Identifying Land Use Change Trajectories in Brazil’s Agricultural Frontier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Land Use Change Calculus
- A set of non-overlapping spatial locations , part of a region of study;
- A set of land classes ;
- A set of non-overlapping and sequential time intervals ;
- The set of temporal predicates defined by Allen [42];
- The predicate to assert properties of individual locations;
- The predicates , and for multi-interval comparison of land classes. is used to assert that the current class in a location is the same as that of a previous time instance, but there have been other classes assigned to it in intermediate intervals. is used to assert that current class of a location is different from that of a previous time instance, but there are no intermediate intervals with a different class. Moreover, asserts that the current class of a location is different from that of the previous time instance, and there are intermediate intervals with a different class.
2.3. Mato Grosso’s Land Use and Land Cover Data Sets
2.4. Patterns of Change for Agricultural Practices
3. Results and Discussion
4. Conclusions
- During the 17 years of analysis, in the Mato Grosso State, the conversion of Natural Vegetation, including forest or cerrado, to Pasture was predominant. This indicates that Pasture has been an important driver of deforestation in these three distinct biomes of the State. However, the conversion of Pasture areas to Agriculture indicates that agriculture can be considered an indirect driver of deforestation.
- When analyzing the patterns of change in agricultural practices, we conclude that Expansion in the three biomes is the pattern that occurs more frequently than the others (>55%). This means that in Mato Grosso, increasing agricultural production has occurred due to the conversion of other land uses to Agriculture, and the percentage of agricultural areas that have been intensified is still small.
- The LUC calculus application was a valuable tool to analyze spatio-temporal data, formally expressing queries and reason about land use trajectories flexibly. However, this approach depends on a set of classified and validated data for the study area. The LUC calculus depends on land use trajectories, with observations in a regular time interval.
Author Contributions
Funding
Conflicts of Interest
References
- Miranda, J.; Börner, J.; Kalkuhl, M.; Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 2019, 14, 045006. [Google Scholar] [CrossRef]
- Azevedo-Ramos, C.; Moutinho, P.; da S. Arruda, V.L.; Stabile, M.C.; Alencar, A.; Castro, I.; Ribeiro, J.P. Lawless land in no man’s land: The undesignated public forests in the Brazilian Amazon. Land Use Policy 2020, 99, 104863. [Google Scholar] [CrossRef]
- Gollnow, F.; Lakes, T. Policy change, land use, and agriculture: The case of soy production and cattle ranching in Brazil, 2001–2012. Appl. Geogr. 2014, 55, 203–211. [Google Scholar] [CrossRef]
- Gollnow, F.; de Barros Viana Hissa, L.; Rufin, P.; Lakes, T. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy 2018, 78, 377–385. [Google Scholar] [CrossRef]
- Picoli, M.C.A.; Rorato, A.; Leitão, P.; Camara, G.; Maciel, A.; Hostert, P.; Sanches, I.D. Impacts of Public and Private Sector Policies on Soybean and Pasture Expansion in Mato Grosso - Brazil from 2001 to 2017. Land 2020, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Barona, E.; Ramankutty, N.; Hyman, G.; Coomes, O.T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 2010, 5, 024002. [Google Scholar] [CrossRef]
- Rajão, R.; Soares-Filho, B.; Nunes, F.; Börner, J.; Machado, L.; Assis, D.; Oliveira, A.; Pinto, L.; Ribeiro, V.; Rausch, L.; et al. The rotten apples of Brazil’s agribusiness. Science 2020, 369, 246–248. [Google Scholar]
- Arima, E.Y.; Barreto, P.; Araújo, E.; Soares-Filho, B. Public policies can reduce tropical deforestation: Lessons and challenges from Brazil. Land Use Policy 2014, 41, 465–473. [Google Scholar] [CrossRef]
