A Review on Remote Sensing of Urban Heat and Cool Islands
Abstract
:1. Introduction
2. Techniques and Statistics Used in Urban Heat Island Studies
2.1. Methods to Compare Multi-Temporal LST Images
2.2. Determining the Urban Heat Island
2.3. Statistical Analyses of Urban Heat Islands
3. Surface Urban Heat Island
3.1. Satellite Measurements of Urban Heat Island
3.2. Urban Heat Island in Arid and Semi-Arid Climate
4. Urban Cool Islands
5. Future Research Directions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Srivanit, M.; Hokao, K. Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: An Application for the City of Bangkok, Thailand. J. Archit. Plan. Res. Stud. 2012, 9, 83–100. [Google Scholar]
- Zhang, Z.; Ji, M.; Shu, J.; Deng, Z.; Wu, Y. Surface Urban Heat Island in Shanghai, China: Examining the Relationship between Land Surface Temperature and Impervious Surface Fractions Derived from Landsat ETM+ imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 601–606. [Google Scholar]
- Zhang, Y.; Balzter, H.; Liu, B.; Chen, Y. Analyzing the Impacts of Urbanization and Seasonal Variation on Land Surface Temperature Based on Subpixel Fractional Covers Using Landsat Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1344–1356. [Google Scholar] [CrossRef]
- Zhang, Y.; Harris, A.; Balzter, H. Characterizing fractional vegetation cover and land surface temperature based on sub-pixel fractional impervious surfaces from Landsat TM/ETM+. Int. J. Remote Sens. 2015, 36, 4213–4232. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Smith, C. Spatial variation of the daytime Surface Urban Cool Island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban Clim. 2015, 14, 176–186. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Smith, C. Diurnal and Seasonal Variation of Surface Urban Cool and Heat Islands in the Semi-Arid City of Erbil, Iraq. Climate 2016, 4, 42. [Google Scholar] [CrossRef]
- Bornstein, R. Observations of the Urban Heat Island Effect in New York City. Am. Meteorol. Soc. 1968, 7, 575–582. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Morris, C.J.G.; Simmonds, I. Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne, Australia. Int. J. Clim. 2000, 20, 1931–1954. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; LeMone, M.; Tewari, M.; Li, Q.; Wang, Y. An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteorol. Clim. 2009, 48, 484–501. [Google Scholar] [CrossRef]
- Stewart, I.; Oke, T. Newly developed “thermal climate zones” for defining and measuring urban heat island magnitude in the canopy layer. In Proceedings of the T.R. Oke Symposium: Urban Scales, Urban Systems and the Urban Heat Island (Joint between the Timothy R. Oke Symposium and the Eighth Symposium on the Urban Environment), Garmisch-Partenkirchen, Germany, 12 January 2009. [Google Scholar]
- Souch, C.; Grimmond, S. Applied climatology: Urban climate. Prog. Phys. Geogr. 2006, 30, 270–279. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Dayawansa, N.D.K. Urban Heat Islands and the Energy Demand: An Analysis for Colombo City of Sri Lanka Using Thermal Remote Sensing Data; Department of Agricultural Engineering, Faculty of Agriculture, University of Peradeniya: Colombo, Sri Lanka, 2012; pp. 124–131. [Google Scholar]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.; Oke, T.; Emery, W. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003. [Google Scholar]
- Arnfield, A.J. An approach to the estimation of the surface radiative properties and radiation budgets of cities. Phys. Geogr. 1982, 3, 97–122. [Google Scholar]
- Li, Z.-L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Abdullah, H. The Use of Landsat 5 TM Imagery to Detect Urban Expansion and Its Impact on Land Surface Temperatures in The City of Erbil, Iraqi Kurdistan. Master’s Thesis, University of Leicester, Leicester, UK, 2012. [Google Scholar]
