Model-Based Synthesis of Locally Contingent Responses to Global Market Signals
Abstract
:1. Introduction
2. Background
2.1. Conceptual Framework
2.2. Synthesis Approaches in Land Change Science
3. Experimental Section
3.1. The Agent-Based Synthesis System Approach
3.2. Case Study and Test Case Selection
- provided primary data collected between the years of 1999 and 2005 for temporal consistency with available global data;
- conducted research within an area less than 1,000 km2 to be considered a localized case study;
- reported the total number of and household participation rates in livelihood activities;
- reported the average household-level share of subsistence- and market-oriented land-based production;
- reported the presence and relative contribution of any land-use subsidies;
- described land use type and relative contribution to livelihoods (e.g., staple crop versus cash crop).
Site Name | Saõ Pedro | Bouami | Moungmuay | Phadeng | Mashete | Ulumi | |
---|---|---|---|---|---|---|---|
Global Data | |||||||
Population Density (ppl km−2) | Min | 0 | 0 | 0 | 0 | 1 | 3 |
Mean | 1.3 | 8.6 | 13 | 5 | 45.3 | 47 | |
Max | 5 | 104 | 232 | 88 | 518 | 1012 | |
Market Influence | Min | 0.30 | 0.20 | 0.51 | 0.20 | 0.11 | 0.11 |
Mean | 0.30 | 0.35 | 0.59 | 0.20 | 0.14 | 0.13 | |
Max | 0.31 | 0.50 | 0.70 | 0.20 | 0.14 | 0.14 | |
Market Access | Min | 0.01 | 0.01 | 0.01 | 0.01 | 0.59 | 0.58 |
Mean | 0.04 | 0.55 | 0.40 | 0.01 | 0.62 | 0.60 | |
Max | 0.12 | 0.57 | 0.57 | 0.01 | 0.62 | 0.62 | |
Land Suitability | Class 1(%) | 5.3 | 4.8 | 4.3 | 6.2 | 67.4 | 24.7 |
Class 2(%) | 9.6 | 6.0 | 6.8 | 10.8 | 29.9 | 34.5 | |
Class 3(%) | 27.1 | 19.4 | 19.6 | 31.6 | 1.5 | 27.3 | |
Class 4(%) | 58.0 | 69.8 | 69.3 | 51.4 | 1.3 | 13.4 | |
Case Study Data | |||||||
On-farm income participation (%) | 100 | 100 | 100 | 100 | 100 | 100 | |
Off-farm income participation (%) | 0 | 47 | 58 | 0 | 24 | 43 | |
Subsidy income participation (%) | 78 | 0 | 0 | 0 | 0 | 0 | |
Subsistence ag. production (%) | 54 | 40 | 33 | 47 | 66 | 60 | |
Market ag. production (%) | 46 | 60 | 67 | 53 | 34 | 40 |
3.3. Model Description
3.4. Model Parameterization and Evaluation
Global Dataset | Description | Native Resolution | Source |
---|---|---|---|
Population Density | LandScan year 2000 population density model (ppl·km−2) | 30 arcsec | [68] |
Market Access and Influence Index | Based on travel time to large cities and purchasing power parity, respectively | 30 arcsec | [43] |
Observed Agricultural Yields | Average crop-specific yields (kg·ha−1) | 5 arcmin | [64] |
Land Suitability for Agriculture | Percent reduction in potential agricultural yields due to slope, soil, and climate constraints | 5 arcmin | [66] |
Growing Days | Length of growing season | 5 arcmin | [67] |
Slope | Percent slope calculated from DEM | 30 meter | [65] |
Local Factor | Description | Direction of Local Factor Change with Cost Function Inputs | ||
---|---|---|---|---|
Market Inf./Acc. | Parm. Value | Local Factor Value | ||
1. Non-farm wage | Wage rate for non-farm employment in regional labor market. | + | − | + |
2. Non-farm costs | Transaction costs for locating and maintaining non-farm employment. | + | − | − |
3. Crop price | Farm gate crop price received by producer in regional market. | + | + | + |
4. Farm input costs | Cost of farm inputs such as fertilizer, irrigation, mechanized farming equipment, and/or fencing for livestock. | + | − | − |
5. Agricultural population | Proportion of the total population that is land-holding and engaged in land-based production. | N/A | + | + |
6. Land holdings | Average size of land holdings relative to minimum of land required to meet subsistence needs (in hectares). | N/A | + | + |
