Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Input Data for Upscaling by DayCent
2.2.1. Weather Data
2.2.2. Land Use and Agronomic Properties
2.2.3. Other Soil Physical Properties
2.2.4. Soil Bulk Density and Initial SOC Data
2.3. Model Evaluation
2.4. Upscaling SOC Simulations
2.5. Baseline and Mitigation Management
- Water management: Alternate wetting and drying (AWD).
- Residue and tillage management: 15% residue return coupled with reduced tillage (Rsd_RT). For RT, no puddling was done but soils were saturated overnight for softening of the soil prior to transplanting. Transplantation was done with less disturbance (low intensity tillage) to the top soil in place of traditional ploughing. In case of RT, soils were saturated overnight for softening, 4–6 cm wide and 5–6 cm deep tilled zones were prepared (that preserved about 75–80% of untilled soil) by 2 wheel tractor mounted Versatile Multi Crop Planter (VMP) with a row spacing of 20 cm [52].
- Manure management: substitution of baseline mineral N with a cow dung equivalent to approximately 14 t ha−1 manure. Cow dung expressed in this paper as CD or simply as manure, composition is 1.33% N with C/N ratio 31.50 [53].
- Integrated management (IM): Combination of AWD in Boro rice, Rsd_RT, CD with 40% less N, coupled with 15% less mineral N fertilizer compared to the current rate.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nayak, D.; Saetnan, E.; Cheng, K.; Wang, W.; Koslowski, F.; Cheng, Y.; Zhu, W.Y.; Wang, J.; Liu, J.; Moran, D.; et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agric. Ecosyst. Environ. 2015, 209, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Agriculture. Chapter 8 of Climate Change 2007: Mitigation. In Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Cheng, K.; Ogle, S.M.; Parton, W.J.; Pan, G. Simulating greenhouse gas mitigation potentials for Chinese Croplands using the DAYCENT ecosystem model. Glob. Chang. Biol. 2014, 20, 948–962. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Beyond COP 21: Potential and challenges of the “4 per Thousand” initiative. J. Soil Water Conserv. 2016, 71, 20A–25A. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, A.; Gangwar, B.; Shukla, A.K.; Mazumdar, S.P.; Kumar, A.; Raja, R.; Kumar, A.; Kumar, V.; Rai, P.; Mohan, U. Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice–wheat system in Indo Gangetic Plains of India. Field Crop. Res. 2012, 127, 129–139. [Google Scholar] [CrossRef]
- Babu, Y.J.; Li, C.; Frolking, S.; Nayak, D.R.; Adhya, T. Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutr. Cycl. Agroecosyst. 2006, 74, 157–174. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, N.; Xu, M.; Li, Z.; Lou, Y.; Chen, Y.; Wu, C.; Wang, Z. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system. Biol. Fertil. Soils 2015, 51, 583–591. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Shi, X.; Zhao, Y.; Yu, D.; Li, C.; Wang, S.; Tan, M.; Sun, W. Carbon sequestration potential of recommended management practices for paddy soils of China, 1980–2050. Geoderma 2011, 166, 206–213. [Google Scholar] [CrossRef]
- Chabbi, A.; Lehmann, J.; Ciais, P.; Loescher, H.W.; Cotrufo, M.F.; Don, A.; SanClements, M.; Schipper, L.; Six, J.; Smith, P.; et al. Aligning agriculture and climate policy. Nat. Clim. Chang. 2017, 7, 307–309. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; Mcbratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef] [Green Version]
- Poulton, P.; Johnston, J.; MacDonald, A.; White, R.; Powlson, D. Major limitations to achieving “4 per 1000″ increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, UK. Glob. Chang. Biol. 2018, 24, 2563–2584. [Google Scholar] [CrossRef] [PubMed]
- Huq, S.I.; Shoaib, J.M. The Soils of Bangladesh; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2013; Volume 1, ISBN 978-94-007-1127-3. [Google Scholar] [CrossRef]
- MOEF. Ministry of Environment and Forest. Government of the People’s Republic of Bangladesh, Dhaka. Bangladesh. 2016. Available online: http://www.moa.gov.bd/site/page/4fb627c0-d806-4a7e-a1cd-b67d4bc85159/Bangladesh-Agriculture-at-a-Glance (accessed on 28 March 2018).
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2018. Available online: http://www.fao.org/faostat/en/#data/ (accessed on 2 April 2018).
- BBS. Yearbook of Agricultural Statistics. 28th Series. Bangladesh Bureau of Statistics. Statistics and Informatics Division, Ministry of Planning. Government of the People’s Republic of Bangladesh. 2016. Available online: www.bbs.gov.bd (accessed on 20 December 2017).
