Effects of Agroforestry and Other Sustainable Practices in the Kenya Agricultural Carbon Project (KACP)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterisation of the Study Areas and Background to the KACP
2.2. Farm Sampling and Data Collection
2.3. Data Analysis
3. Results
3.1. Uptake of SALM and Other Practices
3.2. Effects of SALM Practices on Maize Yield
3.3. Maize Productivity
3.4. KACP Effects on Savings and Food Sufficiency
4. Discussion
4.1. Mulching, Terracing and Trees More Popular Than No Tillage
4.2. Terraces and Fodder Trees Increased Maize Productivity
4.3. Maize Productivity Increased but SALM Practices Only Part of the Explanation
4.4. Role of Control Farms in Interpreting Results
4.5. KACP Farms Had Higher Savings and Food Sufficiency
4.6. Limitations of the Study
4.7. Implications and Recommendations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
SALM Categories | SALM Practices |
---|---|
Nutrient management | Mulching, composting, cover crops, nitrogen-fixing crops, manure, restricted chemical fertilisers and chemical management |
Soil and water conservation | Terraces, contour bunds, broad beds and furrows, semi-circular bunds, trash lines, diversion ditches and cut-off drains, retention ditches, pitting, trenches, tied ridges, grass strips, irrigation, roof catchment, ground surfaces and rocks, irregular surfaces, tanks, birkas, pans, ponds, dams, wells and boreholes, ecological sanitation, kitchen water |
Agronomic practices | Crop rotation, intercropping, green manure, contour strip cropping, relay cropping, use of improved crop varieties |
Agroforestry | Plant trees amongst crops, trees and livestock, trees, crops and livestock, trees and insects, trees and water animals, woodlots, boundary planting, dispersed interplanting, fruit orchards |
Tillage and residue management | No-tillage/zero-tillage, reduced tillage, pitting systems, stubble and residue mulch tillage, dibble stick planting, strip and spot tillage, ripping, ridge and furrow tillage, residue management |
Land restoration and rehabilitation | Natural regeneration, assisted natural regeneration, enrichment planting, fire management, agroforestry |
Integrated livestock management | Improved feeding and watering, housing, stall management systems, improved waste management, pest and disease control, improved breeding practices |
Sustainable energy | Biomass, biogas, farm residues, energy-efficient stoves, sustainable charcoal production |
Integrated pest management | Biological pest control, use of crop-resistant varieties, alternative agricultural practices (spraying, use of fertilisers, pruning), mechanical pest control, pesticides, cultural methods, pest management plan |
Parameter | Kisumu Site | Bungoma Site | Data Source |
---|---|---|---|
Counties | Siaya, Kisumu | Bungoma | [83] |
Divisions | Wagai, Kombewa, Madiany | Bumula, Malakisi, Sirisia | [83] |
Location | South Gem, West Gem, North West Gem, North East Gem, South West Gem, South Central Seme, North Central Seme, South West Seme, West Seme, West Uyoma, Central Uyoma, East Uyoma, South Uyoma | Bumula, Kabula, Mabusi, South Bukusu, Khasoko, Siboti, Mukwa Kimaeti, Napara, Kibuke, Malakisi, Namubila, Lwandanyi, Sirisia, Namwela | [83] |
Agro-ecological zones1 | LM1, LM2, LM3, LM4 | UM1, UM2, LM1, LM2, LM3 | [84] |
Soils | Clay content about 39% | Clay content about 20% | [85] |
Altitude (m above sea level) | 1200–1500 m | 1200–1850 m | [86] |
Major crops | Maize & sorghum | Maize & sugarcane | Data from project farms n = 200 |
Average farm size | 0.7 ha | 1.1 ha | Data from project farms n = 200 |
Average household size | 3.6 adults and 3.2 children | 3.7 adults and 4.4 children | Data from project farms n = 200 |
Mean temperature range and mean annual precipitation | 17.4 °C–29.8 °C; 1326 mm | 14 °C–27.6 °C; 1884 mm | [83] |
Project locations | 0°7’45.53" N, 34°23’38.56" E; 0°23’34.29" S; 34°17’58.55" E | 0°27’0.12" N, 34°31’14.87" E; 0°48’18.13" N, 34°24’54.61" E | [83] |
