Climate, Land Use and Land Cover Changes in the Bandama Basin (Côte D’Ivoire, West Africa) and Incidences on Hydropower Production of the Kossou Dam
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Hydroclimatic and Energy Production Data Sources and Analysis
3.2. Land Use and Land Cover Data Assessment
4. Results
4.1. Hydroclimatic Context of Bandama Basin
4.2. Land Use and Land Cover Changes and Their Incidences on Streamflow
4.2.1. Land Use and Land Cover Changes
4.2.2. Incidence of Land Use/Cover Changes on Streamflow
4.3. Incidences of Land Use/Cover and Climate Changes on the Evolution of Hydropower Generation in the Kossou Dam
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
1988 | Ground Truth (Google Earth imagery) | Number of Classified Pixels | User’s Accuracy | Commission Error | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Water | Land Use | Herbaceous Savanna | Savanna | Forest | Evergreen Forest | |||||
Classified Satellite image as: | Water | 60 | 1 | 0 | 0 | 0 | 0 | 61 | 98.36 | 1.64 |
Land use | 0 | 54 | 0 | 0 | 0 | 0 | 54 | 100.00 | 0.00 | |
Herbaceous Savanna | 0 | 0 | 50 | 3 | 0 | 0 | 53 | 94.34 | 5.66 | |
Savanna | 0 | 0 | 10 | 52 | 6 | 0 | 68 | 76.47 | 23.53 | |
Forest | 0 | 0 | 0 | 5 | 49 | 0 | 54 | 90.74 | 9.26 | |
Evergreen Forest | 0 | 5 | 0 | 0 | 5 | 60 | 70 | 85.71 | 14.29 | |
Number of ground truth | 60 | 60 | 60 | 60 | 60 | 60 | 360 | |||
Producer’s Accuracy | 100.00 | 90.00 | 83.33 | 86.67 | 81.67 | 100.00 | Total Accuracy | 90.28% | ||
Omission error | 0.00 | 10.00 | 16.67 | 13.33 | 18.33 | 0.00 | Kappa Coefficient | 88.33% |
2002 | Ground Truth (Google Earth Imagery) | Number of Classified Pixels | User’s Accuracy | Commission Error | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Water | Land Use | Herbaceous Savanna | Savanna | Forest | Evergreen Forest | |||||
Classified Satellite image as: | Water | 54 | 0 | 0 | 0 | 0 | 0 | 54 | 100.00 | 0.00 |
Land use | 6 | 60 | 0 | 0 | 0 | 0 | 66 | 90.91 | 9.09 | |
Herbaceous Savanna | 0 | 0 | 42 | 0 | 0 | 0 | 42 | 100.00 | 0.00 | |
Savanna | 0 | 0 | 18 | 60 | 0 | 0 | 78 | 76.92 | 23.08 | |
Forest | 0 | 0 | 0 | 0 | 60 | 0 | 60 | 100.00 | 0.00 | |
Evergreen Forest | 0 | 0 | 0 | 0 | 0 | 60 | 60 | 100.00 | 0.00 | |
Number of ground truth | 60 | 60 | 60 | 60 | 60 | 60 | 360 | |||
Producer’s Accuracy | 90 | 100 | 70 | 100 | 100 | 100 | Total Accuracy | 93.33% | ||
Omission error | 10 | 0 | 30 | 0 | 0 | 0 | Kappa Coefficient | 92.00% |
2016 | Ground Truth (Google Earth Imagery) | Number of Classified Pixels | User’s Accuracy | Commission Error | |||||
---|---|---|---|---|---|---|---|---|---|
Water | Land Use | Herbaceous Savanna | Savanna | Forest | |||||
Classified Satellite image as: | Water | 50 | 0 | 0 | 0 | 0 | 50 | 100 | 0 |
Land use | 0 | 45 | 0 | 0 | 0 | 45 | 100 | 0 | |
Herbaceous Savanna | 0 | 0 | 40 | 10 | 0 | 50 | 80 | 20 | |
Savanna | 0 | 0 | 10 | 40 | 0 | 50 | 80 | 20 | |
Forest | 0 | 5 | 0 | 0 | 50 | 55 | 90.91 | 9.09 | |
Number of ground truth | 50 | 50 | 50 | 50 | 50 | 250 | |||
Producer’s Accuracy | 100 | 90 | 80 | 80 | 100 | Total Accuracy | 90% | ||
Omission error | 0 | 10 | 20 | 20 | 0 | Kappa Coefficient | 87.5% |
Appendix B
References
- IPCC Working Group. Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Averyt, K., Chen, Z., Tignor, M.M.B., Miller, H.L., Jr., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 1–18. [Google Scholar]
- Kissinger, G.M.; Herold, M.; De Sy, V. Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers; the Government of the UK and Norway, 2012; p. 48. [Google Scholar]