- FRG. Fertilizer Recommendation Guide, Bangladesh Agricultural Research Council (BARC), Farmgate, Dhaka 1215. 2016. Available online: http://www.barc.gov.bd (accessed on 20 March 2018).
- Jilani, T.; Hasegawa, T.; Matsuoka, Y. The future role of agriculture and land use change for climate change mitigation in Bangladesh. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 1289–1304. [Google Scholar] [CrossRef]
- MOEF. Intended Nationally Determined Contributions (INDC); Ministry of Environment and Forests, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2015.
- Hussain, S.K.G.; Rashid, M.A. UNDP. Bangladesh: Third National Communication to the United Nations Framework Convention on Climate Change (UNFCC) Project; Draft Report. Component 3: Programme. Containing Measures to mitigate GHG emission (Project Ref. TNC/2014/03); Centre for Environmental and Geographic Information Services: Gulshan, Dhaka, Bangladesh, 2016. [Google Scholar]
- Price, A.H.; Norton, G.J.; Salt, D.E.; Ebenhoeh, O.; Meharg, A.A.; Meharg, C.; Islam, M.R.; Sarma, R.N.; Dasgupta, T.; Ismail, A.M. Alternate wetting and drying irrigation for rice in Bangladesh: Is it sustainable and has plant breeding something to offer? Food Energy Secur. 2013, 2, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Nash. Mitigation Co-Benefits of Increased Water and Nutrient Efficiency in Irrigated Rice in Bangladesh. CCAFS LOW Emission Agriculture. 2016. Available online: https://ccafs.cgiar.org/blog/mitigation-co-benefits-increased-water-and-nutrient-efficiency-irrigated-rice-bangladesh#.WrprfMPwbmF (accessed on 12 October 2017).
- Khan, R.; Saleh, A.F.M. Model-based estimation of methane emission from rice fields in Bangladesh. J. Agric. Eng. Biotechnol. 2015, 3, 125–137. [Google Scholar] [CrossRef]
- Bell, M.; Jones, E.; Smith, J.; Smith, P.; Yeluripati, J.; Augustin, J.; Juszczak, R.; Olejnik, J.; Sommer, M. Simulation of soil nitrogen, nitrous oxide emissions and mitigation scenarios at 3 European cropland sites using the ECOSSE model. Nutr. Cycl. Agroecosyst. 2012, 92, 161–181. [Google Scholar] [CrossRef]
- Parton, W.J.; Hartman, M.; Ojima, D.; Schimel, D. DAYCENT and its land surface submodel: Description and testing. Glob. Planet. Chang. 1998, 19, 35–48. [Google Scholar] [CrossRef]
- Begum, K.; Kuhnert, M.; Yeluripati, J.; Glendining, M.; Smith, P. Simulating soil carbon sequestration from long term fertilizer and manure additions under continuous wheat using the DailyDayCent model. Nutr. Cycl. Agroecosyst. 2017, 109, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Senapati, N.; Chabbi, A.; Giostri, A.F.; Yeluripati, J.B.; Smith, P. Modelling nitrous oxide emissions from mown-grass and grain-cropping systems: Testing and sensitivity analysis of DailyDayCent using high frequency measurements. Sci. Total Environ. 2016, 572, 955–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, D.; van Oijen, M.; Werner, C.; Butterbach-Bahl, K.; Haas, E.; Heuvelink, G.B.M.; Grote, R.; Kiese, R.; Kuhnert, M.; Kros, J.; et al. Environmental change impacts on the C-and N-cycle of European forests: A model comparison study. Biogeosci. Discuss. 2012, 9, 11041–11101. [Google Scholar] [CrossRef]
- Parton, W.; Scurlock, J.; Ojima, D.; Gilmanov, T.; Scholes, R.; Schimel, D.S.; Kirchner, T.; Menaut, J.; Seastedt, T.; Garcia Moya, E.; et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob. Biogeochem. Cycles 1993, 7, 785–809. [Google Scholar] [CrossRef]
- Stehfest, E.; Heistermann, M.; Priess, J.A.; Ojima, D.S.; Alcamo, J. Simulation of global crop production with the ecosystem model DayCent. Ecol. Model. 2007, 209, 203–219. [Google Scholar] [CrossRef]
- Cheng, K.; Ogle, S.M.; Parton, W.J.; Pan, G. Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model. Ecol. Model. 2013, 261, 19–31. [Google Scholar] [CrossRef]
- US EPA. Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2015; United States Environmental Protection Agency: Washington, DC, USA, 2017.