Population density (persons km−2) | 333 and 465 in Siaya and Kisumu County, respectively | 454 in Bungoma County | [87] |
References
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. MConstraints and Potentials of Future Irrigation Water Availability on Agricultural Production under Climate Change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, B.J.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar]
- Foley, J.A.; Ruth, D.; Gregory, P.; Asner, C.B.; Gordon, B.; Stephen, R.; Carpenter, F.; Stuart, C.; Michael, T.; Coe, G.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.; Charles, J.; Tara, G. Food Security and Sustainable Intensification. Philos. Trans. R. Soc. B 2014, 369, 20120273. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Johan, R.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P. Sustainable Intensification of Agriculture for Human Prosperity and Global Sustainability. Ambio 2017, 46, 4–17. [Google Scholar]
- Bergström, L.; Bowman, B.T.; Sims, J.T. Definition of Sustainable and Unsustainable Issues in Nutrient Management of Modern Agriculture. Soil Use Manag. 2005, 21, 76–81. [Google Scholar] [CrossRef]
- Horrigan, L.; Robert, S.; Walker, P. How Sustainable Agriculture Can Address the Environmental and Human Health Harms of Industrial Agriculture. Environ. Health Persp. 2002, 110, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Will, S.; Richardson, K.; Rockström, J.; Sarah, E.; Fetzer, C.I.; Bennett, M.E.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Cynthia, W. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347. [Google Scholar] [CrossRef] [Green Version]
- Wivstad, M.; Dahlin, A.S.; Grant, C. Perspectives on Nutrient Management in Arable Farming Systems. Soil Use Manag. 2005, 21, 113–121. [Google Scholar] [CrossRef]
- Altieri, M.; Clara, A.; Nicholls, I.; Rene, M. Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective. Sustainability 2017, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- Buttel, F.H. Sustaining the Unsustainable. In Handbook of Rural Studies; Paul, C., Ed.; Terry Marsden and Patrick Mooney; SAGE Publications Ltd.: London, UK, 2006. [Google Scholar]
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, P., Zhai, H.O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Abraha, M.; Hamilton, S.K.; Chen, J.; Robertson, G.P. Ecosystem Carbon Exchange on Conversion of Conservation Reserve Program Grasslands to Annual and Perennial Cropping Systems. Agric. For. Meteorol. 2018, 253, 151–160. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Global Potential of Soil Carbon Sequestration to Mitigate the Greenhouse Effect. Crit. Rev. Plant. Sci. 2003, 22, 151–184. [Google Scholar] [CrossRef]
- Mueller, N.; James, D.; Gerber, S.; Matt, J.; Deepak, K.R.; Navin, R.; Jonathan, A.F. Closing Yield Gaps through Nutrient and Water Management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Öborn, I.; Vanlauwe, B.; Phillips, M.; Thomas, R.; Brooijmans, W.; Atta-Krah, K. Sustainable Intensification in Smallholder Agriculture: An. Integrated Systems Research Approach; Öborn, I., Vanlauwe, B., Phillips, M., Thomas, R., Brooijmans, W., Atta-Krah, K., Eds.; Earthscan Food and Agriculture Series: London, UK; Routledge Taylor and Francis Group: New York, NY, USA, 2017. [Google Scholar]
- Swallow, M.B.; Goddard, T.W. Value Chains for Bio-Carbon Sequestration Services: Lessons from Contrasting Cases in Canada, Kenya and Mozambique. Land Use Policy 2013, 31, 81–89. [Google Scholar] [CrossRef]
- Paris Agreement. Paper Presented at the Conference of the Parties to the United Nations Framework Convention on Climate Change; 21st Session; FCCC: Paris, France, 2015. [Google Scholar]
- Government, K. National Climate Change Action Plan 2018-2022; Ministry of Environment and Forestry: Nairobi, Kenya, 2018. [Google Scholar]
- Government, Kenya. National Climate Change Action Plan 2013–2017. 258; Ministry of Environment and Mineral Resources: Nairobi, Kenya, 2013.