General Production and Consumption Patterns | ||||||||||
Criteria | Description | Threshold Value | Source | |||||||
Normal surplus | Little or no surplus due to minimizing risk of and labor in agricultural production. | <25% food surplus, at least 90% of time steps | [70] | |||||||
Minimum aspiration level | Income sufficient to support on-farm activities, or subjective income requirement. | ≥ 90% of agents earn income ≥ farm costs (subsistence) or farm wage (market) | [70] | |||||||
Variance in consumption | Livelihood diversification supports “consumption smoothing” between harvests. | Coefficient of variation in consumption <25%, at least 90% of time steps | [26] | |||||||
Livelihood Activity and Market Participation Rates | ||||||||||
Criteria | Description | Threshold Value | Source | |||||||
On-farm income generating activities | Proportion of the population reported to participate in and received income from on-farm production. | <25% deviation from reported value, at least 90% of time steps | [51,52,53] | |||||||
Non-farm income generating activities | Proportion of the population reported to participate in and received income from non-farm wage employment. | <25% deviation from reported value, at least 90% of time steps | [51,52,53] | |||||||
Government income subsidy | Proportion of the population reported to participate in and received income from government social program or pension. | <25% deviation from reported value, at least 90% of time steps | [51,52,53] | |||||||
Percent subsistence/market production | Average household share of production for subsistence use or market sale. | <25% deviation from reported value, at least 90% of time steps | [51,52,53,61,62] | |||||||
Saõ Pedro | Bouami | Moungmuay | Phadeng | Mashete | Ulumi | |||||
GA Success Rate (%) | 30.0 | 23.3 | 11.7 | 31.7 | 16.7 | 28.3 |
3.5. Model Initialization
3.6. Model Experiments
4. Results
5. Discussion
5.1. Structural versus Agent-Level Explanations
5.2. Limitations
5.3. Future Directions
6. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Conflicts of Interest
References
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing sustainability in a telecoupled world. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.H.; Hertel, T.W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Munroe, D.K.; McSweeney, K.; Olson, J.L.; Mansfield, B. Using economic geography to reinvigorate land-change science. Geoforum 2014, 52, 12–21. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Arneth, A.; Alexander, P.; Brown, D.G.; de Noblet-Ducoudré, N.; Ellis, E.C.; Finnigan, J.; Galvin, K.; Grigg, N.; Harman, I.; et al. Towards decision-based global land use models for improved understanding of the Earth system. Earth Syst. Dynam. 2014, 5, 117–137. [Google Scholar] [CrossRef]
- Eakin, H.; DeFries, R.; Kerr, S.; Lambin, E.F.; Liu, J.; Marcotullio, P.J.; Messerli, P.; Reenberg, A.; Rueda, X.; Swaffield, S.R.; et al. Significance of telecoupling for exploration of land-use change. In Rethinking Global Land Use in an Urban Era; Seto, K.C., Reenberg, A., Eds.; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Magliocca, N.R.; Brown, D.G.; Ellis, E.C. Cross-Site Comparison of Land-Use Decision-Making and Its Consequences across Land Systems with a Generalized Agent-Based Model. PLoS ONE 2014. [Google Scholar] [CrossRef] [PubMed]
- Schmill, M.D.; Gordon, L.M.; Magliocca, N.R.; Ellis, E.C.; Oates, T. GLOBE: Analytics for assessing global representativeness. In Proceedings of the IEEE Fifth International Conference on Computing for Geospatial Research and Application (COM. Geo), Washington, DC, USA, 4–6 August 2014; pp. 25–32.
