Understanding the Biodiversity Contributions of Small Protected Areas Presents Many Challenges
Abstract
:1. Introduction
2. What Is “Small”?
3. Potential Importance of Small Areas
4. Landscape-Level Views of Small Areas
5. Ecosystem Management for Small Areas
6. Systematic Conservation Planning for Small Areas
7. Summary
7.1. Recommendations for Research
- Examine effects of small protected areas on landscape-level patterns and processes, including local representation of regional diversity, improvement of matrix quality, metapopulation and community services, stopover sites, and network centrality.
- Examine protected areas dataset completeness and topology errors for small areas.
- Develop fine-grain biological and economic data to be used in local-scale systematic conservation planning.
- Examine social and economic barriers that keep partners who own, manage, or monitor small protected areas—e.g., land trusts, local governments, indigenous peoples—from participating in larger landscape efforts.
- Conduct economic research on contributions of small areas to ecosystem services, including water purification and supply, biodiversity, and flood storage.
- Research how small protected areas may contribute to resiliency following large-scale disturbances and contribute to climate change adaptation.
- Examine role of small protected areas in local communities and how they contribute to social, physical, and psychological health and wellbeing.
7.2. Recommendations for Management
- Manage for ecosystem processes such as dispersal and disturbance that extend outside property boundaries.
- Identify the neighboring landowners that accommodate ecosystem processes influencing the site; collaborate across boundaries.
- Provide mapped data on small areas to public databases so it can be used in conservation planning.
- Contribute time and resources to protecting other parcels in your landscape to form functional networks.
- Participate in watershed-level activities to enhance water quality.
- Participate in large landscape efforts to restore natural disturbance regimes.
- Scale up: represent the locality in larger landscape conservation efforts.
- Educate stakeholders about the importance of participating in larger efforts.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Noss, R.F.; Dobson, A.P.; Baldwin, R.F.; Beier, P.; Davis, C.R.; dellaSala, D.A.; Francis, J.; Locke, H.; Nowak, K.; Lopez, R.; et al. Bolder thinking for conservation. Conserv. Boil. 2012, 26, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Margules, C.R.; Pressey, R.L. Systematic conservation planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.N.; Van Houtan, K.S.; Pimm, S.L.; Sexton, J.O. US protected lands mismatch biodiversity priorities. Proc. Natl. Acad. Sci. USA 2015, 112, 5081–5086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joppa, L.N.; Pfaff, A. High and far: Biases in the location of protected areas. PLoS ONE 2009, 4, e8273. [Google Scholar] [CrossRef] [PubMed]
- DeFries, R.; Karanth, K.K.; Pareeth, S. Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Boil. Conserv. 2010, 143, 2870–2880. [Google Scholar] [CrossRef]
- Woodroffe, R.; Ginsberg, J.R. Edge effects and the extinction of populations inside protected areas. Science 1998, 280, 2126–2128. [Google Scholar] [CrossRef] [PubMed]
- Powell, R.B.; Cuschnir, A.; Peiris, P. Overcoming governance and institutional barriers to integrated coastal zone, marine protected area, and tourism management in Sri Lanka. Coast. Manag. 2009, 37, 633–655. [Google Scholar] [CrossRef]
- McRae, B.H.; Hall, S.A.; Beier, P.; Theobald, D.M. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS ONE 2012, 7, e52604. [Google Scholar] [CrossRef] [PubMed]
- Gurney, G.G.; Pressey, R.L.; Ban, N.C.; Álvarez-Romero Jorge, G.; Jupiter, S.; Adams, V.M. Efficient and equitable design of marine protected areas in Fiji through inclusion of stakeholder-specific objectives in conservation planning. Conserv. Boil. 2015, 29, 1378–1389. [Google Scholar] [CrossRef] [PubMed]
- USGS. Protected Areas Database of the United States (PAD-US), Version 1.4 Combined Feature Class; U.S. Department of the Interior: U.S. Geological Survey, 2016.