- Ylva, N.; Jonsson, M.; Ambjörnsson, E.L.; Wetterlind, J.; Öborn, I. Smallholders’ Awareness of Adaptation and Coping Measures to Deal with Rainfall Variability in Western Kenya. Agroecol. Sustain. Food 2020, 44, 1–29. [Google Scholar]
- Sikstus, G.; Sumeni, S.; Sabodin, R.; Muqfi, I.H.; Nur, M.; Hairiah, K.; Useng, D.; van Noordwijk, M. Soil Organic Matter, Mitigation of and Adaptation to Climate Change in Cocoa–Based Agroforestry Systems. Land 2020, 9, 323. [Google Scholar]
- Elizabeth, B.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting Agriculture to Climate Change in Kenya: Household Strategies and Determinants. J. Environ. Manag. 2013, 114, 26–35. [Google Scholar]
- FAO. Adapting to Climate Change through Land and Water Management in Eastern Africa—Results of Pilot Projects in Ethiopia, Kenya and Tanzania; FAO, Ed.; FAO: Rome, Italy, 2014. [Google Scholar]
- Amy, Q.; Neufeldt, H.; McCabe, J.T. Building Livelihood Resilience: What Role Does Agroforestry Play? Clim. Dev. 2019, 11, 485–500. [Google Scholar]
- Vermeulen, S.J.; Aggarwal, P.K.; Ainslie, A.; Angelone, C.; Campbell, B.M.; Challinor, A.J.; Hansen, J.W.; Ingram, J.S.I.; Jarvis, A.; Kristjanson, P. Options for Support to Agriculture and Food Security under Climate Change. Environ. Sci. Policy 2012, 15, 136–144. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Vimala, D.; Nair, M.; Kumar, B.; Solomon, G.H. Soil Carbon Sequestration in Tropical Agroforestry Systems: A Feasible Appraisal. Environ. Sci. Policy 2009, 12, 1099–1111. [Google Scholar] [CrossRef]
- UNFCCC. Nationally Determined Contributions (Ndcs). United Nations Framework Convention on Climate Change. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs#eq-2 (accessed on 30 August 2019).
- Stefanie, E.; Muller, A. Payments for Environmental Services to Promote Climate-Smart Agriculture? Potential and Challenges. Agric. Econ. 2016, 47, 173–184. [Google Scholar]
- Kelley, H.; Goldstein, A. Ahead of the Curve—State of the Voluntary Carbon Markets 2015; Peters-Stanley, M., Gonzalez, G., Eds.; Ecosystem Marketplace—A Forest trends initiative: Washington, DC, USA, 2015. [Google Scholar]
- Stringer, L.C.; Dougill, A.J.; Thomas, A.D.; Spracklen, D.V.; Chesterman, S.; Speranza, C.I.; Rueff, H.; Riddell, M.; Williams, M.; Beedy, T.; et al. Challenges and Opportunities in Linking Carbon Sequestration, Livelihoods and Ecosystem Service Provision in Drylands. Environ. Sci. Policy 2012, 19–20, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Kelley, H.; Goldstein, A. Raising Ambition: State of the Voluntary Carbon Markets 2016; Ecosystem Marketplace: Washington, DC, USA, 2016. [Google Scholar]
- Henry, M.H.; Tittonell, P.; Manlay, R.J.; Bernoux, M.; Albrecht, A.; Vanlauwe, B. Biodiversity, Carbon Stocks and Sequestration Potential in Aboveground Biomass in Smallholder Farming Systems of Western Kenya. Agr. Ecosyst. Environ. 2009, 129, 238–252. [Google Scholar] [CrossRef]
- Cheikh, M.; van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.A.; Kowero, G. Agroforestry Solutions to Address Food Security and Climate Change Challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar]
- Johannes, W. Project Information Document (Pid) Kenya Agricultural Carbon Project (Kacp); World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Amos, W.; Jönsson, M. Sustainable Agriculture Land Management. A Training Material. Vi Agroforestry. Available online: http://www.viagroforestry.org/who-we-are/resources/publications/ (accessed on 8 January 2015).
- Bouman, F.J.A. Rotating and Accumulating Savings and Credit Associations: A Development Perspective. World Dev. 1995, 23, 371–384. [Google Scholar] [CrossRef]
- Atela, J.O. The Politics of Agricultural Carbon Finance: The Case of the Kenya Agricultural Carbon Project, STEPS Working Paper 49; STEPS Centre: Brighton, UK, 2012; 44p, Available online: www.steps-centre.org (accessed on 5 June 2017).