- Brown, D.G.; Verburg, P.H.; Pontius, R.G., Jr.; Lange, M.D. Opportunities to improve impact, integration, and evaluation of land change models. Curr. Opin. Environ. Sustain. 2013, 5, 452–457. [Google Scholar] [CrossRef]
- Keys, E.; McConnell, W.J. Global change and the intensification of agriculture in the tropics. Glob. Environ. Change 2005, 15, 320–337. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate causes and underlying driving forces of tropical deforestation. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Rudel, T.K. Changing agents of deforestation: From state-initiated to enterprise driven processes, 1970–2000. Land Use Policy 2007, 24, 35–41. [Google Scholar] [CrossRef]
- Van Vliet, N.; Mertz, O.; Heinimann, A.; Langanke, T.; Pascual, U.; Schmook, B.; Adams, C.; Schmidt-Vogt, D.; Messerli, P.; Leisz, S. Trends, drivers, and impacts of changes in swidden cultivation in tropical forestagriculture frontiers: A global assessment. Glob. Environ. Change 2012, 22, 418–429. [Google Scholar] [CrossRef]
- Magliocca, N.R.; Rudel, T.K.; Verburg, P.H.; McConnell, W.J.; Mertz, O.; Gerstner, K.; Heinimann, A.; Ellis, E.C. Synthesis in land change science: methodological patterns, challenges, and guidelines. Region. Environ. Change 2015, 15, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, J.; Verburg, P.H.; Magliocca, N.R; Ellis, E.C.; Buchner, B.; Cook, E.; Benayas, J.R.; Heinimann, A.; Keys, E.; Lee, T.M.; et al. Meta-studies in land use science: Current coverage and future prospects. Ambio 2015, in press. [Google Scholar]
- Yu, Y.; Feng, K.; Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Change 2013, 23, 1178–1186. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F. Forest transition in Vietnam and displacement of deforestation abroad. Proc. Natl. Acad. Sci.USA 2009, 106, 16139–16144. [Google Scholar] [CrossRef] [PubMed]
- Friis, C.; Nielsen, J.O. Exploring the potential of the telecoupling framework for understanding land change. IRI THESys Discussion Papers 2014, 1, 1–32. [Google Scholar]
- D’Odorico, P.; Laio, F.; Ridolfi, L. Does globalization of water reduce societal resilience to drought? Geophys. Res. Lett. 2010. [Google Scholar] [CrossRef]
- Haberl, H.; Kastner, T.; Schaffartzik, A.; Ludwiczek, N.; Erb, K.H. Global effects of national biomass production and consumption: Austria’s embodied HANPP related to agricultural biomass in the year 2000. Ecol. Econ. 2012, 84, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Haberl, H.; Steinberger, J.K.; Plutzar, C.; Erb, K.H.; Gaube, V.; Gingrich, S.; Krausmann, F. Natural and socioeconomic determinants of the embodied human appropriation of net primary production and its relation to other resource use indicators. Ecol. Indic. 2012, 23, 222–231. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, G.K.; Brauman, K.A.; Sun, S.; Carlson, K.M.; Cassidy, E.S.; Gerber, J.S.; West, P.C. Rethinking agricultural trade relationships in an era of globalization. BioScience 2015, 65, 275–289. [Google Scholar] [CrossRef]
- Messerli, P.; Giger, M.; Dwyer, M.B.; Breu, T.; Eckert, S. The geogrpahy of large-scale land acquisitions: Analysing socio-ecological patterns of target conextes in the global South. Appl. Geog. 2014, 53, 449–459. [Google Scholar] [CrossRef]
- Rulli, M.C.; D’Odorico, P. Food appropriation through large scale land acquisitions. Environ. Res. Lett. 2014. [Google Scholar] [CrossRef]
- de Janvry, A.; Fafchamps, M.; Sadoulet, E. Peasant household behavior with missing markets: Some paradoxes explained. Econ. J. 1999, 101, 1400–1417. [Google Scholar] [CrossRef]
