Projecting Urbanization and Landscape Change at Large Scale Using the FUTURES Model
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Model Parameterization, Calibration and Validation
2.2.1. Urban Development Suitability
2.2.2. Land Consumption
2.2.3. Urban Patch Growth
2.3. Scenarios of Urban Development
2.4. Land Change Evaluation under Status Quo and Infill Scenarios
3. Results
3.1. Model Parameterization, Calibration and Validation
3.2. Projections of Urban Development
3.3. Land Changes under Status Quo and Infill Scenarios
3.4. Pattern Evaluation
4. Discussion
4.1. Challenges Getting the Pattern Correct
4.2. Addressing Scales Relevant to Social and Ecological Function
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABM | Agent-based models |
CA | Cellular automata |
CBD | Central business district |
ES | Ecosystem Service |
Infill | Infill urban development strategy/scenario |
NLCD | National Land Cover Database |
SAS | South Atlantic States |
SQ | Status quo urban development strategy/scenario |
Appendix A
Appendix A.1. Parameterization of the FUTURES Model
Appendix A.1.1. Development Suitability
Appendix A.1.2. Land Demand
Appendix A.1.3. Patch Growth
Appendix A.1.4. Validation
Appendix A.2. Patch Validation
Appendix B. Additional Results
Status Quo | Infill | ||||
---|---|---|---|---|---|
Land Area | Current Total (NLCD Estimate) | Total (km) | Diff. | Total (km) | Diff. |
Total Impervious surface (NLCD 21, 22, 23, 24 categories, excluding roads and urban areas in protected areas) | 49,161.48 | 56,611.38 (std. dev. 0.937) | 7449.9 (15.0% increase) | 56,433.22 (std. dev 0.504) | 7271.74 (14.8% increase) |
Barren Land (Rock/Sand/Clay) | 2844.782 | 2698.02 (0.001) | 146.76 (−5.16%) | 2149.54 (0.004) | 154.62 (−5.44%) |
Deciduous Forest | 146,452.8 | 144,474.11 (0.002) | 1978.66 (−1.35%) | 138,053.06 (0.008) | 1868.10 (−1.28%) |
Evergreen Forest | 123,619.3 | 121,930.42 (0.001) | 1688.88 (−1.37%) | 116,145.79 (0.009) | 1662.11 (−1.34%) |
Mixed Forest | 24,262.81 | 24,021.33 (0.001) | 241.488 (−0.10%) | 23,174.60 (0.002) | 242.02 (−0.10%) |
Shrub/Scrub | 55,665.81 | 54,593.01 (0.003) | 1072.80 (−0.19%) | 51,060.97 (0.01) | 1024.12 (−0.18%) |
Grassland/Herbaceous | 32,747.83 | 31,769.54 (0.00) | 978.29 (−2.99%) | 28,353.77 (0.01) | 977.24 (−2.98%) |
Pasture/Hay | 77,658.3 | 75,002.46 (0.00) | 2655.83 (−3.42%) | 65,628.78 (0.01) | 2675.36 (−3.45%) |
Cultivated Crops | 57,840.89 | 56,170.32 (0.00) | 1670.57 (−2.89%) | 50,955.45 (0.01) | 1531.32 (−2.65%) |
Woody Wetlands | 102,494.2 | 101,005.34 (0.00) | 1488.84 (−1.45) | 95,581.65 (0.01) | 1537.35 (−1.50%) |
Emergent Herbaceous Wetlands | 25,545.58 | 25,240.13 (0.00) | 305.45 (−1.20%) | 24,348.28 (0.00) | 266.28 (−1.04%) |
Status Quo | Infill | ||||
---|---|---|---|---|---|
Land Area | Current Total (NLCD Estimate) | Total (km) | Diff. | Total (km) | Diff. |
Highly suitable agricultural land (SSURGO) that is available for cultivation (i.e., not topped by an impervious layer) | 108,523.21 km | 105,295.1 (std. dev. 0.55) | 3228.12 (−3.0%) | 107,187.54 (std. dev. 0.54) | 1335.67 (−1.2%) |