- Lipscomb, D.J.; Baldwin, R.F. Geoprocessing solutions developed while calculating Human Footprint statistics for zones representing protected areas and adjacent lands at the continent scale. Math. Comput. For. Nat. Resour. Sci. 2010, 2, 72–78. [Google Scholar]
- Rissman, A.R.; Owley, J.; L’Roe, A.W.; Morris, A.W.; Wardropper, C.B. Public access to spatial data on private-land conservation. Ecol. Soc. 2017, 22, 24. [Google Scholar] [CrossRef]
- Clements, H.; Selinske, M.; Archibald, C.; Cooke, B.; Fitzsimons, J.; Groce, J.; Torabi, N.; Hardy, M. Fairness and Transparency Are Required for the Inclusion of Privately Protected Areas in Publicly Accessible Conservation Databases. Land 2018, 7, 96. [Google Scholar] [CrossRef]
- Armsworth, P.R.; Cantú-Salazar, L.; Parnell, M.; Davies, Z.G.; Stoneman, R. Management costs for small protected areas and economies of scale in habitat conservation. Boil. Conserv. 2011, 144, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Porter-Bolland, L.; Ellis, E.A.; Guariguata, M.R.; Ruiz-Mallén, I.; Negrete-Yankelevich, S.; Reyes-García, V. Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropics. For. Ecol. Manag. 2012, 268, 6–17. [Google Scholar] [CrossRef]
- Brewer, R. Conservancy: The Land Trust Movement in America; Dartmouth College, University of Press of New England: Hanover, NH, USA, 2003; p. 364. [Google Scholar]
- Dudley, N.; Parrish, J.D.; Redford, K.H.; Stolton, S. The revised IUCN protected areas management categories: The debate and ways forward. Oryx 2010, 44, 485–490. [Google Scholar] [CrossRef]
- Merenlender, A.M.; Huntsinger, L.; Guthey, G.; Fairfax, S.K. Land trusts and conservation easements: Who is conserving what for whom? Conserv. Boil. 2003, 18, 65–75. [Google Scholar] [CrossRef]
- Rissman, A.R.; Merenlender, A.M. The conservation contributions of conservation easements: Analysis of the San Francisco Bay Area Protected Lands Database. Ecol. Soc. 2008, 13, 25. [Google Scholar] [CrossRef]
- Baldwin, R.F.; Leonard, P.B. Interacting social and environmental predictors for the spatial distribution of conservation lands. PLoS ONE 2015, 10, e0140540. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.L.; Gibbs, J.P. Fundamentals of Conservation Biology, 3rd ed.; Blackwell Publishing: Oxford, UK, 2007. [Google Scholar]
- Newmark, W.D. Extinction of mammal populations in Western North American National Parks. Conserv. Boil. 1995, 9, 512–526. [Google Scholar] [CrossRef]
- Hilty, J.; Merenlender, A.M. Studying biodiversity on private lands. Conserv. Boil. 2003, 17, 132–137. [Google Scholar] [CrossRef]
- Kiesecker, J.M.; Comendant, T.; Grandmason, E.; Gray, E.M.; Hall, C.; Hilsenbeck, R.; Kareiva, P.; Lozier, L.; Naehu, P.; Rissman, A.R.; et al. Conservation easements in context: A quantitative analysis of their use by The Nature Conservancy. Front. Ecol. Environ. 2007, 5, 125–130. [Google Scholar] [CrossRef]
- Pitt, A.L.; Howard, J.H.; Baldwin, R.F.; Baldwin, E.D.; Brown, B.L. Small Parks as Local Social–Ecological Systems Contributing to Conservation of Small Isolated and Ephemeral Wetlands. Nat. Areas J. 2018, 38, 237–249. [Google Scholar] [CrossRef]
- Calhoun, A.J.K.; Jansujwicz, J.S.; Bell, K.P.; Hunter, M.L. Improving management of small natural features on private lands by negotiating the science–policy boundary for Maine vernal pools. Proc. Natl. Acad. Sci. USA 2014, 111, 11002–11006. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.L. Valuing and conserving vernal pools as small-scale ecosystems. In Science and Conservation of Vernal Pools in Northeastern North America; Calhoun, A.J.K., deMaynadier, P.G., Eds.; CRC Press: New York, NY, USA, 2008; pp. 1–10. [Google Scholar]