- Cavanagh, C.J.; Chemarum, A.K.; Vedeld, P.O.; Petursson, J.G. Old Wine, New Bottles? Investigating the Differential Adoption of ‘Climate-Smart’ Agricultural Practices in Western Kenya. J. Rural Stud. 2017, 56, 114–123. [Google Scholar] [CrossRef]
- Karl, H.; Morgan, S.; Baylis, K.; Oduol, J.; Smith-Dumont, E.; Vagen, T.; Mutemi, M.; LePage, C.; Kegode, H. Assessing the Downstream Socioeconomic Impacts of Agroforestry in Kenya. In ICRAF Working Paper No 291; World Agroforestry: Nairobi, Kenya, 2018. [Google Scholar]
- Lee, J. Farmer Participation in a Climate-Smart Future: Evidence from the Kenya Agricultural Carbon Market Project. Land Use Policy 2017, 68, 72–79. [Google Scholar] [CrossRef]
- Lee, J.L.; Martin, A.; Kristjanson, P.; Wollenberg, E. Implications on Equity in Agricultural Carbon Market Projects: A Gendered Analysis of Access, Decision Making, and Outcomes. Environ. Plan. A 2015, 47, 2080–2096. [Google Scholar] [CrossRef]
- Seth, S.; Heiner, K.; Kapukha, M.; Kiguli, L.; Masiga, M.; Kalunda, P.N.; Ssempala, A.; Recha, J.; Wekesa, A. Building Local Institutional Capacity to Implement Agricultural Carbon Projects: Participatory Action Research with Vi Agroforestry in Kenya and Ecotrust in Uganda. Agric. Food Sec. 2016, 5, 13. [Google Scholar]
- Öborn, I.; Wekesa, A.; Natongo, P.; Kiguli, L.; Wachiye, E.; Musee, C.; Kuyah, S.; Neves, B. Who Enjoys Smallholder Generated Carbon Benefits? In Co-Investment in Ecosystem Services: Global Lessons from Payment and Incentive Schemes; Namirembe, S., Leimona, B., van Noordwijk, M., Minang, P., Eds.; World Agroforestry Centre: Nairobi, Kenya, 2017; pp. 1–10. [Google Scholar]
- Mutua, W. Kenya Agricultural Carbon Project Monitoring Report. Vi Agroforestry. Available online: https://www.vcsprojectdatabase.org/#/project_details/12252012 (accessed on 12 December 2018).
- Matthias, S.; Tennigkeit, T.; Zanchi, G.; Bird, N. Technical Guidelines—Activity Baseline and Monitoring Survey Guideline for Sustainable Agricultural Land Management Practices (Salm); UNIQUE forestry consultants: Freiburg, Germany, 2010. [Google Scholar]
- Lager, B. Vcs Project Description Kenya Agricultural Carbon Project. Kisumu; Vi Agroforestry: Kisumu, Kenya, 2012. [Google Scholar]
- R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: http://www.r-project.org/index.html (accessed on 5 May 2019).
- Wei, W.; Feng, X.; Yang, L.; Chen, L.; Feng, T.; Chen, D. The Effects of Terracing and Vegetation on Soil Moisture Retention in a Dry Hilly Catchment in China. Sci. Total Environ. 2019, 647, 1323–1332. [Google Scholar] [CrossRef]
- Tejendra, C.; Raizada, M.N. Agronomic Challenges and Opportunities for Smallholder Terrace Agriculture in Developing Countries. Front. Plant. Sci. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Ngome, A.F.E.; Becker, M.; Mtei, K.M. Leguminous Cover Crops Differentially Affect Maize Yields in Three Contrasting Soil Types of Kakamega, Western Kenya. J. Agric. Rural Dev. Trop. 2011, 112, 1–10. [Google Scholar]
- Sommer, R.; Mukalama, J.; Kihara, J.; Koala, S.; Winowiecki, L.; Bossio, D. Nitrogen Dynamics and Nitrous Oxide Emissions in a Long-Term Trial on Integrated Soil Fertility Management in Western Kenya. Nutr. Cycl. Agroecosyst. 2016, 105, 229–248. [Google Scholar] [CrossRef]
- Biamah, E.K.; Gichuki, F.N.; Kaumbutho, P.G. Tillage Method and Soil and Water Conservation in East Africa. Soil Till Res. 1993, 27, 105–123. [Google Scholar] [CrossRef]
