Assessment of Changes in a Viewshed in the Western Carpathians Landscape as a Result of Reforestation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
- In the first step, 15 glades were chosen on the basis of terrain reconnaissance and analysis of the cartographical materials. The surfaces and maximal ranges of all the glades were designated based on historical and contemporary maps for all available time periods, i.e., 1848, 1879/1885, 1933, 1960/1975, 1979 and 2015. A total of 51 viewpoints were determined for all the glades (1–7 viewpoints on each glade dependent on their surface). The location of the viewpoints was optimal, which means that they were located in the highest parts of the glades and obscured by trees in the least degree. The points were marked out in the field, which saved using a GPS receiver and then exported to shp point files. The selected study sites are located in the Western Beskids and they are representative of the Western Carpathians.
- Next, all the cartographic historical maps and modern digital spatial data were completed.
- Then, the archival sourced maps were transformed into digital versions. The archival maps were georeferenced in two steps, which comprised a calculation of the transformation matrix and an implementation of suitable geometric transformation and interpolation and resampling of distorted images to a new standard-sized raster (i.e., so-called “rubbersheeting”). This two-step process resulted in greater georeferencing accuracy, ensuring the quality of the results and enhancing confidence in the conclusions. In each case, the georeferencing was specifically adjusted to the quality and type of data in order to achieve the best possible results for each series [46]. The Austrian cadastral maps were overlaid onto a grid whose size corresponded to that of the map frame, using affine transformation and the coordinates of the frame corners. Rectification was then carried out and its precision verified by estimating the root-mean-square error (RMSE), which was <4.91 m for each map sheet [47]. Control points were not used because of their insufficient number and their unregular distribution (this is connected with the dominance of forest cover). According to Kadaj [48], in small areas with a spatial range that does not exceed 5 km, only the transformation based on corner points can be applied. This area meets this condition. The Spezialkarte der Österreichisch-Ungarischen Monarchie map was georeferenced exclusively by means of control points of the reference layer using affine transformation [46]. This kind of georeferencing of a single map sheet yields better results than that based on fitting the corners into a millimeter mesh grid [49]. The military maps were georeferenced by overlaying the corner points of the raster image onto a grid whose size corresponded to the map frame size, using affine transformation. Rectification was then carried out and the image was adjusted to the reference layer using control points. For all maps, the historical local reference system was transformed into the contemporary global system [46]. This step involved the application of a simplified Helmert transformation with three parameters (dx, dy, dz) to a shift in the origin of the coordinate system using inverse Molodensky formulas [47].
- The fourth step was screen digitalization of the previously processed cartographic materials using the snapping function. A topology construction tool was used to detect and eliminate the errors that are usually generated during this operation, e.g., duplicated arcs, floating or short lines, overlapping lines, overshoots and undershoots, unclosed and weird polygons [50]. Screen digitalization was combined with the creation of a database of glade surfaces. By aggregating the data included in each series of maps, land-cover maps were developed in which forest and glade areas were clearly distinguishable. As a result of these procedures, vector maps were created.
- The next step was preparing all the sheets of DSM—they were mosaiced into one big raster for the whole study area. To make the viewshed analyses possible, the DSM had to be appropriately prepared: On the basis of historical maps, vector layers with forest and non-forest areas were prepared for all time moments (see fourth step above). With a layer of non-forest areas, we cut out the modern DSM [44]. Then we filled these places in DSM with data from the modern DEM [40]. In this way we prepare DSMs for each time moment.
- The last stage involved using a Visibility tool in ArcGIS [51] to conduct an analysis of visibility for each viewpoint. The following premises underpinned the calculations for all viewpoints: (a) the calculations were conducted at three different altitudes above ground level: 1.5 m, 3.0 m, 4.5 m; (b) the radius of the visibility calculation was 10 km, which comprises near (up to 1.5 km) and middle zones (1.5–10 km) distinguished by Schirpke et al. [52]; (c) the visibility analysis was conducted for time moments in accordance with the available maps.
3. Results
3.1. Changes in Non-Forest Areas
3.2. Changes in Viewshed
4. Discussion
5. Conclusions
- The area of all of the analyzed glades decreased in the period 1848–2015; however, the dynamics of these changes were different and were influenced by local conditions.
