Environ. Chang. 2007, 7, 1–14. [Google Scholar] [CrossRef]
- Fetzel, T.; Gradwohl, M.; Erb, K.H. Conversion, intensification, and abandonment: A human appropriation of net primary production approach to analyze historic land use dynamics in New Zealand, 1860–2005. Ecol. Econ. 2014, 97, 201–208. [Google Scholar] [CrossRef]
- Kastner, T. Trajectories in human domination of ecosystems: Human appropriation of net primary production in the Philippines during the 20th century. Ecol. Econ. 2009, 69, 260–269. [Google Scholar] [CrossRef]
- Niedertscheider, M.; Kuemmerle, T.; Muller, D.; Erb, K.-H. Exploring the effects of drastic institutional and socio-economic changes on land system dynamics in Germany between 1883 and 2007. Glob. Environ. Chang. 2014, 28, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Niedertscheider, M.; Erb, K.-H. Land system change in Italy from 1884 to 2007: Analyzing north-south divergence on the basis of an integrated indicator framework. Land Use Policy 2014, 39, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Krausmann, F. Land use and industrial modernization: An empirical analysis of human influence on the functioning of ecosystems in Austria 1830–1995. Land Use Policy 2001, 18, 17–26. [Google Scholar] [CrossRef]
- Kohlheb, N.; Krausmann, F. Land use change, biomass production and HANPP: The case of Hungary 1961–2005. Ecol. Econ. 2009, 69, 292–300. [Google Scholar] [CrossRef]
- Schwarzlmüller, E. Human appropriation of aboveground net primary production in Spain, 1955–2003: An empirical analysis of the industrialization of land use. Ecol. Econ. 2009, 69, 282–291. [Google Scholar] [CrossRef]
- Musel, A. Human appropriation of net primary productivity in the United Kingdom, 1800–2000. Changes in society’s impact on ecological energy flows during the agrarian-industrial transition. Ecol. Econ. 2009, 69, 270–281. [Google Scholar] [CrossRef]
- Niedertschnieder, M.; Gingrich, S.; Erb, K.H. Changes in land use in South Africa between 1961 and 2006: An integrated socio-ecological analysis based on the human appropriation of net primary production framework. Reg. Environ. Chang. 2012, 12, 715–727. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Loibl, W.; Schulz, N.; Weisz, H. Changes in ecosystem processes induced by land use: Human appropriation of aboveground NPP and its influence on standing crop in Austria. Glob. Biogeochem. Cycles 2001, 15, 929–942. [Google Scholar] [CrossRef]
- Vačkář, D.; Orlitová, E. Human appropriation of aboveground photosynthetic production in the Czech Republic. Reg. Environ. Chang. 2011, 11, 519–529. [Google Scholar] [CrossRef]
- Abdi, A.M.; Seaquist, J.; Tenenbaum, D.E.; Eklundh, L.; Ardö, J. The supply and demand of net primary production in the Sahel. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Haberl, H.; Schulz, N.B.; Plutzar, C.; Erb, K.H.; Krausmann, F.; Loibl, W.; Moser, D.; Sauberer, N.; Weisz, H.; Zechmeister, H.G.; et al. Human appropriation of net primary production and species diversity in agricultural landscapes. Agric. Ecosyst. Environ. 2004, 102, 213–218. [Google Scholar] [CrossRef]
- Clark, B.T.; Burkardt, N.; King, D. Watershed management and organizational dynamics: Nationwide findings and regional variation. Environ. Manag. 2005, 36, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Zedler, J.B. Wetlands at your service: Reducing impacts of agriculture at the watershed scale. Front. Ecol. Environ. 2003, 1, 65–72. [Google Scholar] [CrossRef]
- Muthukrishnan, S.; Lewis, G.P.; Andersen, C.B. Chapter 24. Relations among land cover, vegetation index, and nitrate concentrations in streams of the Enoree River Basin, piedmont region of South Carolina, USA. In Concepts and Applications in Environmental Geochemistry; Sarkar, D., Datta, R., Hannigan, R., Eds.; Elsevier Press: New York, NY, USA, 2007; pp. 515–539. [Google Scholar]
- Raich, J.W.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.; Steudler, P.A.; Peterson, B.J.; Grace, A.L.; Moore, B., III; Vorosmarty, C.J. Potential net primary productivity in South America: Application of a global model. Ecol. Appl. 1991, 4, 399–429. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. National Climate Data Center. Available online: http://www.ncdc.noaa.gov/cdo-web/datasets/GHCNDMS/locations/CITY:US450005/detail (accessed on 5 December 2014).