- Hanski, I. Metapopulation dynamics. Nature 1998, 396, 41–49. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Semlitsch, R.D. Differentiating migration and dispersal processes for pond-breeding amphibians. J. Wildl. Manag. 2008, 72, 260–267. [Google Scholar] [CrossRef]
- Compton, B.W.; McGarigal, K.; Cushman, S.A.; Gamble, L. A resistant-kernal model of connectivity for amphibians that breed in vernal pools. Conserv. Boil. 2007, 21, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Harper, E.B.; Rittenhouse, T.A.G.; Semlitsch, R.D. Demographic consequences of terrestrial habitat loss for pool-breeding amphibians: Predicting extinction risks associated with inadequate size of buffer zones. Conserv. Boil. 2008, 22, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, T.; Lawler, J.J.; McRae, B.H.; Pierce, D.J.; Krosby, M.R.; Kavanagh, D.M.; Singleton, P.H.; Tewksbury, J.J. Connectivity planning to facilitate species movements in response to climate change. Conserv. Boil. 2013, 27, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Homan, R.N.; Windmiller, B.S.; Reed, J.M. Critical thresholds associated with habitat loss for two vernal pool-breeding amphibians. Ecol. Appl. 2004, 14, 1547–1553. [Google Scholar] [CrossRef]
- Gibbs, J.P. Importance of small wetlands for the persistence of local populations of wetland-associated animals. Wetlands 1993, 13, 25–31. [Google Scholar] [CrossRef]
- Hanski, I.; Thomas, C.D. Metapopulation dynamics and conservation: A spatially explicit model applied to butterflies. Boil. Conserv. 1994, 68, 167–180. [Google Scholar] [CrossRef]
- Beaudry, F.; deMaynadier, P.G.; Hunter, M.L. Identifying road mortality threat at multiple spatial scales for semi-aquatic turtles. Boil. Conserv. 2008, 141, 2550–2563. [Google Scholar] [CrossRef]
- Niles, L.J.; Burger, J.; Clark, K.E. The Influence of Weather, Geography, and Habitat on Migrating Raptors on Cape May Peninsula. Condor 1996, 98, 382–394. [Google Scholar] [CrossRef]
- Chardine, J.W.; Rail, J.-F.; Wilhelm, S. Population dynamics of Northern Gannets in North America, 1984–2009. J. Field Ornithol. 2013, 84, 187–192. [Google Scholar] [CrossRef]
- Theobald, D.M. Placing exurban land-use change in a human modification framework. Front. Ecol. Environ. 2004, 2, 139–144. [Google Scholar] [CrossRef]
- Bell, K.P.; Irwin, E.G. Spatially explicit micro-level modelling of land use change at the rural-urban interface. Agric. Econ. 2002, 27, 217–232. [Google Scholar] [CrossRef]
- Baldwin, R.F.; deMaynadier, P.G. Assessing threats to pool-breeding amphibian habitat in an urbanizing landscape. Boil. Conserv. 2009, 142, 1628–1638. [Google Scholar] [CrossRef]
- Larson, L.R.; Jennings, V.; Cloutier, S.A. Public parks and wellbeing in urban areas of the United States. PLoS ONE 2016, 11, e0153211. [Google Scholar] [CrossRef] [PubMed]
- Grumbine, R.E. What is ecosystem management? Conserv. Boil. 1994, 8, 27–38. [Google Scholar] [CrossRef]
- Berger, J. The last mile: How to sustain long-distance migration in mammals. Conserv. Boil. 2004, 18, 320–331. [Google Scholar] [CrossRef]
- Trombulak, S.C.; Frissell, C.A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Boil. 2000, 14, 18–30. [Google Scholar] [CrossRef]
- Baker, W.L. The landscape ecology of large disturbances in the design and management of nature reserves. Landsc. Ecol. 1992, 7, 181–194. [Google Scholar] [CrossRef]
- Neel, L. The Art of Managing Longleaf; University of Georgia Press: Athens, GA, USA, 2010; p. 211. [Google Scholar]
- Conner, W.H.; Mixon, W.D.; Wood, G.W. Maritime forest habitat dynamics on Bulls Island, Cape Romain National Wildlife Refuge, SC, following Hurricane Hugo. For. Ecol. Manag. 2005, 212, 127–134. [Google Scholar] [CrossRef]