- Ellis, F. Peasant Economics: Farm Households and Agrarian Development; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Netting, R.M. Smallholders, Householders: Farm Families and the Ecology of Intensive, Sustainable Agriculture; Stanford University Press: Stanford, CA, USA, 1993. [Google Scholar]
- Ashley, C.; Carney, D. Sustainable Livelihoods: Lessons from Early Experience; DFID: London, UK, 1999. [Google Scholar]
- Barrett, C.B.; Reardon, T.; Webb, P. Nonfarm income diversification and household livelihood strategies in rural Africa: Concepts, dynamics, and policy implications. Food Pol. 2001, 26, 315–331. [Google Scholar] [CrossRef]
- Reardon, T.; Vosti, S.A. Links between rural poverty and the environment in developing countries: Asset categories and investment poverty. World Dev. 1995, 23, 1495–1506. [Google Scholar] [CrossRef]
- Scoones, I. Livelihoods perspectives and rural development. J. Peasant Stud. 2009, 36, 171–196. [Google Scholar] [CrossRef]
- Winters, P.; Davis, B.; Carletto, G. Assets, activities, and rural income generation: Evidence from a multicountry analysis. World Dev. 2009, 37, 1435–1452. [Google Scholar] [CrossRef]
- Osbahr, H.; Twyman, C.; Adger, W.N.; Thomas, D.S. Effective livelihood adaptation to climate change disturbance: scale dimensions of practice in Mozambique. Geoforum 2008, 39, 1951–1964. [Google Scholar] [CrossRef]
- Galor, O.; Weil, D.N. Population, technology, and growth: From Malthusian stagnation to the demographic transition and beyond. Amer. Econ. Rev. 2000, 90, 806–828. [Google Scholar] [CrossRef]
- Irwin, E.G. New directions for urban economic models of land use change: Incorporating spatial dynamics and heterogeneity. J. Reg. Sci. 2010, 50, 65–91. [Google Scholar] [CrossRef]
- Manson, S.M. Bounded rationality in agent-based models: experiments with evolutionary programs. Int. J. Geogr. Inf. Sci. 2006, 20, 991–1012. [Google Scholar] [CrossRef]
- An, L. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol. Model. 2012, 229, 25–36. [Google Scholar] [CrossRef]
- Rudel, T.K. Meta-analyses of case studies: a method for studying regional and global environmental change. Glob. Environ. Change 2008, 18, 18–25. [Google Scholar] [CrossRef]
- Rindfuss, R.; Entwisle, B.; Walsh, S.; Mena, C.; Erlien, C.; Gray, C.L. Frontier land use change: Synthesis, challenges, and next steps. Ann. Assoc. Amer. Geog. 2008, 97, 739–754. [Google Scholar] [CrossRef]
- Parker, D.C.; Entwisle, B.; Rindfuss, R.R.; Vanwey, L.K.; Manson, S.M.; Moran, E.; An, L.; Deadman, P.; Evans, T.P.; Linderman, M.; et al. Case studies, cross-site comparisons, and the challenge of generalization: comparing agent-based models of land-use in frontier regions. J. Land Use Sci. 2008, 3, 41–72. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L., II; Lambin, E.F.; Reenberg, A. The emergence of land chance science for global environmental change and sustainability. Proc. Natl. Acad. Sci.USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.H.; Ellis, E.C.; Letourneau, A. A global assessment of market accessibility and market influence for global environmental change studies. Environ. Res. Lett. 2011. [Google Scholar] [CrossRef]
- Magliocca, N.R.; Ellis, E.C. Using pattern-oriented modeling (POM) to cope with uncertainty in multi-scale agent-based models of land system change. Trans. GIS 2013, 17, 883–900. [Google Scholar] [CrossRef]
- Grimm, V.; Revilla, E.; Berger, U.; Jeltsch, F.; Mooi, W.M.; Railsback, S.; Thulke, H.; Wiener, J.; Wiegand, T.; DeAngelis, D. Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science 2005, 310, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Kramer-Schadt, S.; Revilla, E.; Wiegand, T.; Grimm, V. Patterns for parameters in simulation models. Ecol. Model. 2007, 204, 553–556. [Google Scholar] [CrossRef]