- Streutker, D.R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens. 2002, 23, 2595–2608. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Wang, Z. Change analysis of land surface temperature based on robust statistics in the estuarine area of Pearl River (China) from 1990 to 2000 by Landsat TM/ETM+ data. Int. J. Remote Sens. 2007, 28, 2383–2390. [Google Scholar] [CrossRef]
- Khandelwal, S.; Goyal, R.; Kaul, N.; Singhal, V. Study of Land Surface Temperature Variations with Distance from Hot Spots for Urban Heat Island Analysis. In Proceedings of the Geospatial World Forum: Dimensions and Directions of Geospatial Industry, Hyderabad, India, 18–21 January 2011. [Google Scholar]
- Rasul, A.; Balzter, H.; Smith, C. Applying a Normalized Ratio Scale Technique to Assess Influences of Urban Expansion on Land Surface Temperature of the Semi-Arid City of Erbil. Int. J. Remote Sens. 2017, 38, 3960–3980. [Google Scholar] [CrossRef]
- Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [Google Scholar] [CrossRef]
- Hafner, J.; Kidder, S.Q. Urban Heat Island Modeling in Conjunction with Satellite-Derived Surface/Soil Parameters. J. Appl. Meteorol. 1999, 38, 448–465. [Google Scholar] [CrossRef]
- Mochida, A.; Murakami, S.; Ojima, T.; Kim, S.; Ooka, R.; Sugiyama, H. CFD analysis of mesoscale climate in the Greater Tokyo area. J. Wind Eng. Ind. Aerodyn. 1997, 67, 459–477. [Google Scholar] [CrossRef]
- Magee, N.; Curtis, J.; Wendler, G. The urban heat island effect at Fairbanks, Alaska. Theor. Appl. Clim. 1999, 64, 39–47. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature—Vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Sun, D.; Kafatos, M. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett. 2007, 34, L24406. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 68–83. [Google Scholar] [CrossRef]
- Schwarz, N.; Schlink, U.; Franck, U.; Großmann, K. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol. Indic. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Szymanowski, M.; Kryza, M. GIS-based techniques for urban heat island spatialization. Clim. Res. 2009, 38, 171–187. [Google Scholar] [CrossRef]
- Su, Y.F.; Foody, G.M.; Cheng, K.S. Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landsc. Urban Plan. 2012, 107, 172–180. [Google Scholar] [CrossRef]
- Florio, E.N.; Lele, S.R.; Chi Chang, Y.; Sterner, R.; Glass, G.E. Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: A statistical approach. Int. J. Remote Sens. 2004, 25, 2979–2994. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Garg, R.D. Regression-Kriging technique to downscale satellite-derived land surface temperature in heterogeneous agricultural landscape. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1245–1250. [Google Scholar] [CrossRef]
- Kalota, D. Exploring relation of land surface temperature with selected variables using geographically weighted regression and ordinary least square methods in Manipur State, India. Geocarto Int. 2016. [Google Scholar] [CrossRef]
- Albrecht, F. Mikrometeorologische Temperaturmessungen vom Flugzeug aus; Deutscher Wetterdienst: Hesse, Germany, 1952. [Google Scholar]
- Combs, A.C. Techniques and Results of Infrared Surface-Temperature Measurements in New Jersey and Greenland; U.S. Army Signal Research and Development Laboratory: Fort Monmouth, NJ, USA, 1961. [Google Scholar]
- Lorenz, D. Messungen der Bodenoberflächentemperatur vom Hubschrauber aus:(mit 9 Tabellen im Text); Selbstverlag des Deutschen Wetterdienstes: Hesse, Germany, 1962. [Google Scholar]
- Wark, D.Q.; Yamamoto, G.; Lienesch, J. Methods of estimating infrared flux and surface temperature from meteorological satellites. J. Atmos. Sci. 1962, 19, 369–384. [Google Scholar] [CrossRef]