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; DiGiano, M.; Shimada, J.; Seroa da Motta, R.; et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Rausch, L.; Munger, J.; Schelly, I.; Morton, D.C.; Noojipady, P.; Soares-Filho, B.; Barreto, P.; Micol, L.; Walker, N.F. Brazil’s Soy Moratorium. Science 2015, 347, 377–378. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Munger, J.; L’Roe, J.; Barreto, P.; Pereira, R.; Christie, M.; Amaral, T.; Walker, N.F. Did Ranchers and Slaughterhouses Respond to Zero-Deforestation Agreements in the Brazilian Amazon? Conserv. Lett. 2016, 9, 32–42. [Google Scholar] [CrossRef]
- Morton, D.C.; Noojipady, P.; Macedo, M.M.; Gibbs, H.; Victoria, D.C.; Bolfe, E.L. Reevaluating suitability estimates based on dynamics of cropland expansion in the Brazilian Amazon. Glob. Environ. Chang. 2016, 37, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Kastens, J.H.; Brown, J.C.; Coutinho, A.C.; Bishop, C.R.; Esquerdo, J.C.D. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 2017, 12, 1–21. [Google Scholar] [CrossRef] [PubMed]
- West, T.A.; Fearnside, P.M. Brazil’s conservation reform and the reduction of deforestation in Amazonia. Land Use Policy 2021, 100, 105072. [Google Scholar] [CrossRef]
- Geist, H.; McConnell, W.; Lambin, E.F.; Moran, E.; Alves, D.; Rudel, T. Causes and Trajectories of Land-Use/Cover Change. In Land-Use and Land-Cover Change: Local Processes and Global Impacts; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 41–70. [Google Scholar] [CrossRef]
- Picoli, M.C.A.; Camara, G.; Sanches, I.; Simões, R.; Carvalho, A.; Maciel, A.; Coutinho, A.; Esquerdo, J.; Antunes, J.; Begotti, R.A.; et al. Big earth observation time series analysis for monitoring Brazilian agriculture. ISPRS J. Photogramm. Remote Sens. 2018, 145, 328–339. [Google Scholar] [CrossRef]
- McCracken, S.D.; Boucek, B.; Moran, E.F. Deforestation Trajectories in a Frontier Region of the Brazilian Amazon. In Linking People, Place, and Policy: A GIScience Approach; Springer US: Boston, MA, USA, 2002; pp. 215–234. [Google Scholar] [CrossRef]
- Pinheiro, T.F.; Escada, M.I.S.; Valeriano, D.M.; Hostert, P.; Gollnow, F.; Müller, H. Forest degradation associated with logging frontier expansion in the Amazon: The BR-163 region in Southwestern Pará, Brazil. Earth Interact. 2016, 20, 1–26. [Google Scholar] [CrossRef]
- Nainggolan, D.; de Vente, J.; Boix-Fayos, C.; Termansen, M.; Hubacek, K.; Reed, M.S. Afforestation, agricultural abandonment and intensification: Competing trajectories in semi-arid Mediterranean agro-ecosystems. Agric. Ecosyst. Environ. 2012, 159, 90–104. [Google Scholar] [CrossRef]
- Asenso Barnieh, B.; Jia, L.; Menenti, M.; Zhou, J.; Zeng, Y. Mapping Land Use Land Cover Transitions at Different Spatiotemporal Scales in West Africa. Sustainability 2020, 12, 8565. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Li, S.; Liao, A.; He, C.; Peng, S. Temporal logic and operation relations based knowledge representation for land cover change web services. ISPRS J. Photogramm. Remote Sens. 2013, 83, 140–150. [Google Scholar] [CrossRef]
- Azeredo, M.; Monteiro, A.M.V.; Escada, M.I.S.; Ferreira, K.R.; Vinhas, L.; Pinheiro, T.F. Mineração de trajetórias de mudança de cobertura da terra em estudos de degradação florestal (Land-cover change trajectory mining in forest degradation studies). Rev. Bras. Cartogr. 2016, 68, 717–731. [Google Scholar]
- Simoes, R.; Picoli, M.C.A.; Camara, G.; Maciel, A.; Santos, L.; Andrade, P.R.; Sánchez, A.; Ferreira, K.; Carvalho, A. Land use and cover maps for Mato Grosso State in Brazil from 2001 to 2017. Sci. Data 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciel, A.M.; Camara, G.; Vinhas, L.; Picoli, M.C.A.; Begotti, R.A.; de Assis, L.F.F.G. A spatiotemporal calculus for reasoning about land-use trajectories. Int. J. Geogr. Inf. Sci. 2019, 33, 176–192. [Google Scholar] [CrossRef] [Green Version]
- Soler, L.S.; Verburg, P.H.; Alves, D.S. Evolution of land use in the Brazilian Amazon: From frontier expansion to market chain dynamics. Land 2014, 3, 981–1014. [Google Scholar] [CrossRef]
- Brazilian Institute of Geography and Statistics (IBGE). IBGE-Cities, 2020. Available online: https://cidades.ibge.gov.br/brasil/mt/panorama (accessed on 8 February 2020).