- Pielke, R.A. Land use and climate change. Science 2005, 310, 1625–1626. [Google Scholar] [CrossRef] [PubMed]
- Dirmeyer, P.A.; Niyogi, D.; de Noblet-Ducoudré, N.; Dickinson, R.E.; Snyder, P.K. Impacts of land use change on climate. Int. J. Climatol. 2010, 30, 1905–1907. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, T.; Diekkrüger, B.; Giertz, S. A comparison of hydrological models for assessing the impact of land use and climate change on discharge in a tropical catchment. J. Hydrol. 2013, 498, 221–236. [Google Scholar] [CrossRef]
- Roy, S.B.; Avissar, R. Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res. D Atmos. 2002, 107, LBA 4-1–LBA 4-12. [Google Scholar]
- Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Bamba, A.; Dieppois, B.; Konaré, A.; Pellarin, T.; Balogun, A.; Dessay, N.; Kamagaté, B.; Savané, I.; Diédhiou, A. Changes in vegetation and rainfall over West Africa during the last three decades (1981–2010). Atmos. Clim. Sci. 2015, 5, 367–379. [Google Scholar] [CrossRef]
- Brou, T. Variabilité climatique, déforestation et dynamique agrodémographique en Côte d’Ivoire. Sécheresse 2010, 21, 1–6. [Google Scholar]
- Zhao, A.; Zhu, X.; Liu, X.; Pan, Y.; Zuo, D. Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China. Catena 2015, 137, 318–327. [Google Scholar] [CrossRef]
- Tu, J. Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA. J. Hydrol. 2009, 379, 268–283. [Google Scholar] [CrossRef]
- Yin, J.; Gentine, P.; Zhou, S.; Sullivan, S.C.; Wang, R.; Zhang, Y.; Guo, S. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 2018, 9, 4389. [Google Scholar] [CrossRef]
- Bewket, W.; Sterk, G. Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin, Ethiopia. Hydrol. Process. Int. J. 2005, 19, 445–458. [Google Scholar] [CrossRef]
- Descroix, L.; Moussa, I.B.; Genthon, P.; Sighomnou, D.; Mahé, G.; Mamadou, I.; Vandervaere, J.P.; Gautier, E.; Maiga, O.F.; Rajot, J.L.; et al. Impact of Drought and Land—Use Changes on Surface—Water Quality and Quantity: The Sahelian Paradox. In Current Perspectives in Contaminant Hydrology and Water Resources Sustainability; IntechOpen: London, UK, 2013; pp. 243–271. [Google Scholar]
- Welde, K.; Gebremariam, B. Effect of land use land cover dynamics on hydrological response of watershed: Case study of Tekeze Dam watershed, northern Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 1–16. [Google Scholar] [CrossRef]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Zuo, D.; Xu, Z.; Yao, W.; Jin, S.; Xiao, P.; Ran, D. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, J.; Choi, C.; Park, S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Sci. Total Environ. 2013, 452–453, 181–195. [Google Scholar] [CrossRef] [PubMed]
- DeFries, R.; Eshleman, K.N. Land-use change and hydrologic processes: A major focus for the future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Asante, F.A.; Amuakwa-mensah, F. Climate Change and Variability in Ghana: Stocktaking. Climate 2015, 3, 78–99. [Google Scholar] [CrossRef]
- Descroix, L.; Manuela, G.; Mahe, G. Evolution of Surface Hydrology in the Sahelo-Sudanian Strip: An Updated Review. Water 2018, 10, 748. [Google Scholar] [CrossRef]
- Ali, A.; Lebel, T. The Sahelian standardized rainfall index revisited. Int. J. Climatol. 2008, 29, 1705–1714. [Google Scholar] [CrossRef]
- Ruti, P.M.; Williams, J.E.; Hourdin, F.; Guichard, F.; Boone, A.; Van Velthoven, P.; Favot, F.; Musat, I.; Rummukainen, M.; Domínguez, M.; et al. The West African climate system: A review of the AMMA model inter-comparison initiatives. Atmos. Sci. Lett. Meteorol. Soc. 2011, 12, 116–122. [Google Scholar] [CrossRef]