Cotton | 14,383.9 | 13,945.36 (0.56) | 438.53 (−3.05%) | 13,967.34 (0.09) | 416.56 (−2.99%) |
Corn | 9764.004 | 9377.37 (0.17) | 386.63 (−3.96%) | 9413.00 (0.25) | 351.00 (−3.59%) |
Fallow/Idle Cropland | 8561.428 | 8143.32 (0.06) | 418.11 (−4.88%) | 8142.76 (0.13) | 418.67 (−4.89%) |
Other Hay/Non Alfalfa | 7830.199 | 7410.48 (0.38) | 419.72 (−5.36%) | 7402.69 (0.11) | 427.50 (−5.46%) |
Soybeans | 6708.426 | 6389.75 (0.18) | 318.68 (−4.75%) | 6404.71 (0.16) | 303.72 (−4.53%) |
Dbl. Crop Winter Wheat/Soybeans | 4404.217 | 4221.37 (0.13) | 182.84 (−4.15%) | 4239.33 (0.14) | 164.89 (−3.74%) |
Peanuts | 4180.232 | 4079.02 (0.08) | 101.21 (−2.42%) | 4085.30 (0.07) | 94.93 (−2.27%) |
Oranges | 4017.964 | 3613.77 (0.48) | 404.20 (−10.06%) | 3622.31 (0.35) | 395.66 (−9.85%) |
Sugarcane | 1690.131 | 1604.00 (0.02) | 86.13 (−5.10%) | 1641.518 (0.04) | 48.62 (−2.88%) |
Tobacco | 115.7382 | 113.03 (0.05) | 2.71 (−2.34%) | 113.23 (0.02) | 2.51 (−2.17%) |
Peaches | 67.0041 | 64.42 (0.00) | 2.59 (−3.87%) | 63.79 (0.01) | 3.21 (−4.79%) |
Sugarcane | 1690.131 | 1604.00 (0.02) | 86.13 (−5.10%) | 1641.518 (0.04) | 48.62 (−2.88%) |
Tobacco | 115.7382 | 113.03 (−0.05) | 2.71 (−2.34%) | 113.23 (0.02) | 2.51 (−2.17%) |
Peaches | 67.0041 | 64.42 (0.00) | 2.59 (−3.87%) | 63.79 (−0.01) | 3.21 (−4.79%) |
High Priority Areas | 139,115.54 | 1,361,358.7 (4.68) | 2979.66 (−2.14) | 1,362,114.25 (3.62) | 2904.12 (−2.09) |
Medium Priority Areas | 125,907.0147 | 1,239,538.5 (5.84) | 1953.16 (−1.55) | 1,239,650.39 (2.65) | 1941.98 (−1.54) |
References
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. J. Int. Soc. Ecol. Econ. 2008, 29, 293–301. [Google Scholar] [CrossRef]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 2016, 333, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Stott, I.; Soga, M.; Inger, R.; Gaston, K.J. Land sparing is crucial for urban ecosystem services. Front. Ecol. Environ. 2012, 13, 387–393. [Google Scholar] [CrossRef]
- Brown, D.G.; Johnson, K.M.; Loveland, T.R.; Theobald, D.M. Rural Land-use Trends in the Conterminous United States, 1950–2000. Ecol. Appl. Publ. Ecol. Soc. Am. 2005, 15, 1851–1863. [Google Scholar] [CrossRef]
- Pickard, B.; Gray, J.; Meentemeyer, R. Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models. Land 2017, 6, 52. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Nelson, E.; Plantinga, A.J.; Lewis, D.J.; Helmers, D.; Lawler, J.J.; Polasky, S.; Withey, J.C.; Beaudry, F.; Martinuzzi, S.; et al. Economic-based projections of future land use in the conterminous United States under alternative policy scenarios. Ecol. Appl. Publ. Ecol. Soc. Am. 2012, 22, 1036–1049. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terando, A.J.; Costanza, J.; Belyea, C.; Dunn, R.R.; McKerrow, A.; Collazo, J.A. The Southern Megalopolis: Using the Past to Predict the Future of Urban Sprawl in the Southeast U.S. PLoS ONE 2014, 9, e102261. [Google Scholar] [CrossRef] [PubMed]
- United Nations, Department of Economic and Social Affairs, and Population Division. World Population Prospects Highlights 2019. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 19 September 2019).