- Latombe, G.; Parrot, L.; Fortin, D. Levels of emergence in individual based models: Coping with scarcity of data and pattern redundancy. Ecol. Model. 2001, 222, 1557–1568. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- MacDonald, G.K.; Bennett, E.M.; Taranu, Z.E. The influence of time, soil characteristics, and land-use history on soil phosphorus legacies: A global meta-analysis. Glob. Change Biol. 2012, 18, 1904–1917. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Jobbágy, E.G.; Jackson, R.B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 2009, 19, 2228–2241. [Google Scholar] [CrossRef] [PubMed]
- Castella, J.C.; Lestrelin, G.; Hett, C.; Bourgoin, J.; Fitriana, Y.R.; Heinimann, A.; Pfund, J.L. Effects of landscape segregation on livelihood vulnerability: Moving from extensive shifting cultivation to rotational agriculture and natural forests in northern Laos. Human Ecol. 2013, 41, 63–76. [Google Scholar] [CrossRef]
- Grogan, K.; Birch-Thomsen, T.; Lyimo, J. Transition of shifting cultivation and its impact on people’s livelihoods in the Miombo woodlands of northern Zambia and south-western Tanzania. Human Ecol. 2013, 41, 77–92. [Google Scholar] [CrossRef]
- Adams, C.; Munari, L.C.; van Vliet, N.; Murrieta, R.S.S.; Piperata, B.A.; Futemma, C.; Pedroso, N.N., Jr.; Taqueda, C.S.; Crevelaro, M.A.; Spressola-Prado, V.L. Diversifying incomes and losing landscape complexity in Quilombola shifting cultivation communities of the Atlantic rainforest (Brazil). Human Ecol. 2013, 41, 119–137. [Google Scholar] [CrossRef]
- Magliocca, N.R. Livelihoods Case Sites. GLOBE Collection of Georeferenced Case Studies, 2015. Available online: http://dx.doi.org/doi:10.7933/K14M92G1 (accessed on 29 May 2015).
- Magliocca, N.R. Bouami, GLOBE Georeferenced Case Study, 2015. Available online: http://dx.doi.org/doi:10.7933/K13N21B6 (accessed on 26 June 2015).
- Magliocca, N.R. Moungmuay, GLOBE Georeferenced Case Study, 2015. Available online: http://dx.doi.org/doi:10.7933/K1C24TCJ (accessed on 26 June 2015).
- Magliocca, N.R. Phadeng, GLOBE Georeferenced Case Study, 2015. Available online: http://dx.doi.org/doi:10.7933/K17D2S2J (accessed on 26 June 2015).
- Magliocca, N.R. Sao Pedro, GLOBE Georeferenced Case Study, 2015. Available online: http://dx.doi.org/doi:10.7933/K1GT5K3Z (accessed on 26 June 2015).
- Magliocca, N.R. Mashete, GLOBE Georeferenced Case Study, 2015. Available online: http://dx.doi.org/doi:10.7933/K1V40S4H (accessed on 26 June 2015).
- Magliocca, N.R. Ulumi, GLOBE Georeferenced Case Study, 2015. Available online: http://dx.doi.org/doi:10.7933/K1ZW1HVH (accessed on 26 June 2015).
- Ellis, F.; Mdoe, N. Livelihoods and rural poverty reduction in Tanzania. World Dev. 2003, 31, 1367–1384. [Google Scholar] [CrossRef]
- Paavola, J. Livelihoods, vulnerability and adaptation to climate change in Morogoro, Tanzania. Environ. Sci. Policy 2008, 11, 642–654. [Google Scholar] [CrossRef]
- Magliocca, N.R.; Brown, D.G.; Ellis, E.C. Exploring agricultural livelihood transitions with an Agent-Based Virtual Laboratory: Global Forces to Local Decision-Making. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed]
- MoMonfreda, C.; Ramankutty, N.; Foley, J. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary productivity in the year 2000. Glob. Biogeochem. Cy. 2008. [Google Scholar] [CrossRef]
- ASTER GDEM. ASTER: Advanced Thermal Spaceborne Emission and Reflection Radiometer. Available online: http://asterweb.jpl.nasa.gov/gdem.asp (accessed on 15 April 2015).
- Global Agro-Ecological Zones (GAEZ). Combined suitability constraints. Available online: http://gaez.fao.org/Main.html# (accessed on 15 April 2015).