- Yao, A.B.; Goula, B.T.A.; Kouadio, Z.A.; Kouakou, K.E.; Kane, A.; Sambou, S. Analyse de la variabilité climatique et quantification des ressources en eau en zone tropicale humide: Cas du bassin versant de la lobo au centre-ouest de la côte d’ivoire. Rev. Ivoir. Sci. Technol. 2012, 19, 136–157. [Google Scholar]
- Eugène, K.K.; Bi, G.; Albert, T.; Michel, K.A. Analyze of climate variability and change impacts on hydro-climate parameters: Case study of Côte d’Ivoire. Int. J. Sci. Eng. Res. 2012, 3, 1–8. [Google Scholar]
- Kabo-Bah, A.; Diji, C.; Nokoe, K.; Mulugetta, Y.; Obeng-Ofori, D.; Akpoti, K. Multiyear Rainfall and Temperature Trends in the Volta River Basin and their Potential Impact on Hydropower Generation in Ghana. Climate 2016, 4, 49. [Google Scholar] [CrossRef]
- IPCC Working Group III. Summary for Policymakers. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- Kouame, K.A.; Kouame, K.F.; Kouassi, A.M.; Oulare, S.; Adon, G.C. Mise en place d’une base de données pour une modélisation hydrologique distribuée du bassin versant du Bandama (Côte d’Ivoire): Apport d’un modèle numérique d’altitude, de la télédétection et du SIG Physitel. Afr. Sci. 2011, 07, 94–114. [Google Scholar]
- Soro, T.; Kouakou, B.; Kouassi, E.; Soro, G.; Kouassi, A.; Kouadio, K.; Yéi, M.S.; Soro, N. Hydroclimatologie et dynamique de l’occupation du sol du bassin versant du Haut Bandama à Tortiya (Nord de la Côte d’Ivoire). VertigO 2013, 13, 1–22. [Google Scholar] [CrossRef]
- Coulibaly, T.J.H.; Coulibaly, S.L.; Ouattara, P.J.M.; Savane, I. Spatial Analysis of the Distribution of Trees According to the Order of Rivers. Earth Syst. Sci. 2017, 5, 142–147. [Google Scholar]
- Ligouzat, A.; Boyce, J.E. Projet du Bandama Pour le Compte la Republique de Cote d’ivoire: Avant-Projet Sommaire et Evaluation Economique. 1964, Volume 1. KAISER ENGINEERS AND CONSTRUCTORS, INC. ET ELECTRICITE DE FRANCE-IGECO. Available online: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers16-07/33209.pdf (accessed on 26 June 2019).
- Bath, I. Aménagement hydroélectrique de Soubré: Un nouveau pôle économique dans le Sud-ouest. L’inter N°5616, 8 March 2017; 11, Abidjan. [Google Scholar]
- Angleine, P. The Climate Data Guide: GPCP (Monthly): Global Precipitation Climatology Project. National Center for Atmospheric Research Staff (Eds), Last modified 2 July 2016. 2016. Available online: https://climatedataguide.ucar.edu/climate-data/gpcp-monthly global-precipitation-climatology-project (accessed on 2 January 2018).
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Fitzpatrick, R.G.J.; Bain, C.L.; Knippertz, P.; Marsham, J.H.; Parker, D.J. The West African Monsoon Onset: A Concise Comparison of Definitions. J. Clim. 2015, 28, 8673–8694. [Google Scholar] [CrossRef]
- Bastola, S.; Fran, D. Temporal extension of meteorological records for hydrological modelling of Lake Chad Basin (Africa) using satellite rainfall data and reanalysis datasets. Meteorol. Appl. 2012, 19, 54–70. [Google Scholar] [CrossRef]
- Yin, X.; Gruber, A. Validation of the abrupt change in GPCP precipitation in the Congo River Basin. Int. J. Climatol. 2010, 30, 110–119. [Google Scholar] [CrossRef]
- The World Meteorological Organization (WMO). Extreme Values Analysis in: The Guide to Hydrological Practices. Volume II: Management of Water Resources and Application of Hydrological Practices, No. 1; WMO: Geneva, Switzerland, 2009; Volume 2. [Google Scholar]
- USGS. What Are the Band Designations for the Landsat Satellites? Available online: https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites-0?qt-news_science_products=7#qt-news_science_products (accessed on 5 January 2018).