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; del Bon Espirito-Santo, F.; Freitas, R.; Morisette, J. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637–14641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.C.; Kastens, J.H.; Coutinho, A.C.; Victoria, D.D.C.; Bishop, C.R. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sens. Environ. 2013, 130, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Ministério do Meio Ambiente (MMA). Biomas, 2019. Available online: https://www.mma.gov.br/biomas/ (accessed on 10 November 2019).
- Fearnside, P. Deforestation in Brazilian Amazonia. In Oxford Bibliographies in Environmental Science; Wohl, E., Ed.; Oxford University Press: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- National Institute for Space Research (INPE). Monitoring Program of the Amazon and Other Biomes. Deforestation—Legal Amazon, 2019. Available online: http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/increments (accessed on 3 July 2020).
- National Institute for Space Research. TerraBrasilis, 2020. Available online: http://terrabrasilis.dpi.inpe.br (accessed on 3 July 2019).
- Ministério do Meio Ambiente (MMA). Mapeamento do Uso e Cobertura do Cerrado: Projeto Terra Class Cerrado 2013, Brasília, 2015. Available online: http://www.mma.gov.br/images/arquivo/80049/Cerrado/publicacoes/Livro%20EMBRAPA-WEB-1-TerraClass%20Cerrado.pdf (accessed on 10 June 2018).
- Brannstrom, C.; Jepson, W.; Filippi, A.M.; Redo, D.; Xu, Z.; Ganesh, S. Land change in the Brazilian Savanna (Cerrado), 1986–2002: Comparative analysis and implications for land-use policy. Land Use Policy 2008, 25, 579–595. [Google Scholar] [CrossRef]
- Arvor, D.; Jonathan, M.; Meirelles, M.S.P.; Dubreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32, 7847–7871. [Google Scholar] [CrossRef]
- Spera, S.A.; Cohn, A.S.; VanWey, L.K.; Mustard, J.F.; Rudorff, B.F.; Risso, J.; Adami, M. Recent cropping frequency, expansion, and abandonment in Mato Grosso, Brazil had selective land characteristics. Environ. Res. Lett. 2014, 9, 064010. [Google Scholar] [CrossRef] [Green Version]
- WWF. Monitoramento das Alterações da Cobertura Vegetal e Uso do Solo na Bacia do Alto Paraguai—Porção Brasileira—Período de Análise: 2012 a 2014; Technical Report; Instituto SOS Pantanal and WWF-Brasil: Brasilia, Brazil, 2015. [Google Scholar]
- Roque, F.O.; Ochoa-Quintero, J.; Ribeiro, D.B.; Sugai, L.S.M.; Costa-Pereira, R.; Lourival, R.; Bino, G. Upland habitat loss as a threat to Pantanal wetlands. Conserv. Biol. 2016, 30, 1131–1134. [Google Scholar] [CrossRef]
- Guerra, A.; de Oliveira Roque, F.; Garcia, L.C.; Ochoa-Quintero, J.M.; de Oliveira, P.T.S.; Guariento, R.D.; Rosa, I.M. Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy 2020, 91, 104388. [Google Scholar] [CrossRef]
- Guerra, A.; de Oliveira, P.T.S.; de Oliveira Roque, F.; Rosa, I.M.; Ochoa-Quintero, J.M.; Guariento, R.D.; Colman, C.B.; Dib, V.; Maioli, V.; Strassburg, B.; et al. The importance of Legal Reserves for protecting the Pantanal biome and preventing agricultural losses. J. Environ. Manag. 2020, 260, 110128. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.F. Towards a General Theory of Action and Time. Artif. Intell. 1984, 23, 123–154. [Google Scholar] [CrossRef]