- Ndoli, A.; Baudron, F.; Sida, T.S.; Schut, A.G.T.; van Heerwaarden, J.; Giller, K.E. Conservation Agriculture with Trees Amplifies Negative Effects of Reduced Tillage on Maize Performance in East Africa. Field Crop. Res. 2018, 221, 238–244. [Google Scholar] [CrossRef]
- Kiboi, M.N.; Ngetich, K.F.; Diels, J.; Mucheru-Muna, M.; Mugwe, J.; Mugendi, D.N. Minimum Tillage, Tied Ridging and Mulching for Better Maize Yield and Yield Stability in the Central Highlands of Kenya. Soil Till. Res. 2017, 170, 157–166. [Google Scholar] [CrossRef]
- Potma, G.; Carlos, D.R.J.; Mishra, U.; Furlan, F.J.F.; Ferreira, L.A.; Inagaki, T.M.; Romaniw, J.; Ferreira, A.; Briedis, C. Soil Carbon Inventory to Quantify the Impact of Land Use Change to Mitigate Greenhouse Gas Emissions and Ecosystem Services. Environ. Pollut. 2018, 243, 940–952. [Google Scholar] [CrossRef]
- Sommer, R.; Paul, B.K.; Mukalama, J.; Kihara, J. Reducing Losses but Failing to Sequester Carbon in Soils—the Case of Conservation Agriculture and Integrated Soil Fertility Management in the Humid Tropical Agro-Ecosystem of Western Kenya. Agric. Ecosyst. Environ. 2018, 254, 82–91. [Google Scholar] [CrossRef]
- Kamau, M.; Smale, M.; Mutua, M. Farmer Demand for Soil Fertility Management Practices in Kenya’s Grain Basket. Food Sec. 2014, 6, 793–806. [Google Scholar] [CrossRef]
- Phuong, L.T.H.; Biesbroek, G.R.; Sen, L.T.H.; Wals, A.E.J. Understanding Smallholder Farmers’ Capacity to Respond to Climate Change in a Coastal Community in Central Vietnam. Clim. Dev. 2018, 10, 701–716. [Google Scholar] [CrossRef]
- Shem, K.; Öborn, I.; Jonsson, M.; Dahlin, A.S.; Barrios, E.; Muthuri, C.; Malmer, A.; Nyaga, J.; Magaju, C.; Namirembe, S.; et al. Trees in Agricultural Landscapes Enhance Provision of Ecosystem Services in Sub-Saharan Africa. IJBESM 2016, 12, 255–273. [Google Scholar]
- Esteban, L.M.; Zema, D.A.; Carrà, B.G.; Cerdà, A.; Plaza-Alvarez, P.A.; Cózar, J.S.; Gonzalez-Romero, J.; Moya, D.; de las Heras, J. Short-Term Changes in Infiltration between Straw Mulched and Non-Mulched Soils after Wildfire in Mediterranean Forest Ecosystems. Ecol. Eng. 2018, 122, 27–31. [Google Scholar]
- Kihara, J.; Bationo, A.; Waswa, B.; Kimetu, J.M.; Vanlauwe, B.; Okeyo, J.; Mukalama, J.; Martius, C. Effect of Reduced Tillage and Mineral Fertilizer Application on Maize and Soybean Productivity. Exp. Agric. 2011, 48, 159–175. [Google Scholar] [CrossRef]
- Castellanos-Navarrete, A.; Tittonell, P.; Rufino, M.C.; Giller, K.E. Feeding, Crop Residue and Manure Management for Integrated Soil Fertility Management—A Case Study from Kenya. Agric. Syst. 2015, 134, 24–35. [Google Scholar] [CrossRef]
- Lagerkvist, C.J.; Shikuku, K.; Okello, J.; Karanja, N.; Ackello-Ogutu, C. A Conceptual Approach for Measuring Farmers’ Attitudes to Integrated Soil Fertility Management in Kenya. NJAS Wagen. J. Life Sci. 2015, 74–75, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Ndoli, A.; Baudron, F.; Antonius, G.; Schut, T.; Athanase, M.; Giller, K.E. Disentangling the Positive and Negative Effects of Trees on Maize Performance in Smallholdings of Northern Rwanda. Field Crop. Res. 2017, 213, 1–11. [Google Scholar] [CrossRef]
- Abubeker, H.; Talore, D.G.; Tesfamariam, E.H.; Friend, M.A.; Mpanza, T.D.E. Potential Use of Forage-Legume Intercropping Technologies to Adapt to Climate-Change Impacts on Mixed Crop-Livestock Systems in Africa: A Review. Reg. Environ. Chang. 2017, 17, 1713–1724. [Google Scholar]