- Rao, P.; Winston, J.S. An Investigation of Some Synoptic Capabilities of Atmospheric “Window“ Measurments from Satellite TIROSII. Appl. Meteorol. 1963, 2, 12–23. [Google Scholar] [CrossRef]
- Lenschow, D.H.; Dutton, J.A. Surface temperature variations measured from an airplane over several surface types. J. Appl. Meteorol. 1964, 3, 65–69. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Cubasch, U.; Sodoudi, S.; Che-Ani, A.I. Mitigating Urban Heat Island Effects in Tehran Metropolitan Area; In Tech Open: Rijeka, Croatia, 2012. [Google Scholar]
- Srivastava, P.K.; Majumdar, T.J.; Bhattacharya, A.K. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Adv. Space Res. 2009, 43, 1563–1574. [Google Scholar] [CrossRef]
- Rao, P. Remote sensing of urban heat islands from an environmental satellite. Bull. Am. Meterol. Soc. 1972, 53, 647–648. [Google Scholar]
- Matson, M.; Mcclain, E.P.; McGinnis, D.F., Jr.; Pritchard, J.A. Satellite Detection of Urban Heat Islands. Mon. Weather Rev. 1978, 106, 1725–1734. [Google Scholar] [CrossRef]
- Price, J.C. Assessment of the urban heat island effect through the use of satellite data. Mon. Weather Rev. 1979, 107, 1554–1557. [Google Scholar] [CrossRef]
- Ottlé, C.; Vidal-Madjar, D. Estimation of land surface temperature with NOAA9 data. Remote Sens. Environ. 1992, 40, 27–41. [Google Scholar] [CrossRef]
- Gutman, G.G. Multi-annual time series of AVHRR-derived land surface temperature. Adv. Space Res. 1994, 14, 27–30. [Google Scholar] [CrossRef]
- Pinheiro, A.C.T.; Mahoney, R.; Privette, J.L.; Tucker, C.J. Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa. Remote Sens. Environ. 2006, 103, 153–164. [Google Scholar] [CrossRef]
- Lopez Garcia, M.J.; CASELLES, V.; Melia, J.; PEREZCUEVA, A. NOAA-AVHRR contribution to the analysis of urban heat islands. In Proceedings of the 5th International Colloquium Physical Measurements and Signatures in Remote Sensing, Courchevel, France, 14–18 Januray 1991; pp. 501–504. [Google Scholar]
- Lee, H.Y. An application of NOAA AVHRR thermal data to the study of urban heat islands. Atmos. Environ. Part B Urban Atmos. 1993, 27, 1–13. [Google Scholar] [CrossRef]
- Nichol, J. Remote sensing of urban heat islands by day and night. Photogramm. Eng. Remote Sens. 2005, 71, 613–621. [Google Scholar] [CrossRef]
- Tiangco, M.; Lagmay, A.M.F.; Argete, J. ASTER-based study of the night-time urban heat island effect in Metro Manila. Int. J. Remote Sens. 2008, 29, 2799–2818. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y. Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef]
- Xu, Y.; Qin, Z.; Lv, J. Comparative analysis of urban heat island and associated land cover change based in Suzhou city using landsat data. In Proceedings of the 2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing, Shanghai, China, 21–22 December 2008. [Google Scholar]
- Bajaj, D.N.; Inamdar, A.B.; Vaibhav, V. Temporal Variation of Urban Heat Island Using Landsat Data: A Case Study of Ahmedabad, India. In Proceedings of the 33rd Asian Conference on Remote Sensing, Pattaya, Thailand, 26–30 November 2012. [Google Scholar]
- Li, Y.Y.; Zhang, H.; Kainz, W. Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 127–138. [Google Scholar] [CrossRef]
- Clinton, N.; Gong, P. MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Environ. 2013, 134, 294–304. [Google Scholar] [CrossRef]
- Lazzarini, M.; Marpu, P.R.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sens. Environ. 2013, 130, 136–152. [Google Scholar] [CrossRef]
- Voogt, J. How Researchers Measure Urban Heat Islands. Available online: https://swap.stanford.edu/20120109061918/http://www.epa.gov/heatisland/resources/pdf/EPA_How_to_measure_a_UHI.pdf (accessed on 20 April 2017).
