Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. NDVI and Land Cover Change Analyses
2.3. Data Analysis
3. Results
3.1. Land Cover Change Analysis
3.2. Pixel-Wise NDVI Time Series Analysis
3.3. Time Series Analysis with Spatial Aggregates of NDVI
4. Discussion
5. Conclusions
Data Availability
Funding
Acknowledgments
Conflicts of Interest
References
- Zakharov, S.; Rulisek, J.; Hlusicka, J.; Kotikova, K.; Navratil, T.; Komarc, M.; Vaneckova, M.; Seidl, Z.; Diblik, P.; Bydzovsky, J.; et al. The impact of co-morbidities on a 6-year survival after methanol mass poisoning outbreak: Possible role of metabolic formaldehyde. Clin. Toxicol. 2020, 58, 241–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moscona, J.C.; Peters, M.N.; Maini, R.; Katigbak, P.; Deere, B.; Gonzales, H.; Westley, C.; Baydoun, H.; Yadav, K.; Ters, P.; et al. The Incidence, Risk Factors, and Chronobiology of Acute Myocardial Infarction Ten Years After Hurricane Katrina. Disaster Med. Public Health Prep. 2019, 13, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.P.; Mousseau, T.A. Biological consequences of Chernobyl: 20 years on. Trends Ecol. Evol. 2006, 21, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.J.; Wickliffe, J.K. Wildlife and Chernobyl: The scientific evidence for minimal impacts. Bull. At. Sci. 2011, 14. [Google Scholar]
- Chesser, R.; Baker, R. Growing up with Chernobyl: Working in a radioactive zone, two scientists learn tough lessons about politics, bias and the challenges of doing good science. Am. Sci. 2006, 94, 542–549. [Google Scholar] [CrossRef]
- Dubrova, Y.E.; Plumb, M.; Brown, J.; Jeffreys, A.J. Radiation-induced germline instability at minisatellite loci. Int. J. Radiat. Biol. 1998, 74, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Dubrova, Y.E.; Nesterovf, V.N.; Krouchinskyg, N.G.; Neumahnt, R.; Neilf, L. Human minisatellite mutation rate after the Ghernobyl accident. Nature 1986, 380, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.P.; Mousseau, T.A. Are Organisms Adapting to Ionizing Radiation at Chernobyl? Trends Ecol. Evol. 2016, 31, 281–289. [Google Scholar] [CrossRef]
- Schlichting, P.E.; Love, C.N.; Webster, S.C.; Beasley, J.C. Efficiency and composition of vertebrate scavengers at the land-water interface in the Chernobyl Exclusion Zone. Food Webs 2019, 18, e00107. [Google Scholar] [CrossRef]
- Deryabina, T.G.; Kuchmel, S.V.; Nagorskaya, L.L.; Hinton, T.G.; Beasley, J.C.; Lerebours, A.; Smith, J.T. Long-term census data reveal abundant wildlife populations at Chernobyl. Curr. Biol. 2015, 25, R824–R826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hostert, P.; Kuemmerle, T.; Prishchepov, A.; Sieber, A.; Lambin, E.F.; Radeloff, V.C. Rapid land use change after socio-economic disturbances: The collapse of the Soviet Union versus Chernobyl. Environ. Res. Lett. 2011, 6, 045201. [Google Scholar] [CrossRef]
- Lyons, P.C.; Okuda, K.; Hamilton, M.T.; Hinton, T.G.; Beasley, J.C. Rewilding of Fukushima’s human evacuation zone. Front. Ecol. Environ. 2020, 18, 127–134. [Google Scholar] [CrossRef]