- Phiri, D.; Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef]
- Obahoundje, S.; Ofosu, E.; Akpoti, K.; Kabo-bah, A. Land Use and Land Cover Changes under Climate Uncertainty: Modelling the Impacts on Hydropower Production in Western Africa. Hydrology 2017, 4, 2. [Google Scholar] [CrossRef]
- Foody, G. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classification of Remotely Sensed Data A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, L.; Zhao, F.R.; Cai, X.; Zhao, J.; Lu, H.; Gong, P. Tracking annual cropland changes from 1984 to 2016 using time-series Landsat images with a change-detection and post-classification approach: Experiments from three sites in Africa. Remote Sens. Environ. 2018, 218, 13–31. [Google Scholar] [CrossRef]
- Koglo, Y.; Agyare, W.; Diwediga, B.; Sogbedji, J.; Adden, A.; Gaiser, T. Remote Sensing-Based and Participatory Analysis of Forests, Agricultural Land Dynamics, and Potential Land Conservation Measures in Kloto District. Soil Syst. 2018, 2, 49. [Google Scholar] [CrossRef]
- Akpoti, K.; Antwi, E.; Kabo-bah, A. Impacts of Rainfall Variability, Land Use and Land Cover Change on Stream Flow of the Black Volta Basin, West Africa. Hydrology 2016, 3, 26. [Google Scholar] [CrossRef]
- Lamb, P.J. Persistence of Subsaharan drought. Nature 1982, 299, 46–48. [Google Scholar] [CrossRef]
- Pittaluga, F.; Oumarou, N.; Juliette, A.; Alain, K.; Youssouf, N.; Salvati, N.; Seghieri, C. Profil de Pauvreté des Communautés Riveraines du lac de Kossou en Côte d’Ivoire. Available online: http://www.fao.org/tempref/FI/DOCUMENT/sflp/SFLP_publications/French/rpt17.pdf (accessed on 26 June 2019).
- Obahoundje, S.; Diedhiou, A.; Ofosu, E.; Anquetin, S.; François, B.; Adounkpe, J.; Amoussou, E.; Kouame, Y.; Kouassi, K.; Nguessan Bi, V.; et al. Assessment of Spatio-Temporal Changes of Land Use and Land Cover over South-Western African Basins and Their Relations with Variations of Discharges. Hydrology 2018, 5, 56. [Google Scholar] [CrossRef]
- Diba, I.; Camara, M.; Sarr, A.; Diedhiou, A. Potential Impacts of Land Cover Change on the Interannual Variability of Rainfall and Surface Temperature over West Africa. Atmosphere 2018, 9, 376. [Google Scholar] [CrossRef]
- Sy, S.; Noblet-Ducoudré, N.; Quesada, B.; Sy, I.; Dieye, A.; Gaye, A.; Sultan, B. Land-surface characteristics and climate in West Africa: Models’ biases and impacts of historical anthropogenically induced deforestation. Sustainability 2017, 9, 1917. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jha, M.K.; Zhang, Y.K.; Gassman, P.W.; Wolter, C.F. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Mahé, G.; Paturel, J. 1896—2006 Sahelian annual rainfall variability and runoff increase of Sahelian Rivers. C. R. Geosci. 2009, 341, 538–546. [Google Scholar] [CrossRef]
- Mahe, G.; Paturel, J.; Servat, E.; Conway, D.; Dezetter, A. The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso. J. Hydrol. 2005, 300, 33–43. [Google Scholar] [CrossRef]
- Drissa, S.T. Climate Variability Impact on Groundwater Resources in the Highest Bandama Watershed at Tortiya (Northern Côte D′Ivoire). Am. J. Environ. Prot. 2013, 2, 103. [Google Scholar] [CrossRef]