- Begum, K.; Kuhnert, M.; Yeluripati, J.; Ogle, S.; Parton, W.; Kader, M.A.; Smith, P. Soil organic carbon sequestration and mitigation potential in a rice cropland in Bangladesh—A modelling approach. Field Crop. Res. 2018. accepted. [Google Scholar]
- Begum, K.; Kuhnert, M.; Yeluripati, J.; Ogle, S.; Parton, W.; Williams, S.A.; Pan, G.; Cheng, K.; Ali, M.A.; Smith, P. Modelling greenhouse gas emissions and mitigation potentials in fertilized paddy rice fields in Bangladesh. Agric. Ecosyst. Environ. 2018. under review. [Google Scholar]
- Hartmann, M.D.; Parton, W.J.; Del Grosso, S.J.; Hendryx, J.; Hilinski, T.; Kelly, R.; Keough, C.A.; Killian, K.; Lutz, S.; Marx, E.; et al. DayCent Ecosystem Model. User Manual, Scientific Basis, and Technical Documentation; Colorado State University: Fort Collins, CO, USA, 2016. [Google Scholar]
- Del Grosso, S.; Parton, W.; Ojima, D.; Keough, C.; Riley, T.; Mosier, A. DAYCENT Simulated Effects of Land Use and Climate on County Level N Loss Vectors in the USA. In Publications from USDA-ARS/UNL Faculty; U.S. Department of Agriculture: Agricultural Research Service: Lincoln, NE, USA, 2008; p. 255. [Google Scholar]
- BARC. Bangladesh Agricultural Research Council. Khamar Road, Dhaka, Bangladesh. 2018. Available online: http://maps.barcapps.gov.bd/index.php (accessed on 20 March 2018).
- SRDI. Soil Resource Development Institute, Khamar Bari, Dhaka. 2008. [Google Scholar]
- BMD. Bangladesh Meteorological Department. Dhaka. 2016. Available online: http://www.bmd.gov.bd/Document/climateofBangladesh.doc (accessed on 14 September 2016).
- Asaduzzaman, M.; Qamar Munir, M.; Ghulam Hussain, S.; Khan, M.F.A.; Abdur Rashid, M.; Rahaman, A.Z.; Akand, M. An Action Plan for Adaptation in Bangladesh Agriculture under Climate Change; Center for Environmental and Geographic Information Services: Dhaka, Bangladesh, 2016. [Google Scholar]
- Egashira, K.; Han, J.; Satake, N.; Nagayama, T.; Mian, M.J.A.; Moslehuddin, A.Z.M. Field experiment on long-term application of chemical fertilizers and farmyard manure in floodplain soil of Bangladesh. J. Fac. Agric. Kyushu Univ. 2005, 50, 861–870. [Google Scholar]
- Kader, M.A.; Yeasmin, S.; Solaiman, Z.; De Neve, S.; Sleutel, S. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils. Eur. J. Soil Biol. 2017, 80, 27–34. [Google Scholar] [CrossRef]
- Ali, M.A.; Hoque, M.A.; Kim, P.J. Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes. Ambio 2013, 42, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, R.; Meo, M.; Legates, D.R.; Morrissey, M.L. The CERES-Rice model-based estimates of potential monsoon season rainfed rice productivity in Bangladesh. Prof. Geogr. 2003, 55, 259–273. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Manrique, L.; Jones, C. Bulk density of soils in relation to soil physical and chemical properties. Soil Sci. Soc. Am. J. 1991, 55, 476–481. [Google Scholar] [CrossRef]
- De Souza, E.; Fernandes Filho, E.I.; Schaefer, C.E.G.R.; Batjes, N.H.; dos Santos, G.R.; Pontes, L.M. Pedotransfer functions to estimate bulk density from soil properties and environmental covariates: Rio Doce basin. Sci. Agric. 2016, 73, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Del Grosso, S.; Parton, W.; Keough, C.; Reyes-Fox, M. Special features of the DayCent modeling package and additional procedures for parameterization, calibration, validation, and applications. In Methods of Introducing System Models into Agricultural Research; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2011; pp. 155–176. [Google Scholar]
- Kuddus, M.A.; Talukder, M.N.I. Krishitotter Mouloniti; Bangla Academy: Dhaka, Bangladesh, 1981. (In Bangla) [Google Scholar]
- Haque, M.; Bell, R.; Islam, M.; Rahman, M. Minimum tillage unpuddled transplanting: An alternative crop establishment strategy for rice in conservation agriculture cropping systems. Field Crop. Res. 2016, 185, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Sattar, M.; Islam, M.N.; Inubushi, K. Integrated effects of organic, inorganic and biological amendments on methane emission, soil quality and rice productivity in irrigated paddy ecosystem of Bangladesh: Field study of two consecutive rice growing seasons. Plant Soil 2014, 378, 239–252. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G. Chapter 2: Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis; 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 130–234. [Google Scholar]
- Bhatia, A.; Aggarwal, P.K.; Jain, N.; Pathak, H. Greenhouse gas emission from rice- and wheat-growing areas in India: Spatial analysis and upscaling. Greenh. Gases Sci. Technol. 2012, 2, 115–125. [Google Scholar] [CrossRef]
- Sahrawat, K. Fertility and organic matter in submerged rice soils. Curr. Sci. 2005, 88, 735–739. [Google Scholar]
- BLRI. Bangladesh Livestock Research Institute. Ministry of Fisheries and Livestock. Government of the People’s Republic of Bangladesh, Savar, Dhaka, Bangladesh. 2017. Available online: http://www.asti.cgiar.org/node/171 (accessed on 14 February 2017).