- Perino, A.; Pereira, H.M.; Navarro, L.M.; Fernández, N.; Bullock, J.M.; Ceauşu, S.; Cortés-Avizanda, A.; Van Klink, R.; Kuemmerle, T.; Lomba, A.; et al. Rewilding complex ecosystems. Science 2019, 364, 6438. [Google Scholar] [CrossRef] [Green Version]
- Geraskin, S.A.; Dikarev, V.G.; Zyablitskaya, Y.Y.; Oudalova, A.A.; Spirin, Y.V.; Alexakhin, R.M. Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops. J. Environ. Radioact. 2003, 66, 155–169. [Google Scholar] [CrossRef]
- Kovalchuk, O.; Burke, P.; Arkhipov, A.; Kuchma, N.; James, S.J.; Kovalchuk, I.; Pogribny, I. Genome hypermethylation in Pinus silvestris of Chernobyl—A mechanism for radiation adaptation? Mutat. Res. Fundam. Mol. Mech. Mutagen. 2003, 529, 13–20. [Google Scholar] [CrossRef]
- Eleftheriou, D.; Kiachidis, K.; Kalmintzis, G.; Kalea, A.; Bantasis, C.; Koumadoraki, P.; Spathara, M.E.; Tsolaki, A.; Tzampazidou, M.I.; Gemitzi, A. Determination of annual and seasonal daytime and nighttime trends of MODIS LST over Greece—climate change implications. Sci. Total Environ. 2018, 616–617, 937–947. [Google Scholar] [CrossRef]
- Li, H.; Meier, F.; Lee, X.; Chakraborty, T.; Liu, J.; Schaap, M.; Sodoudi, S. Interaction between urban heat island and urban pollution island during summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [Google Scholar] [CrossRef]
- Mao, K.B.; Ma, Y.; Tan, X.L.; Shen, X.Y.; Liu, G.; Li, Z.L.; Chen, J.M.; Xia, L. Global surface temperature change analysis based on MODIS data in recent twelve years. Adv. Space Res. 2017, 59, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Leptoukh, G.G. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environ. Res. Lett. 2011, 6, 045206. [Google Scholar] [CrossRef]
- Gemitzi, A.; Ajami, H.; Richnow, H.H. Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data—Modeling future groundwater recharge to predict potential climate change impacts. J. Hydrol. 2017, 546, 1–13. [Google Scholar] [CrossRef]
- Gemitzi, A.; Lakshmi, V. Estimating Groundwater Abstractions at the Aquifer Scale Using GRACE Observations. Geosciences 2018, 8, 419. [Google Scholar] [CrossRef] [Green Version]
- Pellet, V.; Aires, F.; Munier, S.; Prieto, D.F.; Jordá, G.; Dorigo, W.A.; Polcher, J.; Brocca, L. Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle—Application to the Mediterranean region. Hydrol. Earth Syst. Sci. 2019, 23, 465–491. [Google Scholar] [CrossRef] [Green Version]
- Sun, A.Y. Predicting groundwater level changes using GRACE data. Water Resour. Res. 2013, 49, 5900–5912. [Google Scholar] [CrossRef]
- Gemitzi, A.; Lakshmi, V. Evaluating Renewable Groundwater Stress with GRACE Data in Greece. Groundwater 2018, 56, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Banti, M.Α.; Kiachidis, K.; Gemitzi, A. Estimation of spatio-temporal vegetation trends in different land use environments across Greece use environments across Greece. J. Land Use Sci. 2019, 14, 21–36. [Google Scholar] [CrossRef]
- Zhang, W.; Brandt, M.; Penuelas, J.; Guichard, F.; Tong, X.; Tian, F.; Fensholt, R. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef]
- Cong, N.; Wang, T.; Nan, H.; Ma, Y.; Wang, X.; Myneni, R.B.; Piao, S. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: A multimethod analysis. Glob. Chang. Biol. 2013, 19, 881–891. [Google Scholar] [CrossRef]
- Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using Low Resolution Satellite Imagery for Yield Prediction. Remote Sens. 2013, 5, 1704–1733. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.P.; Xiao, X.; Song, X.P.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Santos, P.P.; Sillero, N.; Boratyński, Z.; Teodoro, A.C. Landscape changes at Chernobyl. In In SPIE Remote Sensing, Proceedings of the Volume 11149, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, Strasbourg, France, 21 October 2019; International Society for Optics and Photonies: Bellihghom, WA, USA, 2019. [Google Scholar] [CrossRef]
- Modzelewska, A.; Jarocinska, A.M.; Pochrybniak, P.; Mostowsk, M. The vegetation condition changes near Chernobyl based on Landsat TM. In Towards Horizon 2020; Lasaponara, R., Masini, N., Biscione, M., Eds.; EARSeL: Warsaw, Poland, 2013. [Google Scholar]
- Sulla-Menashe, D.; Friedl, M. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 2019, DistriZbuted by NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MCD12Q1.006 (accessed on 29 July 2020).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite–1 Symposium; Freden, S.C., Mercanti, E.P., Becker, M., Eds.; Volume I: Technical Presentations, NASA SP−351; National Aeronautics and Space Agency: Greentbelt, MD, USA, 1974; pp. 309–317. [Google Scholar]
- Myneni, R.B.; Keelingt, C.D.; Tucker, C.J.; Asrar, G. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The Interpretation of Spectral Vegetation Indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Ma, X.; Huete, A.; Yu, Q.; Coupe, N.R.; Davies, K.; Broich, M.; Ratana, P.; Beringer, J.; Hutley, L.B.; Cleverly, J.; et al. Spatial patterns and temporal dynamics in savanna vegetation phenology across the north australian tropical transect. Remote Sens. Environ. 2013, 139, 97–115. [Google Scholar] [CrossRef]
- Mishra, N.B.; Crews, K.A.; Neeti, N.; Meyer, T.; Young, K.R. MODIS derived vegetation greenness trends in African Savanna: Deconstructing and localizing the role of changing moisture availability, fire regime and anthropogenic impact. Remote Sens. Environ. 2015, 169, 192–204. [Google Scholar] [CrossRef]
- Mishra, N.B.; Mainali, K.P. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers. Sci. Total Environ. 2017. [Google Scholar] [CrossRef]
- Mishra, N.B.; Chaudhuri, G. Spatio-temporal analysis of trends in seasonal vegetation productivity across Uttarakhand, Indian Himalayas, 2000–2014. Appl. Geogr. 2015, 56, 29–41. [Google Scholar] [CrossRef]
- Asoka, A.; Mishra, V. Prediction of vegetation anomalies to improve food security and water management in India. Geophys. Res. Lett. 2015, 42, 5290–5298. [Google Scholar] [CrossRef] [Green Version]
- Levin, N. Human factors explain the majority of MODIS-derived trends in vegetation cover in Israel: A densely populated country in the eastern Mediterranean. Reg. Environ. Chang. 2016, 16, 1197–1211. [Google Scholar] [CrossRef]
- Maselli, F. Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of multiyear NDVI data. Remote Sens. Environ. 2004, 89, 423–433. [Google Scholar] [CrossRef]