- Beighley, R.E.; Melack, J.M.; Dunne, T. Impacts of California’S Climatic Regimes and Coastal Land Use Change on Streamflow Characteristics. J. Am. Water Resour. Assoc. 2003, 39, 1419–1433. [Google Scholar] [CrossRef]
- Beguería, S.; López-Moreno, J.I.; Lorente, A.; Seeger, M.; García-Ruiz, J.M. Assessing the Effect of Climate Oscillations and Land-use Changes on Streamflow in the Central Spanish Pyrenees. AMBIO J. Hum. Environ. 2003, 32, 283. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Temme, A.J.A.M.; Schoorl, J.M.; Visser, S.M. Evaluating the hydrological component of the new catchment-scale sediment delivery model LAPSUS-D. Geomorphology 2014, 212, 97–107. [Google Scholar] [CrossRef]
- Narany, T.S.; Aris, A.Z.; Sefie, A.; Keesstra, S. Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia. Sci. Total Environ. 2017, 599–600, 844–853. [Google Scholar] [CrossRef]
- Mekonnen, M.; Keesstra, S.D.; Baartman, J.E.M.; Stroosnijder, L.; Maroulis, J. Reducing Sediment Connectivity Through man-Made and Natural Sediment Sinks in the Minizr Catchment, Northwest Ethiopia. Land Degrad. Dev. 2017, 28, 708–717. [Google Scholar] [CrossRef]
- Bissadu, K.D.; Koglo, Y.S.; Johnson, D.B.; Akpoti, K. Coarse Scale Remote Sensing and GIS Evaluation of Rainfall and Anthropogenic Land Use Changes on Soil Erosion in Nasarawa State, Nigeria, West Africa. J. Geosci. Geomat. 2017, 5, 259–266. [Google Scholar]
- Abdollahi, K.; Bazargan, A.; Mckay, G. Water Balance Models in Environmental Modeling. In Handbook of Environmental Materials Management; Springer: Berlin, Germany, 2018. [Google Scholar]
- Aduah, M.S.; Jewitt, G.P.W.; Toucher, M.L.W. Assessing Impacts of Land Use Changes on the Hydrology of a Lowland Rainforest Catchment in Ghana, West Africa. Water 2018, 10, 9. [Google Scholar] [CrossRef]
- Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O. Trajectory analysis of land use and land cover maps to improve spatial—Temporal patterns, and impact assessment on groundwater recharge. J. Hydrol. 2017, 554, 558–569. [Google Scholar] [CrossRef]
Rainfall (P) | Streamflow (Q) | |||||||
---|---|---|---|---|---|---|---|---|
Mean(mm) | SD | CV (%) | Score (S) | Mean(m3/s) | SD | CV (%) | Score (S) | |
Jan | 11.67 | 13.11 | 112.36 | 69 | 4.52 | 7.20 | 159.25 | −109 |
Feb | 42.15 | 20.11 | 47.71 | 89 | 7.69 * | 14.31 | 186.07 | −167 |
Mar | 95.42 | 28.84 | 30.22 | 35 | 12.64 * | 15.70 | 124.18 | −272 |
Apr | 127.84 | 22.40 | 17.52 | 35 | 18.70 * | 18.79 | 100.51 | −211 |
May | 149.02 | 27.19 | 18.24 | −45 | 22.22 | 17.44 | 78.47 | −2 |
Jun | 172.71 | 31.32 | 18.13 | 99 | 33.11 | 23.03 | 69.57 | −100 |
Jul | 140.75 | 39.28 | 27.91 | −75 | 55.67 | 39.76 | 71.42 | 14 |
Aug | 166.82 | 50.95 | 30.54 | −79 | 208.57 | 138.88 | 66.58 | 17 |
Sep | 178.69 | 39.56 | 22.14 | 33 | 412.92 | 190.43 | 46.11 | 99 |
Oct | 132.74 | 34.95 | 26.33 | 61 | 282.43 * | 141.06 | 49.94 | 199 |
Nov | 57.71 * | 22.75 | 39.42 | 137 | 59.95 * | 48.13 | 80.28 | 139 |
Dec | 21.10 | 14.34 | 67.95 | 43 | 6.22 * | 8.47 | 136.01 | −138 |
Annual | 1296.62 | 121.34 | 9.36 | 33 | 93.72 | 34.48 | 36.79 | 86 |
Dry season | 30.16 * | 10.02 | 33.25 | 149 | 23.57 | 16.35 | 69.36 | 89 |