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Breon, F.M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulou, M.; Cartalis, C. Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Jiménez-Muñoz, J.C.; Franch, B.; Hidalgo, V.; Mattar, C.; Julien, Y.; Cuenca, J.; Romaguera, M.; et al. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. Int. J. Remote Sens. 2013, 34, 3177–3192. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C.J. Derivation of Birmingham's summer surface urban heat island from MODIS satellite images. Int. J. Climatol. 2012, 32, 214–224. [Google Scholar] [CrossRef]
- Frey, C.M.; Rigo, G.; Parlow, E. Urban radiation balance of two coastal cities in a hot and dry environment. Int. J. Remote Sens. 2007, 28, 2695–2712. [Google Scholar] [CrossRef]
- Shahraiyni, H.T.; Sodoudi, S.; El-Zafarany, A.; Abou El Seoud, T.; Ashraf, H.; Krone, K. A Comprehensive Statistical Study on Daytime Surface Urban Heat Island during Summer in Urban Areas, Case Study: Cairo and Its New Towns. Remote Sens. 2016, 8, 643. [Google Scholar] [CrossRef]
- Shastri, H.; Barik, B.; Ghosh, S.; Venkataraman, C.; Sadavarte, P. Flip flop of Day-night and Summer-Winter Surface Urban Heat Island Intensity in India. Sci. Rep. 2017, 7, 40178. [Google Scholar] [CrossRef] [PubMed]
- Al-Ali, A.; Mubarak, H. The Effect of Land Cover on the Air and Surface Urban Heat Island of a Desert Oasis. Ph.D. Thesis, Durham University, Durham, UK, 2015. [Google Scholar]
- Tarleton, L.F.; Katz, R.W. Statistical explanation for trends in extreme summer temperatures at Phoenix, Arizona. J. Clim. 1995, 8, 1704–1708. [Google Scholar] [CrossRef]
- Nasrallah, H.A.; Brazel, A.J.; Balling, R.C. Analysis of the Kuwait City urban heat island. Int. J. Clim. 1990, 10, 401–405. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H.; Chang, S.-D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Frey, C.M.; Rigo, G.; Parlow, E. Investigation of the Daily Urban Cooling Island (UCI) in Two Coastal Cities in an Arid Environment: Dubai and Abu Dhabi (UAE). Available online: https://www.researchgate.net/profile/E_Parlow/publication/242551628_INVESTIGATION_OF_THE_DAILY_URBAN_COOLING_ISLAND_UCI_IN_TWO_COASTAL_CITIES_IN_AN_ARID_ENVIRONMENT_DUBAI_AND_ABU_DHABI_UAE/links/00b7d5298b3c511cac000000/INVESTIGATION-OF-THE-DAILY-URBAN-COOLING-ISLAND-UCI-IN-TWO-COASTAL-CITIES-IN-AN-ARID-ENVIRONMENT-DUBAI-AND-ABU-DHABI-UAE.pdf (accessed on 20 April 2017).
- Wen, L.J.; Lü, S.H.; Chen, S.Q.; Meng, X.H.; Bao, Y. Numerical simulation of cold island effect in Jinta Oasis summer. Plateau Meteorol. 2005, 24, 865–871. [Google Scholar]
- Li, S.; Mo, H.; Dai, Y. Spatio-temporal pattern of urban cool island intensity and its eco-environmental response in Chang-Zhu-Tan urban agglomeration. Commun. Inf. Sci. Manag. Eng. 2011, 1, 1–6. [Google Scholar]
- Steinecke, K. Urban climatological studies in the ReykjavmHk subarctic environment. Atmos. Environ. 1999, 33, 4157–4162. [Google Scholar] [CrossRef]
- Keramitsoglou, I.; Kiranoudis, C.T.; Ceriola, G.; Weng, Q.; Rajasekar, U. Identification and analysis of urban surface temperature patterns in Greater Athens, Greece, using MODIS imagery. Remote Sens. Environ. 2011, 115, 3080–3090. [Google Scholar] [CrossRef]
- Frey, C.M.; Rigo, G.; Parlow, E.; Marçal, A. The cooling effect of cities in a hot and dry environment. In Global developments in environmental earth observation from space, Proceedings of the 25th Annual Symposium of the European Association of Remote Sensing Laboratories, Porto, Portugal, 6–11 June 2005. [Google Scholar]
- Pielke, R.A.; Davey, C.; Morgan, J. Assessing “global warming” with surface heat content. EOS Trans. Am. Geophys. Union 2004, 85, 210–211. [Google Scholar] [CrossRef]
- Shepherd, J.M.; Andersen, T.; Strother, C.; Horst, A.; Bounoua, L.; Mitra, C. Urban Climate Archipelagos: A New Framework for Urban Impacts on Climate. Available online: https://earthzine.org/2013/11/29/urban-climate-archipelagos-a-new-framework-for-urban-impacts-on-climate/ (accessed on 20 April 2017).