- Global Agro-Ecological Zones (GAEZ). Growing days. Available online: http://gaez.fao.org/Main.html# (accessed on 15 April 2015).
- Dobson, J.E.; Bright, E.A.; Coleman, P.R.; Durfree, R.C.; Worley, B.A. LandScan: A global population database for estimating populations at risk. Photogramm. Eng. Remote Sens. 2000, 66, 849–857. [Google Scholar]
- Magliocca, N.R. Livelihoods Case Sites, GLOBE Collection of Georeferenced Case Studies. Available online: http://dx.doi.org/doi:10.7933/K14M92G1 (accessed on 29 May 2015).
- Turner, B.L., II; Ali, A. Induced intensification: Agricultural change in Bangladesh with implications for Malthus and Boserup. Proc. Natl. Acad. Sci.USA 1996, 93, 14984–14991. [Google Scholar] [CrossRef]
- Index Mundi. Commodity Prices, 2015. Available online: http://www.indexmundi.com/commodities/ (accessed on 26 May 2015).
- Lansing, D.; Bidegaray, P.; Hansen, D.O.; McSweeney, K. Placing the plantation in smallholder agriculture: Evidence from Costa Rica. Ecol. Eng. 2008, 34, 358–372. [Google Scholar] [CrossRef]
- White, B.; Borras, S.M., Jr.; Hall, R.; Scoones, I.; Wolford, W. The new enclosures: Critical perspectives on corporate land deals. J. Peasant. Stud. 2012, 39, 619–647. [Google Scholar] [CrossRef]
- Cotula, L. The international political economy of the global land rush: A critical appraisal of trends, scale, geography and drivers. J. Peasant Stud. 2012, 39, 649–680. [Google Scholar] [CrossRef]
- Messerli, P.; Heinimann, A.; Giger, M.; Breu, T.; Schönweger, O. From ‘land grabbing’ to sustainable investments in land: Potential contributions by land change science. Curr. Opin. Environ. Sustain. 2013, 5, 528–534. [Google Scholar] [CrossRef]
- Adams, D.C.; Gurevitch, J.; Rosenberg, M.S. Resampling test for meta-analysis of ecological data. Ecology 1997, 78, 1277–1283. [Google Scholar] [CrossRef]
- Magliocca, N.R.; van Vliet, J.; Brown, C.; Evans, T.P.; Houet, T.; Messerli, P.; Messina, J.P.; Nicholas, K.A.; Ornetsmüller, C.; Sagabiel, J.; et al. From meta-studies to modeling: Using synthesis knowledge to build process based land change models. Environ. Model. Soft. 2015, 72, 10–20. [Google Scholar] [CrossRef]
- Haklay, M.; O’Sullivan, D.; Thurstain-Goodwin, M.; Schelhorn, T. “So go downtown”: Simulating pedestrian movement in town centres. Environ. Plann. B 2001, 28, 343–359. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Perry, G.L.W. Spatial Simulation: Exploring Pattern and Process; Wiley-Blackwell: Hoboken, NJ, USA, 2013. [Google Scholar]
- DeFries, R.; Foley, J.; Asner, G. Land-use choices: balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef]
- Foley, J.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe1, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The importance of land-cover change in simulating future climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [PubMed]
- Pielke, R.A. Land use and climate change. Science 2005, 310, 1625–1626. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magliocca, N.R. Model-Based Synthesis of Locally Contingent Responses to Global Market Signals. Land 2015, 4, 807-841. https://doi.org/10.3390/land4030807
Magliocca NR. Model-Based Synthesis of Locally Contingent Responses to Global Market Signals. Land. 2015; 4(3):807-841. https://doi.org/10.3390/land4030807
Chicago/Turabian StyleMagliocca, Nicholas R. 2015. "Model-Based Synthesis of Locally Contingent Responses to Global Market Signals" Land 4, no. 3: 807-841. https://doi.org/10.3390/land4030807
APA StyleMagliocca, N. R. (2015). Model-Based Synthesis of Locally Contingent Responses to Global Market Signals. Land, 4(3), 807-841. https://doi.org/10.3390/land4030807