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Verburg, P.H.; Lippitt, C.D.; McConnell, W.; Sood, A.M.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Kok, K.; van Vliet, M.; Bärlund, I.; Dubel, A.; Sendzimir, J. Combining participative backcasting and exploratory scenario development: Experiences from the SCENES project. Technol. Forecast. Soc. Chang. 2011, 78, 835–851. [Google Scholar] [CrossRef]
- Westhoek, H.J.; van den Berg, M.; Bakkes, J.A. Scenario development to explore the future of Europe’s rural areas. Agric. Ecosyst. Environ. 2006, 114, 7–20. [Google Scholar] [CrossRef]
- Verburg, P.H.; van Berkel, D.B.; van Doorn, A.M.; van Eupen, M.; van den Heiligenberg, H.A. Trajectories of land use change in Europe: A model-based exploration of rural futures. Landsc. Ecol. 2014, 25, 217–232. [Google Scholar] [CrossRef]
- Pickard, B.R.; Van Berkel, D.; Petrasova, A.; Meentemeyer, R.K. Forecasts of urbanization scenarios reveal trade-offs between landscape change and ecosystem services. Landsc. Ecol. 2017, 32, 617–634. [Google Scholar] [CrossRef]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Kaza, N.; BenDor, T.K. The land value impacts of wetland restoration. J. Environ. Manag. 2007, 127, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Jawitz, J.W. High-resolution reconstruction of the United States human population distribution, 1790 to 2010. Sci. Data 2005, 5, 180067. [Google Scholar] [CrossRef] [PubMed]
- Koch, J.; Dorning, M.A.; Van Berkel, D.B.; Beck, S.M.; Sanchez, G.M.; Shashidharan, A.; Meentemeyer, R.K. Modeling landowner interactions and development patterns at the urban fringe. Landsc. Urban Plan. 2007, 182, 101–113. [Google Scholar] [CrossRef]
- Magliocca, N.; McConnell, V.; Walls, M. Exploring sprawl: Results from an economic agent-based model of land and housing markets. Ecol. Econ. J. Int. Soc. Ecol. Econ. 2015, 111, 114–125. [Google Scholar] [CrossRef]
- Dorning, M.A.; Smith, J.W.; Shoemaker, D.A.; Meentemeyer, R.K. Changing decisions in a changing landscape: How might forest owners in an urbanizing region respond to emerging bioenergy markets? Land Use Policy 2005, 49, 1–10. [Google Scholar] [CrossRef]
- Meentemeyer, R.K.; Tang, W.; Dorning, M.A. FUTURES: Multilevel simulations of emerging urban–rural landscape structure using a stochastic patch-growing algorithm. Ann. Assoc. Am. Geogr. 2013, 103, 785–807. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Radeloff, V.C.; Joppa, L.N.; Hamilton, C.M.; Helmers, D.P.; Plantinga, A.J.; Lewis, D.J. Scenarios of future land use change around United States’ protected areas. Ecol. Biol. Conserv. 2015, 184, 446–455. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Reginster, I.; Araújo, M.B.; Carter, T.R.; Dendoncker, N.; Ewert, F.; House, J.I.; Kankaanpaa, S.; Leemans, R.; Tuck, G.; et al. A coherent set of future land use change scenarios for Europe. Agric. Ecosyst. Environ. 2006, 114, 57–68. [Google Scholar] [CrossRef]
- Van Berkel, D.B.; Verburg, P.H. Spatial quantification and valuation of cultural ecosystem services in an agricultural landscape. Ecol. Indic. 2014, 37, 163–174. [Google Scholar] [CrossRef]
- Irwin, E.G.; Bockstael, N.E. The evolution of urban sprawl: Evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. USA 2007, 104, 20672–20677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, B.A.; Evans, K.L.; Warren, P.H. Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning. Curr. Landsc. Ecol. Rep. 2016, 1, 178–192. [Google Scholar] [CrossRef] [Green Version]
- Larson, C.L.; Reed, S.E.; Merenlender, A.M.; Crooks, K.R. Accessibility drives species exposure to recreation in a fragmented urban reserve network. Landsc. Urban Plan. 2018, 78, 62–71. [Google Scholar] [CrossRef]
- Petrasova, A.; Petras, V.; Van Berkel, D.; Harmon, B.A.; Mitasova, H.; Meentemeyer, R.K. Open Source Approach to Urban Growth Simulation. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2016, XLI-B7, 953–959. [Google Scholar] [CrossRef]
- USEPA. ICLUS v1.3 Population ProjectionsData Set. 2007. Available online: https://catalog.data.gov/dataset/iclus-v1-3-population-projections (accessed on 25 April 2017).