- The viewshed from the majority of viewpoints located in the analyzed glades decreased in the period 1848–2015. However, the direction and dynamics of these changes in the analyzed time period were different and do not always refer directly to changes in the area of the glades.
- The results indicate that forest succession on abandoned glades does not always cause a decline in viewshed. Deforestation in neighboring areas may be another factor that had an influence on the decline which was observed in some glades in 2015.
- The choice of viewpoints was arbitrary but was argued from the point of terrain awareness and analysis of maps: orthophotomap and DEM. As a result, the optimal locations were chosen (i.e., the highest altitude in glades and that obscured by trees in the lowest degree). However, the analyses of the viewsheds are objective due to their quantitative character.
- The analyses of changes in viewshed for a longer period of time may only be conducted using archival maps. This method has a limitation connected with these maps: their content, accuracy and the fact that they present only the state of the environment according to the map’s publication date.
- The proposed method of viewshed analysis based on archival maps could fortify numerous research studies that analyze landscape transformation through the prism of land use changes (a landscape as an area) with an approach concerning changes in landscape aesthetics (a landscape as a scenery) using very high resolution digital surface models.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Antrop, M. Why landscapes of the past are important for the future. Landsc. Urban Plan. 2005, 70, 21–34. [Google Scholar] [CrossRef]
- Klein Goldewijk, K.; Ramankutty, N. Land Use Changes during the Past 300 Years. In Encyclopedia of Land Use, Land Cover and Soil Sciences. Land Cover, Land Use and the Global Change; Verheye, W.H., Ed.; Eolss: Ghent, Belgium, 2010; pp. 147–168. [Google Scholar]
- Myga-Piątek, U. Stratigraphic model of cultural landscapes-in search for evolutionary-genetic typology. Diss. Cult. Landsc. Comm. Ptg. 2018, 39, 207–223. [Google Scholar] [CrossRef]
- Skokanova, H.; Falťan, V.; Havlíček, M. Driving forces of main landscape change processes from past 200 years in Central Europe-Differences between old de mocratic and post-socialist countries. Ekol. Bratisl. 2016, 35, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Bičík, I.; Jeleček, L.; Štěpánek, V. Land-Use Changes and their Social Driving Forces in Czechia in the 19th and 20th Centuries. Land Use Policy 2001, 18, 65–73. [Google Scholar] [CrossRef]
- Godziek, J.; Szypuła, B. A study of changes in forest cover in the Ochotnica Valley in the 19th-20th centuries based on cartographic materials. Diss. Cult. Landsc. Comm. Ptg. 2018, 39, 189–206. [Google Scholar] [CrossRef]
- Myga-Piątek, U. Krajobraz kulturowy. Aspekty Ewolucyjne i Typologiczne; UŚ: Katowice, Poland, 2012. [Google Scholar]
- Myga-Piątek, U. Transformation of Cultural Landscapes in the Light of the Idea of Sustainable Development. Probl. Sustain. Dev. 2010, 5, 95–108. [Google Scholar]
- La Rosa, D. The observed landscape: Map of visible landscape values in the province of Enna (Italy). J. Map 2011, 7, 291–303. [Google Scholar]
- Ode, A.; Tveit, M.S.; Fry, G. Capturing Landscape Visual Character Using Indicators: Touching Base with Landscape Aesthetic Theory. Landsc. Res. 2008, 33, 89–117. [Google Scholar] [CrossRef]
- Balling, J.D.; Falk, J.H. Development of visual preference for natural environments. Environ. Behav. 1982, 14, 5–28. [Google Scholar]
- Wojciechowski, K.H. Systems of quality dimensions of landscape. Czas. Tech. Ser. Archit. 2007, 104, 181–183. [Google Scholar]
- Bishop, I.D. Assessment of visual qualities, impacts, and behaviours, in the landscape, by using measures of visibility. Environ. Plan. B Plan. Des. 2003, 30, 677–688. [Google Scholar] [CrossRef]