- Leith, H. Modeling the primary productivity of the world. In Primary Production of the Biosphere; Leith, H., Whittaker, R., Eds.; Springer-Verlag: New York, NY, USA, 1975; pp. 237–263. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Terando, A.J.; Costanza, J.; Belyea, C.; Dunn, R.R.; McKerrow, A.; Collazo, J.A. The Southern Megalopolis: Using the past to predict the future of urban sprawl in the Southeast US. PLoS ONE 2014, 9, e102261. [Google Scholar] [CrossRef] [PubMed]
- Drummond, M.A.; Loveland, T.R. Land-use pressure and a transition to forest-cover loss in the eastern United States. Bioscience 2010, 60, 286–298. [Google Scholar] [CrossRef]
- Waisanen, P.J.; Bliss, N.B. Changes in population and agricultural land in conterminous United States counties, 1790 to 1997. Glob. Biogeochem. Cycles 2002, 16. [Google Scholar] [CrossRef]
- Napton, D.E.; Auch, R.F.; Headly, R.; Taylor, J.L. Land use changes and their driving factors in the Southeastern United States. Reg. Environ. Chang. 2010, 10, 37–53. [Google Scholar] [CrossRef]
- Daniels, R.B. Chapter 12. Soil erosion and degradation in the southern Piedmont of the USA. In Land Transformation in Agriculture; Wolman, M.G., Fournier, F.G.A., Eds.; John Wiley and Sons: New York, NY, USA, 1987; pp. 407–428. [Google Scholar]
- United States Department of Agriculture. Census of Agriculture: 2012 Census Volume 1, Chapter 2: County Level Data. Available online: http://www.agcensus.usda.gov/Publications/2012/Full_Report/Volume_1,_Chapter_2_County_Level/South_Carolina/ (accessed on 15 October 2014).
- Cramer, W.; Field, C.B. Comparing global models of terrestrial net primary productivity (NPP): Introduction. Glob. Chang. Biol. 1999, 5. [Google Scholar] [CrossRef]
- Adams, B.; White, A.; Lenton, T. An analysis of some diverse approaches to modelling terrestrial net primary productivity. Ecol. Model. 2004, 177, 353–391. [Google Scholar] [CrossRef]
- Zaks, D.P.M.; Ramankutty, N.; Barford, C.C.; Foley, J.A. From Miami to Madison: Investigating the relationship between climate and terrestrial net primary production. Glob. Biogeochem. Cycles 2007, 21. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F. Human appropriation of net primary production: Patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 2014, 39, 363–391. [Google Scholar] [CrossRef]
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues: A synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef]
- Mokany, K.; Raison, R.; Prokushkin, A.S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Chang. Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Milesi, C.; Elvidge, C.D.; Nemani, R.R.; Running, S.W. Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens. Environ. 2003, 86, 401–410. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Liu, M.; Zhang, C.; Sun, G.; Lu, C.; Xu, X.; Ren, W.; Pan, S.; Chappelka, A. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. For. Ecol. Manag. 2010, 259, 1311–1327. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Harding, D.J.; Parker, G.G.; Acker, S.A.; Gower, S.T. Lidar remote sensing of above-ground biomass in three biomes. Glob. Ecol. Biogeogr. 2001, 11, 393–399. [Google Scholar] [CrossRef]
- United States Geological Survey. Earth Explorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 22 July 2013).
- USFS Forest Inventory Data Online Web-Application Version: FIDO 1.5.1.05b. U.S. Department of Agriculture, Forest Service: St. Paul, MN, USA. http://apps.fs.fed.us/fia/fido/index.html(accessed on 31 January 2015).
- United States Department of Agriculture. Census of Agriculture: 1969 Census, Volume 1, Part 27, Chapters 1 and 4. Available online: http://agcensus.mannlib.cornell.edu/AgCensus/getVolumeOnePart.do?year=1969&part_id=301&number=27&title=South%20Carolina (accessed on 15 October 2014).