- Kurniatun, H.; Widianto, W.; Suprayogo, D.; van Noordwijk, M. Tree Roots Anchoring and Binding Soil: Reducing Landslide Risk in Indonesian Agroforestry. Land 2020, 9, 256. [Google Scholar]
- Ylva, N.; Wetterlind, J.; Jonsson, M.; Öborn, I. The Role of Trees and Livestock in Ecosystem Service Provision and Farm Priorities on Smallholder Farms in the Rift Valley, Kenya. Agric. Syst. 2020, 181, 102815. [Google Scholar]
- Diwani, T.N.; Asch, F.; Becker, M.; Mussgnug, F. Characterizing Farming Systems around Kakamega Forest, Western Kenya, for Targeting Soil Fertility-Enhancing Technologies. J. Plant. Nutr. Soil Sci. 2013, 176, 585–594. [Google Scholar] [CrossRef]
- FAO. Faostat—Maize Yields Kenya 2009–2012. In Food and Agriculture Data; FAOSTAT: Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 17 May 2019).
- Yongshan, C.; Camps-Arbestain, M.; Shen, Q.; Singh, B.; Cayuela, M.L. The Long-Term Role of Organic Amendments in Building Soil Nutrient Fertility: A Meta-Analysis and Review. Nutr. Cycl. Agroecosyst. 2018, 111, 103–125. [Google Scholar]
- Vanlauwe, B.; Barrios, E.; Robinson, T.; van Asten, P.; Zingore, S.; Gérard, B. System Productivity and Natural Resource Integrity in Smallholder Farming: Friends or Foes? In Sustainable Intensification in Smallholder Agriculture: An. Integrated Systems Research Approach; Öborn, I., Vanlauwe, B., Phillips, M., Thomas, R., Brooijmans, W., Atta-Krah, K., Eds.; Routledge: London, UK, 2017; pp. 159–176. [Google Scholar]
- Erenstein, O. Smallholder Conservation Farming in the Tropics and Sub-Tropics: A Guide to the Development and Dissemination of Mulching with Crop Residues and Cover Crops. Agric. Ecosys. Environ. 2003, 100, 17–37. [Google Scholar] [CrossRef]
- Kalungu, J.W.; Filho, W.L. Adoption of Appropriate Technologies among Smallholder Farmers in Kenya. Clim. Dev. 2018, 10, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Pramila, K.; Patnam, M. Neighbors and Extension Agents in Ethiopia: Who Matters More for Technology Adoption? Am. J. Agric. Econ. 2014, 96, 308–327. [Google Scholar]
- Stefanovic, J.O.; Yang, H.; Zhou, Y.; Kamali, B.; Ogalleh, S.A. Adaption to Climate Change: A Case Study of Two Agricultural Systems from Kenya. Clim. Dev. 2017, 11, 319–337. [Google Scholar] [CrossRef]
- Helth, L.J.; Rasmussen, O.D. Can Microfinance Reach the Poorest: Evidence from a Community-Managed Microfinance Intervention. World Dev. 2014, 64, 460–472. [Google Scholar]
- Brannen, C.F. An Impact Study of the Village Savings and Loan Association (Vsla) Program in Zanzibar, Tanzania. Bachelor’s Thesis, Wesleyan University, Middletown, CT, USA, 2010. [Google Scholar]
- Kearney, S.P.; Fonte, S.J.; García, E.; Siles, P.; Chan, K.M.A.; Smukler, S.M. Evaluating Ecosystem Service Trade-Offs and Synergies from Slash-and-Mulch Agroforestry Systems in El Salvador. Ecol. Indic. 2017, 105, 264–278. [Google Scholar] [CrossRef]
- Moushumi, C.; Ajayi, O.C.; Hellin, J.; Neufeldt, H. Climate Change Adaptation and Social Protection in Agroforestry Systems: Enhancing Adaptive Capacity and Minimizing Risk of Drought in Zambia and Honduras. In ICRAF Working Papers; World Agroforestry Centre: Nairobi, Kenya, 2011. [Google Scholar]
- Andersson, A. Kenya Agricultural Carbon Project Monitoring Report. Vi Agroforestry. 2016. Available online: https://www.vcsprojectdatabase.org/#/project_details/1225 (accessed on 1 September 2018).