- Verbesselt, J.; Herold, M. Near Real-Time Disturbance Detection Using Satellite Image Time Series: Drought Detection in Somalia. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, H.; Chen, B.; Zhang, H.; Innes, J.L.; Wang, G.; Yan, J.; Zheng, Y.; Zhu, Z.; Myneni, R.B. Changes in vegetation growth dynamics and relations with climate over China’s landmass from 1982 to 2011. Remote Sens. 2014, 6, 3263–3283. [Google Scholar] [CrossRef] [Green Version]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.R.; Reichstein, M. Trend Change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, H.; Rodriguez, E.P.; Gao, X.; Ferreira, L.F. Overview of the radiometric and biopyhsical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Kern, A.; Marjanović, H.; Barcza, Z. Evaluation of the quality of NDVI3g dataset against collection 6 MODIS NDVI in Central Europe between 2000 and 2013. Remote Sens. 2016, 8, 955. [Google Scholar] [CrossRef] [Green Version]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006; Distributed by NASA EOSDIS Land Processes DAAC; NASA: Sioux Falls, SD, USA, 2015. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Huete, A. MODIS Vegetation Index User ’s Guide; MOD13 Series; The University of Arizona: Tucson, AZ, USA, 2015. [Google Scholar]
- Strahler, A.; Gopal, S.; Lambin, E.; Moody, A. MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD) MODIS Land Cover and Land-Cover Change; Boston University: Boston, MA, USA, 1999. [Google Scholar]
- Eastman, J.R.; Sangermano, F.; Ghimire, B.; Zhu, H.; Chen, H.; Neeti, N.; Cai, Y.; Machado, E.A.; Crema, S.C. Seasonal trend analysis of image time series. Int. J. Remote Sens. 2009, 30, 2721–2726. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations Revisited, Rebutted. J. Am. Stat. Assoc. 1982, 77, 209–210. [Google Scholar] [CrossRef]
- Rao, Y.; Zhu, X.; Chen, J.; Wang, J. An improved method for producing high spatial-resolution NDVI time series datasets with multi-temporal MODIS NDVI data and Landsat TM/ETM+ images. Remote Sens. 2015, 7, 7865–7891. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J. Introduction to the ‘Raster’ Package (version 2.3-24). R-CRAN Proj. 2017, 1–27. [Google Scholar]
- Liu, Y.; Li, Y.; Li, S.; Motesharrei, S. Spatial and temporal patterns of global NDVI trends: Correlations with climate and human factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Roehrig, G.; Bhattacharya, D.; Varma, K. In-service Teachers’ Attitudes, Knowledge and Classroom Teaching of Global Climate Change. Sci. Educ. 2015, 24, 12–22. [Google Scholar]
- Esau, I.; Miles, V.V.; Davy, R.; Miles, M.W.; Kurchatova, A. Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia. Atmos. Chem. Phys. 2016, 16, 9563–9577. [Google Scholar] [CrossRef] [Green Version]
- Thompson, S. Why plants don’t die from cancer. Conversation 2019. Available online: https://www.westminster.ac.uk/news/the-conversation-why-plants-dont-die-from-cancer (accessed on 10 June 2020).
Land Cover Type | 30 km Exclusion Zone (km2) | 60 km Zone (km2) | 90 km Zone (km2) |
---|---|---|---|
Evergreen Needleleaf Forests | 368.8 | 1144.8 | 1014.3 |
Evergreen Broadleaf Forests | - | - | - |
Deciduous Needleleaf Forests | - | 0.8 | 2.5 |
Deciduous Broadleaf Forests | 54.5 | 222.5 | 273.0 |