- Daniel, T.C. Whither scenic beauty? Visual landscape quality assessment in the 21 st century. Landsc. Urban Plan. 2001, 54, 267–281. [Google Scholar] [CrossRef]
- Ervin, S.; Steinitz, C. Landscape visibility computation: Necessary, but not sufficient. Environ. Plan. B Plan. Des. 2003, 30, 757–766. [Google Scholar] [CrossRef]
- Llobera, M. Extending GIS-based visual analysis: The concept of visualscapes. Int. J. Geogr. Inf. Sci. 2003, 17, 25–48. [Google Scholar] [CrossRef]
- Ozimek, P.; Tarko, J.; Łabędź, P. Cyfrowe modele analizy krajobrazu bazujące na cyfrowych modelach terenu systemów informacji przestrzennej. Diss. Cult. Landsc. Comm. Ptg. 2010, 14, 342–351. [Google Scholar]
- Eremiášová, R.; Skokanova, H. Land Use Changes (Recorded in Old Maps) and Delimitation of the Most Stable Areas from the Perspective of Land Use in the Kašperské Hory Region. J. Landsc. Ecol. 2009, 2, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Plit, J.; Myga-Piątek, U. The degree of landscape openness as a manifestation of cultural metamorphoses. Quaest. Geogr. 2014, 33, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Plit, J.; Myga-Piątek, U. Investigating openness of the cultural landscape—a methodological proposal. Geogr. Pol. 2016, 89, 129–140. [Google Scholar] [CrossRef] [Green Version]
- European Landscape Convention. Available online: https://www.coe.int/en/web/landscape (accessed on 4 November 2020).
- Nita, J.; Myga-Piątek, U.; Absalon, D. Assessment of the Exposure of Tourism-Related Landscape Values of the Silesian Beskids Based on Computer Visualization. In Landscape Analysis and Planning. Geographical Perspectives; Luc, M., Somorowska, U., Szmańda, J.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 45–58. [Google Scholar]
- Xiang, Y.; Meng, J.; You, N.; Chen, P.; Yang, H. Spatio-temporal Analysis of Anthropogenic Disturbances on Landscape Pattern of Tourist Destinations: A case study in the Li River Basin, China. Sci. Rep. 2019, 9, 19285. [Google Scholar] [CrossRef]
- Sobala, M. Pasture landscape durability in the Beskid Mountains (Western Carpathians, Poland). Geogr. Pol. 2018, 91, 197–215. [Google Scholar] [CrossRef]
- Pereponova, A.; Skaloš, J. Spatio-temporal dynamics of wood-pastures in lowland and highland landscapes across Czechia. Reg. Environ. Chang. 2019, 19, 267–278. [Google Scholar] [CrossRef]
- Antrop, M.; Van Eetvelde, V. Territory and/or Scenery: Concepts and Prospects of Western Landscape Research. In Current Trends in Landscape Research; Mueller, L., Eulenstein, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–40. [Google Scholar]
- Navarro, L.M.; Pereira, H.M. Rewilding Abandoned Landscapes in Europe. In Rewilding European Landscapes; Navarro, L.M., Pereira, H.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–24. [Google Scholar]
- Weitkamp, G. Mapping landscape openness with isovists. Res. Urban. Ser. 2011, 2, 205–223. [Google Scholar] [CrossRef]
- Munteanu, C.; Kuemmerle, T.; Boltiziar, M.; Bustic, V.; Gimmi, U.; Lubos, H.; Kaim, D.; Kiraly, G.; Konkoly-Gyuro, E.; Kozak, J.; et al. Forest and agricultural land change in the Carpathian region—A meta-analysis of long-term patterns and drivers of change. Land Use Policy 2014, 38, 685–697. [Google Scholar] [CrossRef]
- Ostafin, K. Zmiany Granicy Rolno-Leśnej w Środkowej Części Beskidu Średniego od Poł. XIX w. do 2005 r; UJ: Kraków, Poland, 2009. [Google Scholar]
- Patru-Stupariu, I.; Stupariu, M.S.; Cuculici, R.; Huzui, A.E. Understanding landscape change using historical maps. J. Maps 2011, 7, 206–220. [Google Scholar] [CrossRef]
- Kozak, J. Zmiany Powierzchni Lasów w Karpatach Polskich na tle Innych Gór Świata.; UJ: Kraków, Poland, 2005. [Google Scholar]
- Solon, J.; Borzyszkowski, J.; Bidłąsik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Varificaion and Adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Austrian cadastral maps 1:2,880, sections: Lipowa, Ostre, Radziechowy, Rycerka Górna, (1848).