- FAO. Agro-Ecological Zoning Guidelines; Food and Agriculture Organisation of the United Nations: Rome, Italy, 1996; Available online: http://www.fao.org/docrep/W2962E/W2962E00.htm (accessed on 13 September 2014).
- FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized World Soil Database (Version 1.1). FAO, Rome, Italy and IIASA, Luxenburg, Austria. Available online: http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/ (accessed on 15 March 2018).
- USGS. Shuttle Radar Topography Mission (Srtm) 1 Arc-Second Global. Elevation Data. US Geological Survey. Available online: https://lta.cr.usgs.gov/SRTM1Arc (accessed on 3 February 2018).
- KNBS. Population Distribution by Sex, Number of Households, Area and Density by County and District. In 2009 Population and Housing Census; Kenya National Bureau of Statistics 5, Ed.; KNBS: Nairobi, Kenya. Available online: https://www.knbs.or.ke/download/population-distribution-by-sex-number-of-households-area-and-density-by-county-and-district/ (accessed on 14 August 2017).
Year | Season | PROJECT Bungoma N = 96 | CONTROL Bungoma N = 55 | PROJECT Kisumu N = 85 | CONTROL Kisumu N = 44 | ALL FARMS N = 280 |
---|---|---|---|---|---|---|
2009 | 1 | 1572 ± 1211 | 1169 ± 741 | 725 ± 572 | 494 ± 397 | 1069 ± 981 |
2010 | 1 | 1925 ± 1356 | 1141 ± 934 | 1055 ± 1037 | 266 ± 166 | 1239 ± 1203 |
2011 | 1 | 2647 ± 1756 | 1222 ± 994 | 1371 ± 907 | 702 ± 390 | 1724 ± 1479 |
2012 | 1 | 2675 ± 1384 | 2015 ± 1279 | 1661 ± 1406 | 1075 ± 840 | 1939 ± 1397 |
2009 | 2 | 1094 ± 1206 | 518 ± 411 | 565 ± 532 | 321 ± 249 | 638 ± 781 |
2010 | 2 | 1416 ± 1431 | 706 ± 469 | 902 ± 1023 | 152 ± 101 | 900 ± 1105 |
2011 | 2 | 1646 ± 1052 | 783 ± 526 | 957 ± 757 | 354 ± 297 | 945 ± 862 |
2012 | 2 | 1563 ± 941 | 1054 ± 714 | 937 ± 744 | 678 ± 567 | 982 ± 784 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyberg, Y.; Musee, C.; Wachiye, E.; Jonsson, M.; Wetterlind, J.; Öborn, I. Effects of Agroforestry and Other Sustainable Practices in the Kenya Agricultural Carbon Project (KACP). Land 2020, 9, 389. https://doi.org/10.3390/land9100389
Nyberg Y, Musee C, Wachiye E, Jonsson M, Wetterlind J, Öborn I. Effects of Agroforestry and Other Sustainable Practices in the Kenya Agricultural Carbon Project (KACP). Land. 2020; 9(10):389. https://doi.org/10.3390/land9100389
Chicago/Turabian StyleNyberg, Ylva, Caroline Musee, Emmanuel Wachiye, Mattias Jonsson, Johanna Wetterlind, and Ingrid Öborn. 2020. "Effects of Agroforestry and Other Sustainable Practices in the Kenya Agricultural Carbon Project (KACP)" Land 9, no. 10: 389. https://doi.org/10.3390/land9100389
APA StyleNyberg, Y., Musee, C., Wachiye, E., Jonsson, M., Wetterlind, J., & Öborn, I. (2020). Effects of Agroforestry and Other Sustainable Practices in the Kenya Agricultural Carbon Project (KACP). Land, 9(10), 389. https://doi.org/10.3390/land9100389