- Six, J.; Conant, R.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, Y.; Li, T.; Sun, W.; Huang, Y. Net greenhouse gas balance in China’s croplands over the last three decades and its mitigation potential. Environ. Sci. Technol. 2014, 48, 2589–2597. [Google Scholar] [CrossRef] [PubMed]
- Brye, K.R.; Rogers, C.W.; Smartt, A.D.; Norman, R.J. Soil texture effects on methane emissions from direct-seeded, delayed-flood rice production in Arkansas. Soil Sci. 2013, 178, 519–529. [Google Scholar] [CrossRef]
- Sass, R.; Fisher, F.; Lewis, S.; Jund, M.; Turner, F. Methane emissions from rice fields: Effect of soil properties. Glob. Biogeochem. Cycles 1994, 8, 135–140. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Roy, K.; Neogi, S.; Chakravorti, S.; Behera, K.; Das, K.; Bardhan, S.; Rao, K. Effect of long-term application of organic amendment on C storage in relation to global warming potential and biological activities in tropical flooded soil planted to rice. Nutr. Cycl. Agroecosyst. 2012, 94, 273–285. [Google Scholar] [CrossRef]
- Yan, X.; Akiyama, H.; Yagi, K.; Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles 2009, 23. [Google Scholar] [CrossRef] [Green Version]
- Manjunath, K.; More, R.; Chauhan, P.; Vyas, A.; Panigrahy, S.; Parihar, J. Remote Sensing Based Methane Emission Inventory Vis-A-Vis Rice Cultural Types of South Asia. In Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Hyderabad, India, 9–12 December 2014; pp. 821–826. [Google Scholar]
- MOEF. Bangladesh Climate Change Strategy and Action Plan 2008; Ministry of Environment and Forests, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2008.
- Haider, M.Z. Determinants of rice residue burning in the field. J. Environ. Manag. 2013, 128, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Gaihre, Y.K.; Singh, U.; Islam, S.M.; Huda, A.; Islam, M.; Satter, M.A.; Sanabria, J.; Islam, M.R.; Shah, A. Impacts of urea deep placement on nitrous oxide and nitric oxide emissions from rice fields in Bangladesh. Geoderma 2015, 259, 370–379. [Google Scholar] [CrossRef]
- Ghimire, R.; Lamichhane, S.; Acharya, B.S.; Bista, P.; Sainju, U.M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. J. Integr. Agric. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Rejesus, R.M.; Palis, F.G.; Rodriguez, D.G.P.; Lampayan, R.M.; Bouman, B.A. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 2011, 36, 280–288. [Google Scholar] [CrossRef]
Input Values | Information |
---|---|
Baseline year | 1996 |
Cropping systems | Irrigated rice-fallow-rainfed rice |
Sowing/harvesting (months) | 1 January–May/July–November |
Crop duration (days) | 120-0-120 |
N (kg ha−1 year−1) | 1 110/80 |
Water management | Continuous flood (CF) |
Residue | 5% |
Tillage system | Conventional, applying tractor plough after saturated soil (5–6 cm standing water) called puddle to make the soil soft |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begum, K.; Kuhnert, M.; Yeluripati, J.; Ogle, S.; Parton, W.; Kader, M.A.; Smith, P. Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh. Land 2018, 7, 82. https://doi.org/10.3390/land7030082
Begum K, Kuhnert M, Yeluripati J, Ogle S, Parton W, Kader MA, Smith P. Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh. Land. 2018; 7(3):82. https://doi.org/10.3390/land7030082
Chicago/Turabian StyleBegum, Khadiza, Matthias Kuhnert, Jagadeesh Yeluripati, Stephen Ogle, William Parton, Md Abdul Kader, and Pete Smith. 2018. "Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh" Land 7, no. 3: 82. https://doi.org/10.3390/land7030082
APA StyleBegum, K., Kuhnert, M., Yeluripati, J., Ogle, S., Parton, W., Kader, M. A., & Smith, P. (2018). Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh. Land, 7(3), 82. https://doi.org/10.3390/land7030082