- Wolski, J. Austriacki kataster podatku gruntowego na ziemiach polskich oraz jego wykorzystanie w pracach urządzeniowych i badaniach naukowych. Pol. Przegląd Kartogr. 2000, 32, 199–212. [Google Scholar]
- Spezialkarte der Österreichisch-Ungarischen Monarchie 1:75,000, sections: Saybusch (1879), Ujsoly-Stara Bistrica (1885).
- Timár, G.; Biszak, S.; Szekely, B.; Molnár, G. Digitized Maps of the Habsburg Military Surveys: Overview of the Project of ARCANUM Ltd. (Hungary). In Preservation in Digital Cartography. Lecture Notes in Geoinformation and Cartography; Jobst, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 273–283. [Google Scholar]
- Polish Military Map WIG 1:100,000, sections: A50 B28 Żywiec, A51 B28 Ujsoły (1933).
- Military topographic map 1:25,000, sections: Szczyrk, Węgierska Górka (1960), Rycerka Dolna, Zborom nad Bistricou (1975).
- Krukowski, M.; Łoboda, A. Podstawy matematyczne współczesnych polskich map topograficznych. In Dawne Mapy Topograficzne w Badaniach Geograficzno-Historycznych; Czerny, A., Ed.; UMCS: Lublin, Poland, 2015; pp. 103–124. [Google Scholar]
- Topographic Map of Poland 1:10,000, sections: Lipowa, Przegibek, Węgierska Górka, GUGiK (Surveyor General of Poland), Polskie Przedsiębiorstwo Geodezyjno-Kartograficzne: Warszawa, Poland: 1979.
- Orthophotomap; GUGiK (Surveyor General of Poland): Warszawa, Poland, 2018.
- Digital Surface Model; GUGiK (Surveyor General of Poland): Warszawa, Poland, 2014.
- Digital Elevation Model; GUGiK (Surveyor General of Poland): Warszawa, Poland, 2014.
- Główny Urząd Geodezji i Kartografii. Available online: http://www.gugik.gov.pl/ (accessed on 4 November 2020).
- Sobala, M.; Rahmonov, O.; Myga-Piątek, U. Historical and contemporary forest ecosystem changes in the Beskid Mountains (southern Poland) between 1848 and 2014. iForest Biogeosci. For. 2017, 10, 939–947. [Google Scholar] [CrossRef] [Green Version]
- Sobala, M. Zastosowanie austriackich map katastralnych w badaniach użytkowania ziemi w połowie XIX wieku. Pol. Przegląd Kartogr. 2012, 44, 324–333. [Google Scholar]
- Kadaj, R. Polskie Układy Współrzędnych, Formuły Transformacyjne, Algorytmy i Programy; AlgoRes-Soft: Rzeszów, Poland, 2002. [Google Scholar]
- Affek, A. Georeferencing of historical maps using GIS, as exemplified by the Austrian military surveys of Galicia. Geogr. Pol. 2013, 86, 375–392. [Google Scholar] [CrossRef]
- Maraş, S.S.; Maraş, H.H.; Aktuğ, B.; Maraş, E.E.; Yildiz, F. Typological error correction of GIS vector data. Int. J. Phys. Sci. 2010, 5, 476–483. [Google Scholar]
- Environmental Systems Research Institute ArcGIS Desktop: Release 10.7. Redlands, CA. Available online: https://desktop.arcgis.com/en/arcmap/latest/get-started/setup/arcgis-desktop-quick-start-guide.htm (accessed on 4 November 2020).