Type | Study Area | Climate | Reference Study | Approach | UHII/UCII °C |
---|---|---|---|---|---|
Daytime SUHI | Beijing, China | Dwa: Hot Summer Continental | Tran et al. [26] | Satellite data | 10 |
Vancouver, Canada | Csb: Warm-summer Mediterranean | Roth et al. [15] | Satellite data | 7.5 | |
Medellin, Colombia | Af: Tropical Rainforest | Peng et al. [65] | Satellite data | 7 | |
Athens, Greece | Csa: Dry-summer Subtropical | Stathopoulou and Cartalis [66] | Satellite data | 3.3 | |
Nighttime SUHI | Madrid, Spain | Csa: Dry-summer Subtropical | Sobrino et al. [67] | Airborne | 5 |
Birmingham, UK | Cfb: Marine West Coast | Tomlinson et al. [68] | Satellite data | 5 | |
Erbil, Iraq | BSh: Subtropical Semiarid (Hot Steppe) | Rasul et al. [6] | Satellite data | 4.59 | |
Manila, Philippines | Aw: Tropical Savanna | Tiangco et al. [57] | Satellite data | 2.96 | |
Atlanta, USA | Cfa: Humid Subtropical | Hafner and Kidder [27] | Modeling | 1.2 | |
Daytime SUCI | Abu Dhabi, UAE | Bwh: Subtropical Desert | Lazzarini et al. [63] | Satellite data | −6 |
Dubai, UAE | Bwh: Subtropical Desert | Frey et al. [69] | Satellite data | −5 | |
Erbil, Iraq | BSh: Subtropical Semiarid (Hot Steppe) | Rasul et al. [5] | Satellite data | −3.9 | |
Cairo, Egypt | Bwh: Subtropical Desert | Shahraiyni et al. [70] | Satellite data | −3.1 | |
Central India | Cfa: Humid subtropical and (Aw) tropical wet and dry | Shastri et al. [71] | Satellite data | −2.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasul, A.; Balzter, H.; Smith, C.; Remedios, J.; Adamu, B.; Sobrino, J.A.; Srivanit, M.; Weng, Q. A Review on Remote Sensing of Urban Heat and Cool Islands. Land 2017, 6, 38. https://doi.org/10.3390/land6020038
Rasul A, Balzter H, Smith C, Remedios J, Adamu B, Sobrino JA, Srivanit M, Weng Q. A Review on Remote Sensing of Urban Heat and Cool Islands. Land. 2017; 6(2):38. https://doi.org/10.3390/land6020038
Chicago/Turabian StyleRasul, Azad, Heiko Balzter, Claire Smith, John Remedios, Bashir Adamu, José A. Sobrino, Manat Srivanit, and Qihao Weng. 2017. "A Review on Remote Sensing of Urban Heat and Cool Islands" Land 6, no. 2: 38. https://doi.org/10.3390/land6020038
APA StyleRasul, A., Balzter, H., Smith, C., Remedios, J., Adamu, B., Sobrino, J. A., Srivanit, M., & Weng, Q. (2017). A Review on Remote Sensing of Urban Heat and Cool Islands. Land, 6(2), 38. https://doi.org/10.3390/land6020038