- Bereitschaft, B.; Cammack, R. Neighborhood Diversity and the Creative Class in Chicago. Appl. Geogr. 2015, 63, 166–183. [Google Scholar] [CrossRef]
- Hamidi, S.; Ewing, R. A Longitudinal Study of Changes in Urban Sprawl between 2000 and 2010 in the United States. Landsc. Urban Plan. 2014, 128, 72–82. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the Conterminous United States–Representing a Decade of Land Cover Change Information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. Available online: https://www.mrlc.gov/ (accessed on 25 April 2015).
- Nakicenovic, N.; Alcamo, J.; Grubler, A.; Riahi, K.; Roehrl, R.A.; Rogner, H.-H.; Victor, N. Special Report on Emissions Scenarios (SRES), A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Van Berkel, D.B.; Rayfield, B.; Martinuzzi, S.; Lechowicz, M.J.; White, E.; Bell, K.P.; Munroe, D.K.; Parmentier, B.; Radeloff, V.C.; McGill, B.J.; et al. Recognizing the “sparsely settled forest”: Multi-decade socioecological change dynamics and community exemplars. Landsc. Urban Plan. 2012, 170, 177–186. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected Land-Use Change Impacts on Ecosystem Services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [PubMed]
- Fry, J.A.; Coan, M.J.; Homer, C.G.; Meyer, D.K.; Wickham, J.D. Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit Product. US Geological Survey, 2009. Available online: https://www.mrlc.gov/ (accessed on 25 April 2015).
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 National Land Cover Database for the Counterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337. Available online: https://www.mrlc.gov/ (accessed on 25 April 2015).
- Vogelmann, J.E.; Howard, S.M.; Yang, L.; Larson, C.R.; Wylie, B.K.; Van Driel, N. Completion of the 1990s National Land Cover Data Set for the Conterminous United States from Landsat Thematic Mapper Data and Ancillary Data Sources. Photogramm. Eng. Remote Sens. 2001, 67. Available online: https://www.mrlc.gov/ (accessed on 25 April 2015).
- USDA. Soil Survey Geographic (SSURGO) Data Base: Data Use InformationData Set. National Cartography and GIS Center, 1995. Available online: https://www.census.gov/programs-surveys/geography/data.html (accessed on 25 April 2017).
- US Census TIGER products US Roads Shapefile (2010). Available online: https://www.census.gov/programs-surveys/geography.html) (accessed on 25 April 2017).
- USGS. Protected Areas Database of the United States Data Set. US Geological Survey, Department of the Interior Washington, 2010. Available online: https://gapanalysis.usgs.gov/padus/ (accessed on 25 April 2017).
- USGS. National Hydrography Dataset Data Set. US Geological Survey, Department of the Interior Washington, 2012. Available online: https://www.usgs.gov/core-science-systems/ngp/national-hydrography (accessed on 25 April 2017).
- Wickham, J.D.; Stehman, S.V.; Fry, J.A.; Smith, J.H.; Homer, C.G. Thematic accuracy of the NLCD 2001 land cover for the conterminous United States. Remote. Sens. Environ. 2006, 114, 1286–1296. [Google Scholar] [CrossRef]
- Shashidharan, A.; van Berkel, D.B.; Vatsavai, R.R.; Meentemeyer, R.K. pFUTURES: A Parallel Framework for Cellular Automaton Based Urban Growth Models. In Geographic Information Science; Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2016. [Google Scholar]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote. Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Van Vliet, J.; Bregt, A.K.; Hagen-Zanker, A. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol. Model. 2014, 222, 1367–1375. [Google Scholar] [CrossRef]
- McGarigal, K. Landscape Pattern MetricsBased in part on the article “Landscape pattern metrics” by Kevin McGarigal, which appeared in the Encyclopedia of Environmetrics. In Encyclopedia of Environmetrics; John Wiley & Sons, Ltd.: London, UK, 2013. [Google Scholar]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure. 1995. Available online: https://doi.org/10.2737/pnw-gtr-351 (accessed on 16 July 2017).