- Lobell, D.; Hicke, J.; Asner, G.; Field, C.; Tucker, C.; Los, S. Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–1998. Glob. Chang. Biol. 2002, 8, 722–735. [Google Scholar] [CrossRef]
- Hicke, J.A.; Lobell, D.B.; Asner, G.P. Cropland area and net primary production computed from 30 years of USDA agricultural harvest data. Earth Interact. 2004, 8, 1–20. [Google Scholar] [CrossRef]
- Wu, J.; Bauer, M.E. Estimating net primary production of turfgrass in an urban-suburban landscape with QuickBird imagery. Remote Sens. 2012, 4, 849–866. [Google Scholar] [CrossRef]
- Falk, J.H. The primary productivity of lawns in a temperate environment. J. Appl. Ecol. 1980, 17, 689–695. [Google Scholar] [CrossRef]
- Thomsen, I.K.; Olesen, J.E.; Møller, H.B.; Sørensen, P.; Christensen, B.T. Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces. Soil Biol. Biochem. 2013, 58, 82–87. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Birdsey, R.A. Carbon Storage and Accumulation in United States Forest Ecosystems; Forest Service General Technical Report WO-59; United States Department of Agriculture: Washington DC, USA, 1992; Available online: http://www.nrs.fs.fed.us/pubs/gtr/gtr_wo059.pdf (accessed on 12 February 2015).
- Lefsky, M.A.; Harding, D.J.; Keller, M.; Cohen, W.B.; Carabajal, C.C.; Espirito-Santo, F.D.B.; Hunter, M.O.; de Oliveira, R., Jr. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Pujol, P.; Iooss, B.; Janon, A. Sensitivity Analysis. 2015; R Package Version 1.11. Available online: http://CRAN.R-project.org/package=sensitivity(accessed on 11 March 2015). [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2014; R Foundation for Statistical Computing: Vienna, Austria. Available online: http://www.R-project.org/(accessed on 11 March 2015). [Google Scholar]
- United States Department of Agriculture. National Agricultural Statistics Service Cropscape-Cropland Data Layer. Available online: http://nassgeodata.gmu.edu/CropScape/ (accessed on 23 July 2013).
- Krausmann, F.; Haberl, H.; Erb, K.; Wiesinger, M.; Gaube, V.; Gingrich, S. What determines geographical patterns of the global human appropriation of net primary production? J. Land Use Sci. 2009, 4, 15–33. [Google Scholar] [CrossRef]
- Bain, D.J.; Hale, R.L.; Wollheim, W.M. Hotbeds of biogeochemical diversity: Insights from urban long-term ecological research sites. Elements 2012, 8, 435–438. [Google Scholar] [CrossRef]
- Hazel, P.; Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. B 2008, 363, 495–515. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Krausmann, F.; Fischer-Kowalski, M.; Schandl, H.; Eisenmenger, N. The global sociometabolic transition: Past and present metabolic profiles and their future trajectories. J. Ind. Ecol. 2008, 12, 637–656. [Google Scholar] [CrossRef]
- Rudel, T.K.; Schneider, L.; Uriarte, M.; Turner, B.L., 2nd; DeFries, R.; Lawrence, D.; Geoghegan, J.; Hecht, S.; Ickowitz, A.; Lambin, E.F.; et al. Agricultural intensification and changes in cultivated Areas, 1970–2005. Proc. Natl. Acad. Sci. USA 2009, 106, 20675–20680. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Ramankutty, N.; Mueller, N.D.; West, P.C.; Foley, J.A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 2012, 3, 1293. [Google Scholar] [CrossRef] [PubMed]
- Francis, C.A.; Hansen, T.E.; Fox, A.A.; Hesje, P.J.; Nelson, H.E.; Lawseth, A.E.; English, A. Farmland Conversion to Non-Agricultural Uses in the US and Canada: Current Impacts and Concerns for the Future. Int. J. Agric. Sustain. 2012, 10, 8–24. [Google Scholar] [CrossRef]
- Brown, D.G.; Johnson, K.M.; Loveland, T.R.; Theobald, D.M. Rural land-use trends in the conterminous United States, 1950–2000. Ecol. Appl. 2005, 15, 1851–1863. [Google Scholar] [CrossRef]