Wet season | 145.50 | 14.77 | 10.15 | −13 | 130.79 | 50.18 | 38.37 | 83 |
Land Cover Types | Area (%) 1988 | Area (%) 2002 | Area (%) 2016 | 1988–2002 | 2002–2016 | 1988–2016 | |||
---|---|---|---|---|---|---|---|---|---|
Change (%) | Change Rate (% /year) | Change (%) | Change Rate (% /year) | Change (%) | Change Rate (% /year) | ||||
Water Bodies | 1.26 | 1.63 | 1.97 | 29.36508 | 1.98 | 20.8589 | 1.39 | 56.34921 | 1.89 |
Land use | 9.43 | 35.39 | 42.15 | 275.2916 | 18.34 | 19.10144 | 1.27 | 346.9777 | 11.56 |
Herbaceous Savanna | 57.72 | 42.43 | 33.63 | −26.49 | −1.77 | −20.74 | −1.38 | −41.736 | −1.39 |
Savanna | 21.22 | 15.22 | 21.12 | −28.2752 | −1.89 | 38.76478 | 2.58 | −0.47125 | −0.02 |
Forest | 3.62 | 1.29 | 1.14 | −64.3646 | −4.29 | −11.6279 | −0.79 | −68.5083 | −2.29 |
Evergreen Forest | 6.74 | 4.04 | 0 | −40.0593 | −2.67 | −100 | −6.67 | −100 | −3.33 |
1988 | 2002 | 2016 | Qualification | ||
---|---|---|---|---|---|
Bandama | Kappa Coefficient | 88.33% | 92.% | 90% | strong |
Accuracy Assessment | 90.28% | 93.33% | 90% | Strong |
Periods | Observation | ||||
---|---|---|---|---|---|
1988–2002 | 2002–2014 | 1988–2014 | |||
CV (%) | Rainfall (P) | 8.8 | 8.64 | 8.55 | Less variation |
Streamflow (Q) | 30.05 | 31.14 | 30.54 | High variation | |
Change %/year (land cover/use classes) | Land use | 18.34 | 1.27 | 11.56 | Increase in land use |
Herbaceous Savanna | −1.77 | −1.38 | −1.39 | Decline in vegetative coverage | |
Savanna | −1.89 | 2.58 | −0.02 | ||
Forest | −4.29 | −0.79 | −2.29 | ||
Evergreen Forest | −2.67 | −6.67 | −3.33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouame, Y.M.; Obahoundje, S.; Diedhiou, A.; François, B.; Amoussou, E.; Anquetin, S.; Didi, R.S.; Kouassi, L.K.; N’guessan Bi, V.H.; Soro, E.G.; et al. Climate, Land Use and Land Cover Changes in the Bandama Basin (Côte D’Ivoire, West Africa) and Incidences on Hydropower Production of the Kossou Dam. Land 2019, 8, 103. https://doi.org/10.3390/land8070103
Kouame YM, Obahoundje S, Diedhiou A, François B, Amoussou E, Anquetin S, Didi RS, Kouassi LK, N’guessan Bi VH, Soro EG, et al. Climate, Land Use and Land Cover Changes in the Bandama Basin (Côte D’Ivoire, West Africa) and Incidences on Hydropower Production of the Kossou Dam. Land. 2019; 8(7):103. https://doi.org/10.3390/land8070103
Chicago/Turabian StyleKouame, Yao Morton, Salomon Obahoundje, Arona Diedhiou, Baptiste François, Ernest Amoussou, Sandrine Anquetin, Régis Sacre Didi, Lazare Kouakou Kouassi, Vami Hermann N’guessan Bi, Emile Gneneyougo Soro, and et al. 2019. "Climate, Land Use and Land Cover Changes in the Bandama Basin (Côte D’Ivoire, West Africa) and Incidences on Hydropower Production of the Kossou Dam" Land 8, no. 7: 103. https://doi.org/10.3390/land8070103
APA StyleKouame, Y. M., Obahoundje, S., Diedhiou, A., François, B., Amoussou, E., Anquetin, S., Didi, R. S., Kouassi, L. K., N’guessan Bi, V. H., Soro, E. G., & Yao, E. K. (2019). Climate, Land Use and Land Cover Changes in the Bandama Basin (Côte D’Ivoire, West Africa) and Incidences on Hydropower Production of the Kossou Dam. Land, 8(7), 103. https://doi.org/10.3390/land8070103