- Olliff, T.; Mordecai, R.; Cakir, J.; Thatcher, B.S.; Tabor, G.M.; Finn, S.P.; Morris, H.; Converse, Y.; Babson, A.; Monahan, W.B.; et al. Landscape conservation cooperatives: Working beyond boundaries to tackle large-scale conservation challenges. In The George Wright Forum; George Wright Society: Hancock, MI, USA, 2016; Volume 33, pp. 149–162. [Google Scholar]
- Shashidharan, A.; Vatsavai, R.; Van Berkel, D.B.; Meentemeyer, R.K. FUTURES-AMR: Towards an Adaptive Mesh Refinement Framework for Geosimulations. In Proceedings of the 10th International Conference on Geographic Information Science (GIScience 2018), Melbourne, Australia, 28–31 August 2018; pp. 163–177. [Google Scholar]
- Neumann, K.; Verburg, P.H.; Stehfest, E.; Müller, C. The yield gap of global grain production: A spatial analysis. Agric. Syst. 2010, 103, 316–326. [Google Scholar] [CrossRef]
- Barton, K. MuMIn: Multi-Model Inference, R Package Version 0.12.0. 2009. Available online: http://r-Forge.r-Project.org/projects/mumin/ (accessed on 12 March 2017).
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: Global Edition; Prentice-Hall: Englewood Cliffs, NJ, USA, 2010. [Google Scholar]
Name | Description | Units | Source |
---|---|---|---|
Urban land use | Classification of Urban land use (Class 21, 22, 23 & 24) from the NLCD product for 1992, 2001 and 2011 | Presence/absence; 30 m cell | [32,36,37,38] |
Development Pressure | Gravity calculation of 1 km Neighbourhood window of development over the reference years | Scale; 30 m cell | [32]; NLCD; FUTURES Calculation |
Productive agriculture land (% 1 km) | SSURGO high resolution classification of lands for agriculture(soil quality, soil moisture and topography) | Percentage; 30 m cell | [39] |
Road density | (% 1 km) Primary, secondary and connector road density | Percentage; 30 m cell | [40] |
Woody Wetland (% 1 km) | Percentage Emergent Herbaceous wetland within a 1 km neighborhood based on NLCD classification (Class) | Percentage; 30 m cell | [32]; NLCD |
Emergent Herbaceous Wetlands (% 1 km) | Percentage Emergent Herbaceous wetland within a 1 km neighborhood based on NLCD classification (Class) | Percentage; 30 m cell | [32]; NLCD |
Forest land (% 1 km) | Percentage forest within a 1 km neighborhood based on NLCD classification (Class) | Percentage; 30 m cell | [32]; NLCD |
Slope | Euclidian distance to lakes and rivers | Percentage; 30 m cell | [32]; NLCD |
Distance to protected lands | Euclidean distance to IUNC protected areas (e.g., Federal and State Parks and Federal Forest) | Distance 1km (log transformed); 30 m cell | [41] |
Distance to lakes and rivers | Euclidean distance to lakes and rivers | Distance 1 km (log transformed); 30 m cell | [42] |
Fixed Effects | Estimate(Std. Error) | Pr (>|z|) |
---|---|---|
Intercept | −0.05 (0.04) | 0.177 |
Percent forest (1 km) | −2.25 (0.01) | <0.000 |
Percent herbaceous wetlands (1 km) | −0.78 (0.062) | <0.000 |
Distance to lakes and rivers (km); log transformed | −0.19 (0.01) | <0.000 |
Percent productive agriculture land (1 km) | −0.07 (0.01) | <0.000 |
Road density (1 km) | 12.35 (0.06) | <0.000 |
Percent wooded wetlands (1 km) | −2.021 (0.02) | <0.000 |