- Schirpke, U.; Tasser, E.; Tappeiner, U. Predicting scenic beauty of mountain regions. Lanscape Urban Plan. 2013, 111, 1–12. [Google Scholar] [CrossRef]
- Vos, W.; Klijn, J. Trends in European landscape development: Prospects for a sustainable future. In From Landscape Ecology to Landscape Science; Klijn, J., Vos, W., Eds.; WLO: Kluwer, Germany, 2000; pp. 13–30. [Google Scholar]
- Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ostafin, K.; Ostapowicz, K.; Wężyk, P.; Bronwyn, P. Understanding farmland abandonment in the Polish Carpathians. Appl. Geogr. 2017, 88, 62–72. [Google Scholar] [CrossRef]
- Malandra, F.; Vitali, A.; Urbinati, C.; Weisberg, P.J.; Garbarino, M. Patterns and drivers of forest landscape change in the Apennines range, Italy. Reg. Environ. Chang. 2019, 19, 1973–1985. [Google Scholar] [CrossRef]
- Malavasi, M.; Carranza, M.L.; Moravec, D.; Cutini, M. Reforestation dynamics after land abandonment: A trajectory analysis in Mediterranean mountain landscapes. Reg. Environ. Chang. 2018, 18, 2459–2469. [Google Scholar] [CrossRef]
- Wang, J.; Xin, L.; Wang, Y. Economic growth, government policies, and forest transition in China. Reg. Environ. Chang. 2019, 19, 1023–1033. [Google Scholar] [CrossRef]
- Wilson, S.J.; Coomes, O.T.; Dallaire, C.O. The ‘ecosystem service scarcity path’ to forest recovery: A local forest transition in the Ecuadorian Andes. Reg. Environ. Chang. 2019, 19, 2437–2451. [Google Scholar] [CrossRef]
- Tahvanainen, L.; Tyrväinen, L.; Nousiainen, I. Effect of afforestation on the scenic value of rural landscape. Scand. J. For. Res. 1996, 11, 397–405. [Google Scholar] [CrossRef]
- Antrop, M. The concept of traditional landscapes as a base for landscape evaluation and planning. The example of Flanders region. Landsc. Urban Plan. 1997, 38, 105–117. [Google Scholar] [CrossRef]
- Bender, O.; Boehmer, H.J.; Jens, D.; Schumacher, K.P. Using GIS to analyse long-term cultural landscape change in Southern Germany. Landsc. Urban Plan. 2005, 70, 111–125. [Google Scholar] [CrossRef]
- Săvulescu, I.; Mihai, B.A.; Vîrghileanu, M.; Nistor, C.; Olariu, B. Mountain Arable Land Abandonment (1968–2018) in the Romanian Carpathians: Environmental Conflicts and Sustainability Issues. Sustainability 2019, 11, 6679. [Google Scholar] [CrossRef] [Green Version]
- Sobala, M. Rola tworzenia wielkoobszarowych zrębów zupełnych w zmianie struktury krajobrazu wschodniej części Beskidu Śląskiego. Z Badań Nad Wpływem Antropopresji Na Środowisko 2012, 13, 71–80. [Google Scholar]
- Patru-Stupariu, I.; Angelstam, P.; Elbakidze, M.; Huzui, A.; Andersson, K. Using forest history and spatial patterns to identify potential high conservation value forests in Romania. Biodivers. Conserv. 2013, 22, 2023–2039. [Google Scholar] [CrossRef]
- Kozak, J.; Ziółkowska, E.; Vogt, P.; Dobosz, M.; Kaim, D.; Kolecka, N.; Ostafin, K. Forest-Cover Increase Does Not Trigger Forest-Fragmentation Decrease: Case Study from the Polish Carpathians. Sustainability 2018, 10, 1472. [Google Scholar] [CrossRef] [Green Version]
- Kuemmerle, T.; Hostert, P.; Radeloff, V.C.; Perzanowski, K.; Kruhlov, I. Postsocialist farmland abandonment in the Carpathians. Ecosystems 2008, 11, 614–628. [Google Scholar] [CrossRef]
- Bičík, I.; Jeleček, L. Land use and landscape changes in Czechia during the period of transition 1990–2007. Geogr. Sborník Čgs 2009, 114, 263–281. [Google Scholar]