- Smith, W.K.; Cleveland, C.C.; Reed, S.C.; Miller, N.L.; Running, S.W. Bioenergy potential of the United States constrained by satellite observations of existing productivity. Environ. Sci. Technol. 2012, 46, 3536–3544. [Google Scholar] [CrossRef] [PubMed]
- Sharp, B.E.; Miller, S.A. Estimating maximum land use change potential from a regional biofuel industry. Energy Policy 2014, 65, 261–269. [Google Scholar] [CrossRef]
- Bergman, R.D.; Reed, D.L.; Taylor, A.M.; Harper, D.P.; Hodges, D.G. Cradle-to-gate life cycle assessment of switchgrass fuel pellets manufactured in the southeastern United States. Wood Fiber Sci. 2015, 47, 1–13. [Google Scholar]
- DeFries, R.S.; Ellis, E.C.; Chapin, F.S., III; Matson, P.A.; Turner, B.L., II; Agrawal, A.; Crutzen, P.; Field, C.; Gleick, P.; Karieva, P.; et al. Planetary opportunities: A social contract for global science change to contribute to a sustainable future. BioScience 2012, 62, 603–606. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, D.W. Measuring progress in the degrowth transition to a steady state economy. Ecol. Econ. 2014, 84, 221–231. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Camm, J.; Csuti, B.; Fackler, P.; Lonsdorf, E.; Montgomery, C.; White, D.; Arthur, J.; Garber-Yonts, B. Where to put things? Spatial land management to sustain biodiversity and economic returns. Biol. Conserv. 2008, 141, 1505–1524. [Google Scholar] [CrossRef]
- Fischer, J.; Abson, D.J.; Butsic, V.; Chappell, M.J.; Ekroos, J.; Hanspach, J.; Kuemmerle, T.; Smith, H.G.; Wehrden, H. Land sparing versus land sharing: Moving forward. Conserv. Lett. 2014, 7, 149–157. [Google Scholar] [CrossRef]
- Kragt, M.E.; Robertson, M.J. Quantifying ecosystem services trade-offs from agricultural practices. Ecol. Econ. 2014, 102, 147–157. [Google Scholar] [CrossRef]
- Zhang, W.A.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef]
- Haberl, H.; Gaube, V.; Diaz-Delgado, R.; Krauze, K.; Neuner, A.; Peterseil, J.; Plutzar, C.; Singh, S.J.; Vadineanu, A. Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms. Ecol. Econ. 2009, 68, 1797–1812. [Google Scholar] [CrossRef] [Green Version]
- DeFries, R. Past and future sensitivity of primary production to human modification of the landscape. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Robertson, B.A.; Porter, C.; Landis, D.A.; Schemske, D.W. Agroenergy crops influence the diversity, biomass, and guild structure of terrestrial arthropod communities. BioEnergy Res. 2012, 5, 179–188. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef]
- Martin, L.J.; Quinn, J.E.; Ellis, E.C.; Shaw, M.R.; Dorning, M.; Kraft, C.E.; Hallett, L.; Heller, N.E.; Hobbs, R.J.; Law, E.; et al. Conservation opportunities across the world’s anthromes. Divers. Distrib. 2014, 20, 745–755. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersen, C.B.; Donovan, R.K.; Quinn, J.E. Human Appropriation of Net Primary Production (HANPP) in an Agriculturally-Dominated Watershed, Southeastern USA. Land 2015, 4, 513-540. https://doi.org/10.3390/land4020513
Andersen CB, Donovan RK, Quinn JE. Human Appropriation of Net Primary Production (HANPP) in an Agriculturally-Dominated Watershed, Southeastern USA. Land. 2015; 4(2):513-540. https://doi.org/10.3390/land4020513
Chicago/Turabian StyleAndersen, C. Brannon, R. Kyle Donovan, and John E. Quinn. 2015. "Human Appropriation of Net Primary Production (HANPP) in an Agriculturally-Dominated Watershed, Southeastern USA" Land 4, no. 2: 513-540. https://doi.org/10.3390/land4020513
APA StyleAndersen, C. B., Donovan, R. K., & Quinn, J. E. (2015). Human Appropriation of Net Primary Production (HANPP) in an Agriculturally-Dominated Watershed, Southeastern USA. Land, 4(2), 513-540. https://doi.org/10.3390/land4020513