Distance to protected areas (km); log transformed | −0.01 (0.00) | <0.000 |
Slope | −0.01 (0.00) | <0.000 |
Random effects | Variance | Std.Dev |
Development pressure | 0.419 | 0.648 |
County (dumb.) | 0.001 | 0.032 |
Actual Urban Pattern | Simulated Urban Pattern | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sampling Area | NP | LPI | PARA _MN | ENN _MN | NP | LPI | PARA _MN | ENN _MN | LSI |
1 | 0.107 | 0.007 | 0.010 | 0.163 | 0.189 | 0.025 | 0.011 | 0.148 | 92.86% |
2 | 0.074 | 0.015 | 0.128 | 0.403 | 0.151 | 0.028 | 0.118 | 0.373 | 84.54% |
3 | 0.132 | 0.021 | 0.102 | 0.261 | 0.207 | 0.039 | 0.096 | 0.244 | 87.11% |
4 | 0.32 | 0.052 | 0.062 | 0.134 | 0.373 | 0.079 | 0.064 | 0.127 | 85.95% |
5 | 0.385 | 0.09 | 0.063 | 0.194 | 0.428 | 0.122 | 0.069 | 0.182 | 81.74% |
6 | 0.34 | 0.009 | 0.07 | 0.198 | 0.39 | 0.046 | 0.068 | 0.186 | 84.59% |
7 | 0.179 | 0.02 | 0.076 | 0.281 | 0.247 | 0.043 | 0.072 | 0.26 | 86.11% |
8 | 0.633 | 0.379 | 0.089 | 0.148 | 0.638 | 0.404 | 0.121 | 0.146 | 68.79% |
9 | 0.255 | 0.011 | 0.069 | 0.228 | 0.315 | 0.04 | 0.066 | 0.212 | 85.97% |
10 | 1.115 | 0.05 | 0.106 | 0.095 | 1.071 | 0.127 | 0.108 | 0.096 | 66.44% |
11 | 0.461 | 0.029 | 0.067 | 0.146 | 0.497 | 0.075 | 0.068 | 0.139 | 82.43% |
12 | 0.294 | 0.005 | 0.053 | 0.195 | 0.352 | 0.037 | 0.051 | 0.18 | 86.38% |
13 | 0.316 | 0.125 | 0.069 | 0.162 | 0.366 | 0.148 | 0.077 | 0.154 | 83.25% |
14 | 0.113 | 0.19 | 0.034 | 0.274 | 0.186 | 0.189 | 0.05 | 0.252 | 84.72% |
15 | 0.003 | 0.013 | 0.018 | 0.402 | 0.091 | 0.021 | 0.018 | 0.364 | 89.1% |
16 | 0.25 | 0.037 | 0.04 | 0.254 | 0.311 | 0.064 | 0.042 | 0.233 | 85.48% |
17 | 0.192 | 0.057 | 0.038 | 0.215 | 0.26 | 0.077 | 0.041 | 0.197 | 87.49% |
18 | 0.503 | 0.006 | 0.046 | 0.274 | 0.532 | 0.061 | 0.048 | 0.251 | 79.22% |
19 | 0.145 | 0.016 | 0.058 | 0.278 | 0.218 | 0.034 | 0.055 | 0.255 | 87.66% |
20 | 1.884 | 0.455 | 0.022 | 0.08 | 1.736 | 0.549 | 0.075 | 0.08 | 39.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Berkel, D.; Shashidharan, A.; Mordecai, R.S.; Vatsavai, R.; Petrasova, A.; Petras, V.; Mitasova, H.; Vogler, J.B.; Meentemeyer, R.K. Projecting Urbanization and Landscape Change at Large Scale Using the FUTURES Model. Land 2019, 8, 144. https://doi.org/10.3390/land8100144
Van Berkel D, Shashidharan A, Mordecai RS, Vatsavai R, Petrasova A, Petras V, Mitasova H, Vogler JB, Meentemeyer RK. Projecting Urbanization and Landscape Change at Large Scale Using the FUTURES Model. Land. 2019; 8(10):144. https://doi.org/10.3390/land8100144
Chicago/Turabian StyleVan Berkel, Derek, Ashwin Shashidharan, Rua S. Mordecai, Raju Vatsavai, Anna Petrasova, Vaclav Petras, Helena Mitasova, John B. Vogler, and Ross K. Meentemeyer. 2019. "Projecting Urbanization and Landscape Change at Large Scale Using the FUTURES Model" Land 8, no. 10: 144. https://doi.org/10.3390/land8100144
APA StyleVan Berkel, D., Shashidharan, A., Mordecai, R. S., Vatsavai, R., Petrasova, A., Petras, V., Mitasova, H., Vogler, J. B., & Meentemeyer, R. K. (2019). Projecting Urbanization and Landscape Change at Large Scale Using the FUTURES Model. Land, 8(10), 144. https://doi.org/10.3390/land8100144