- Griffiths, P.; Müller, M.; Kuemmerle, T.; Hostert, P. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ. Res. Lett. 2013, 8, 1–12. [Google Scholar] [CrossRef]
- Müller, D.; Leitão, P.J.; Sikor, T. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agric. Syst. 2013, 117, 66–77. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Baumann, M.; Kuemmerle, T.; Müller, D. Effects of institutional changes on land use: Agricultural land abandonment during the transition from state-command to market-driven economies in postSoviet Eastern Europe. Environ. Res. Lett. 2012, 7, 024021. [Google Scholar] [CrossRef]
- Kolecka, N.; Kozak, J. Wall-to-Wall Parcel-Level Mapping of Agricultural Land Abandonment in the Polish Carpathians. Land 2019, 8, 129. [Google Scholar] [CrossRef] [Green Version]
- Ciurzycki, W. Spatial structure of natural spruce restocking on the upper montane belt glades excluded from pasturage in the Polish Tatra Mountains. Sylwan 2004, 148, 20–30. [Google Scholar]
- Sobala, M. Krajobrazy pasterskie w Polsce i Europie-wybrane typy, przykłady i formy ich ochrony. Diss. Cult. Landsc. Comm. Ptg. 2014, 25, 81–98. [Google Scholar]
- Hussain, R.I.; Walcher, R.; Eder, R.; Allex, B.; Wallner, P.; Hutter, H.P.; Bauer, N.; Arnberger, A.; Zaller, J.G.; Frank, T. Management of mountainous meadows associated with biodiversity attributes, perceived health benefts and cultural ecosystem services. Sci. Rep. 2019, 9, 14997. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Baumann, M.; Radeloff, V.C.; Abrudan, I.V.; Lieskovsky, J.; Munteanu, C.; Ostapowicz, K.; Hostert, P. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens. Environ. 2014, 151, 72–88. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Podobnikar, T. Georeferencing and quality assessment of Josephine Survey maps for the mountainous region in The Triglav Natonal Park. Acta Geod. Et Geophys. Hung. 2009, 44, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Kaim, D.; Kozak, J.; Ostafin, K.; Dobosz, M.; Ostapowicz, K.; Kolecka, N.; Gimmi, U. Uncertainty in historical land-use recontructions with topographic maps. Quest. Geogr. 2014, 33, 55–63. [Google Scholar]
- Godziek, J.; Szypuła, B. Durability of forest cover in the Ochotnica Valley (Gorce Mts) and in the Solinka Valley (Bieszczady Mts) in 18th–21st centuries. Geogr. Pol. 2020, 93, 69–88. [Google Scholar] [CrossRef]
- Plit, J. Analiza historyczna jako źródło informacji o środowisku przyrodniczym. Probl. Ekol. Kraj. 2006, 16, 217–226. [Google Scholar]
- Šantrůčková, M.; Dostálek, J.; Demková, K. Assessing long-term spatial changes of natural habitats using old maps and archival sources: A case study from Central Europe. Biodivers. Conserv. 2015, 24, 1899–1916. [Google Scholar] [CrossRef]
- Vellend, M.; Brown, C.D.; Kharouba, H.M.; McCune, J.L.; Myers-Smith, I.H. Historical Ecology: Using unconventional data sources to test for effects of global environmental change. Am. J. Bot. 2013, 100, 1294–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panecki, T. The evaluation of archival maps in geohistorical research. Misc. Geogr. 2015, 19, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Fisher, P.F. An exploration of probable viewsheds in landscape planning. Environ. Plan. B Plan. Des. 1995, 22, 527–546. [Google Scholar]
- Sander, H.A.; Manson, S.M. Heights and locations of artificial structures in viewshed calculation: How close is close enough? Landsc. Urban Plan. 2007, 82, 257–270. [Google Scholar] [CrossRef]