- Chester, C.C. Conservation across Borders: Biodiversity in an Interdependent World; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Colbert, N.; Baldwin, R.F. A developer-initiated conservation plan for pool-breeding amphibians in Maine, USA: A case study. J. Conserv. Plan. 2011, 7, 27–38. [Google Scholar]
- Kothar, A. Community conserved areas: Towards ecological and livelihood security. Parks 2006, 16, 3–13. [Google Scholar]
- Imperial, M.T.; Ospina, S.; Johnston, E.; O’Leary, R.; Thomsen, J.; Williams, P.; Johnson, S. Understanding leadership in a world of shared problems: Advancing network governance in large landscape conservation. Front. Ecol. Environ. 2016, 14, 126–134. [Google Scholar] [CrossRef]
- Baldwin, R.F.; Trombulak, S.C.; Leonard, P.B.; Noss, R.F.; Hilty, J.A.; Possingham, H.P.; Scarlett, L.; Anderson, M.G. The Future of Landscape Conservation. BioScience 2018, 68, 60–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, P.; Baldwin, R.F.; Hanks, D. Landscape-scale conservation design across biotic realms: Sequential integration of aquatic and terrestrial landscapes. Sci. Rep. 2017, 7, 14556. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.M.; McAllister, R.R.J.; Corcoran, J.; Wilson, K.A. Scale Mismatches, Conservation Planning, and the Value of Social-Network Analyses. Conserv. Boil. 2013, 27, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Theobald, D.M.; Spies, T.; Kline, J.D.; Maxwell, B.; Hobbs, N.T.; Dale, V.H. Ecological support for rural land-use planning. Ecol. Appl. 2005, 15, 1906–1914. [Google Scholar] [CrossRef]
- Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2009; p. 320. [Google Scholar]
- Leonard, P.B.; Duffy, E.B.; Baldwin, R.F.; McRae, B.H.; Shah, V.B.; Mohapatra, T.K. GFLOW: Software for modelling circuit theory-based connectivity at any scale. Methods Ecol. Evol. 2017, 8, 519–526. [Google Scholar] [CrossRef]
- Groves, C.; Jensen, D.; Valutis, L.L.; Redford, K.H.; Shaffer, M.; Scot, J.M.; Baumgartner, J.V.; Higgins, J.V.; Beck, M.W.; Anderson, M.G. Planning for biodiversity conservation: Putting conservation science into practice. Bioscience 2002, 52, 499–512. [Google Scholar] [CrossRef]
- Anderson, M.G.; Clark, M.; Sheldon, A.O. Estimating climate resilience for conservation across geophysical settings. Conserv. Boil. 2014, 28, 959–970. [Google Scholar] [CrossRef] [PubMed]
- Theobald, D. A General-Purpose Spatial Survey Design for Collaborative Science and Monitoring of Global Environmental Change: The Global Grid. Remote Sens. 2016, 8, 813. [Google Scholar] [CrossRef]
- Theobald, D.M.; Hobbs, R.J.; Bearly, T.; Zack, J.A.; Shenk, T.; Riebsame, W.E. Incorporating biological information in local land-use decision-making: Designing a system for conservation planning. Landsc. Ecol. 2000, 15, 35–45. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldwin, R.F.; Fouch, N.T. Understanding the Biodiversity Contributions of Small Protected Areas Presents Many Challenges. Land 2018, 7, 123. https://doi.org/10.3390/land7040123
Baldwin RF, Fouch NT. Understanding the Biodiversity Contributions of Small Protected Areas Presents Many Challenges. Land. 2018; 7(4):123. https://doi.org/10.3390/land7040123
Chicago/Turabian StyleBaldwin, Robert F., and Nakisha T. Fouch. 2018. "Understanding the Biodiversity Contributions of Small Protected Areas Presents Many Challenges" Land 7, no. 4: 123. https://doi.org/10.3390/land7040123
APA StyleBaldwin, R. F., & Fouch, N. T. (2018). Understanding the Biodiversity Contributions of Small Protected Areas Presents Many Challenges. Land, 7(4), 123. https://doi.org/10.3390/land7040123