Mixed Forests | 836.3 | 2328.8 | 2644.5 |
Closed Shrublands | - | - | - |
Open Shrublands | - | - | - |
Woody Savannas | 900.0 | 3466.0 | 3899.3 |
Savannas | 475.0 | 1764.5 | 1762.3 |
Grasslands | 139.3 | 1548.5 | 2995.3 |
Permanent Wetlands | 29.3 | 65.5 | 37.0 |
Croplands | 6.3 | 918.5 | 4505.3 |
Urban and Built-up Lands | 15.5 | 4.8 | 130.8 |
Cropland/Natural Vegetation Mosaics | - | 34.0 | 166.3 |
Permanent Snow and Ice | - | - | - |
Barren | 5.3 | - | 0.8 |
Water Bodies | 30.8 | 418.5 | 267.0 |
30 km Exclusion Zone | 60 km Zone | 90 km Zone | ||||
---|---|---|---|---|---|---|
Land Cover Type | Mean NDVI Trend (yr−1) | Area (km2) | Mean NDVI Trend (yr−1) | Area (km2) | Mean NDVI Trend (yr−1) | Area (km2) |
Evergreen Needleleaf Forests | 1.93 × 10−3 | 177.5 | 1.70 × 10−3 | 242.2 | 3.30 × 10−3 | 44.7 |
2.12 × 10−3 | 44.7 | 1.63 × 10−3 | 44.7 | 3.30 × 10−3 | 44.7 | |
Deciduous Broadleaf Forests | 6.90 × 10−3 | 47.2 | 7.69 × 10−3 | 23.2 | 5.73 × 10−3 | 57.5 |
6.93 × 10−3 | 23.2 | 7.69 × 10−3 | 23.2 | 5.66 × 10−3 | 23.2 | |
Mixed Forests | 5.56 × 10−3 | 231.0 | 5.13 × 10-3 | 529.5 | 5.26 × 10−3 | 196.5 |
5.75 × 10−3 | 196.5 | 5.11 × 10−3 | 196.5 | 5.26 × 10−3 | 196.5 | |
Woody Savannas | 6.85 × 10−3 | 762.5 | 4.63 × 10−3 | 1490.2 | 5.45 × 10−3 | 661.5 |
7.01 × 10−3 | 661.5 | 4.21 × 10−3 | 661.5 | 5.45 × 10−3 | 661.5 | |
Savannas | 5.98 × 10−3 | 24.7 | 3.84 × 10−3 | 498.0 | 4.14 × 10−3 | 293.7 |
5.98 × 10−3 | 24.7 | 3.86 × 10−3 | 24.7 | 4.01 × 10−3 | 24.7 | |
Grasslands | 4.85 × 10−3 | 39.5 | −1.10 × 10−3 | 268.0 | −6.42 × 10−4 | 351.5 |
4.85 × 10−3 | 39.5 | −0.85 × 10−3 | 39.5 | −6.11 × 10−4 | 39.5 | |
Croplands | −5.94 × 10−3 | 3.2 | −5.14 × 10−3 | 228.5 | −3.60 × 10−3 | 385.5 |
−5.94 × 10−3 | 3.2 | −5.01 × 10−3 | 3.2 | −3.20 × 10−3 | 3.2 |
Land Cover Type | Area (km2) | Mean NDVI Trend (yr−1) in 30 km Exclusion Zone | Mean NDVI Trend (yr−1) in 60 km Zone | Mean NDVI Trend (yr−1) in 90 km Zone |
---|---|---|---|---|
Evergreen Needleleaf Forests | 295 | 6.67 × 10−4 | 2.99 × 10−4 | 8.52 × 10−4 |
Deciduous Broadleaf Forests | 48.5 | 4.17 × 10−3 | 2.60 × 10−3 | 2.55 × 10−3 |
Mixed Forests | 669 | 2.32 × 10−3 | 2.02 × 10−3 | 1.40 × 10−3 |
Woody Savannas | 720 | 1.29 × 10−2 | 2.01 × 10−3 | 9.30 × 10−4 |
Savannas | 380 | 2.16 × 10−3 | 1.12 × 10−3 | 8.24 × 10−4 |
Grasslands | 108.7 | −2.94 × 10−4 | −2.90 × 10−4 | −1.24 × 10−4 |
Croplands | 5 | −3.31 × 10−3, * | −2.24 × 10−3, * | −1.44 × 10−3 |
Urban and Built-up Lands | 4 | 5.37 × 10−3, * | 2.18 × 10−3, * | 1.50 × 10−3, * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gemitzi, A. Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data. Land 2020, 9, 433. https://doi.org/10.3390/land9110433
Gemitzi A. Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data. Land. 2020; 9(11):433. https://doi.org/10.3390/land9110433
Chicago/Turabian StyleGemitzi, Alexandra. 2020. "Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data" Land 9, no. 11: 433. https://doi.org/10.3390/land9110433
APA StyleGemitzi, A. (2020). Are Vegetation Dynamics Impacted from a Nuclear Disaster? The Case of Chernobyl Using Remotely Sensed NDVI and Land Cover Data. Land, 9(11), 433. https://doi.org/10.3390/land9110433