- Hognogi, G.G.; Pop, A.M.; Mălăescu, S.; Nistor, M.M. Increasing territorial planning activities through viewshed analysis. Geocarto Int. 2020. [Google Scholar] [CrossRef]
- Pereiro da Silva, R.G.; Oliveira, C.H.; Ferreira, E.S.; Fetter, R.; Barbosa, R.G.; Saito, C.H. Systematic Conservation Planning approach based on viewshed analysis for the definition of strategic points on a visitor trail. Int. J. Geoherit. Parks 2020, 8, 153–165. [Google Scholar] [CrossRef]
No | Glade | Mountain Range | Number of Viewpoints |
---|---|---|---|
1 | Przysłop | Silesian Beskids | 4 |
2 | Buczyna | Silesian Beskids | 2 |
3 | Jaskowa | Silesian Beskids | 2 |
4 | Pod Skałką | Silesian Beskids | 1 |
5 | Ostre | Silesian Beskids | 7 |
6 | Radziechowska | Silesian Beskids | 4 |
7 | Przybędza | Silesian Beskids | 1 |
8 | Kikula | Żywiec-Kysuce Beskids | 2 |
9 | Magura | Żywiec-Kysuce Beskids | 7 |
10 | Bułkowa | Żywiec-Kysuce Beskids | 2 |
11 | Praszywka | Żywiec-Kysuce Beskids | 4 |
12 | Bendoszka | Żywiec-Kysuce Beskids | 3 |
13 | Przegibek | Żywiec-Kysuce Beskids | 4 |
14 | Mała Racza | Żywiec-Kysuce Beskids | 5 |
15 | Śrubita | Żywiec-Kysuce Beskids | 3 |
Map Type | Scale Resolution | Date | Map Sheet |
---|---|---|---|
Austrian cadastral map | 1:2880 | 1848 | Lipowa, Ostre, Radziechowska, Rycerka Górna |
Spezialkarte der Österreichisch-Ungarischen Monarchie | 1:75,000 | 1879/1885 | Saybusch/Ujsoly-Stara Bistricca |
Polish Military Map WIG | 1:100,000 | 1933 | Żywiec, Ujsoły |
Military topographic map | 1:25,000 | 1960/1975 | Szczyrk, Szczyrk, Węgierska Górka/Nova Bistrica, Oscadnica, Rycerka Dolna, Zborom nad Bistricou |
Topographic map of Poland | 1:10,000 | 1979 | Barania Góra, Lipowa, Młada Hora, Przegibek, Szczyrk Malinów, Tatarki, Węgierska Górka, Wielka Racza |
Orthophotomap | 0.25 × 0.25 m | 2015 | - |
Digital Elevation Model (DEM) | 1 × 1 m | 2015 | - |
Digital Surface Model (DSM) | 1 × 1 m | 2015 | - |
Study Area | Time Section | NFA (%) | NNP (ha) | MNA (ha) |
---|---|---|---|---|
Silesian Beskids | 1848 | 17.9 | 142 | 165.7 |
1879 | 17.7 | 95 | 174.0 | |
1933 | 14.8 | 83 | 84.6 | |
1960 | 8.0 | 100 | 58.6 | |
1979 | 6.5 | 151 | 38.0 | |
2015 | 6.1 | 106 | 25.4 | |
Żywiec-Kysuce Beskids | 1848 | 31.2 | 89 | 462.3 |
1885 | 30.6 | 49 | 435.8 | |
1933 | 28.5 | 33 | 454.9 | |
1975 | 21.2 | 89 | 394.5 | |
1979 | 20.6 | 140 | 353.7 | |
2015 | 14.5 | 66 | 115.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobala, M.; Myga-Piątek, U.; Szypuła, B. Assessment of Changes in a Viewshed in the Western Carpathians Landscape as a Result of Reforestation. Land 2020, 9, 430. https://doi.org/10.3390/land9110430
Sobala M, Myga-Piątek U, Szypuła B. Assessment of Changes in a Viewshed in the Western Carpathians Landscape as a Result of Reforestation. Land. 2020; 9(11):430. https://doi.org/10.3390/land9110430
Chicago/Turabian StyleSobala, Michał, Urszula Myga-Piątek, and Bartłomiej Szypuła. 2020. "Assessment of Changes in a Viewshed in the Western Carpathians Landscape as a Result of Reforestation" Land 9, no. 11: 430. https://doi.org/10.3390/land9110430
APA StyleSobala, M., Myga-Piątek, U., & Szypuła, B. (2020). Assessment of Changes in a Viewshed in the Western Carpathians Landscape as a Result of Reforestation. Land, 9(11), 430. https://doi.org/10.3390/land9110430