- Allen, J.F. Maintaining Knowledge About Temporal Intervals. Commun. ACM 1983, 26, 832–843. [Google Scholar] [CrossRef]
- Hurni, K.; Schneider, A.; Heinimann, A.; Nong, D.H.; Fox, J. Mapping the Expansion of Boom Crops in Mainland Southeast Asia Using Dense Time Stacks of Landsat Data. Remote Sens. 2017, 9, 320. [Google Scholar] [CrossRef] [Green Version]
- Câmara, G.; Picoli, M.; Maciel, A.; Simoes, R.; Santos, L.; Andrade, P.R.; Ferreira, K.; Begotti, R.; Sanches, I.; Carvalho, A.X.Y.; et al. Land cover change maps for Mato Grosso State in Brazil: 2001–2017 (version 3). PANGAEA 2019. [Google Scholar] [CrossRef]
- Rudorff, B.F.T.; Adami, M.; Aguiar, D.A.; Moreira, M.A.; Mello, M.P.; Fabiani, L.; Amaral, D.F.; Pires, B.M. The soy moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 2011, 3, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.A.; Lima, M. Soy Moratorium in Mato Grosso: Deforestation undermines the agreement. Land Use Policy 2018, 71, 540–542. [Google Scholar] [CrossRef]
- Macedo, M.N.; DeFries, R.S.; Morton, D.C.; Stickler, C.M.; Galford, G.L.; Shimabukuro, Y.E. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl. Acad. Sci. USA 2012, 109, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- Barretto, A.G.O.P.; Berndes, G.; Sparovek, G.; Wirsenius, S. Agricultural intensification in Brazil and its effects on land-use patterns: An analysis of the 1975–2006 period. Glob. Chang. Biol. 2013, 19, 1804–1815. [Google Scholar] [CrossRef]
- Richards, P. What Drives Indirect Land Use Change? How Brazil’s Agriculture Sector Influences Frontier Deforestation. Ann. Assoc. Am. Geogr. Assoc. Am. Geogr. 2015, 105, 1026–1040. [Google Scholar] [CrossRef] [Green Version]
- Arvor, D.; Meirelles, M.S.P.; Vargas, R.; Skorupa, L.A.; Fidalgo, E.C.C.; Dubreuil, V.; Herlin, I.; Berroir, J. Monitoring land use changes around the indigenous lands of the Xingu basin in Mato Grosso, Brazil. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3190–3193. [Google Scholar]
- Jasinski, E.; Morton, D.; DeFries, R.; Shimabukuro, Y.; Anderson, L.; Hansen, M. Physical landscape correlates of the expansion of mechanized agriculture in Mato Grosso, Brazil. Earth Interact. 2005, 9, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Arvor, D.; Dubreuil, V.; Ronchail, J.; Simões, M.; Funatsu, B.M. Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). Int. J. Climatol. 2014, 34, 2622–2633. [Google Scholar] [CrossRef]
- Cohn, A.S.; VanWey, L.K.; Spera, S.A.; Mustard, J.F. Cropping frequency and area response to climate variability can exceed yield response. Nat. Clim. Chang. 2016, 6, 601–604. [Google Scholar] [CrossRef]
- Hampf, A.C.; Stella, T.; Berg-Mohnicke, M.; Kawohl, T.; Kilian, M.; Nendel, C. Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development. Agric. Syst. 2020, 177, 102707. [Google Scholar] [CrossRef]
- de Oliveira, J.C.; Trabaquini, K.; Epiphanio, J.C.N.; Formaggio, A.R.; Galvão, L.S.; Adami, M. Analysis of agricultural intensification in a basin with remote sensing data. GISci. Remote Sens. 2014, 51, 253–268. [Google Scholar] [CrossRef]
- Brazilian Institute of Geography and Statistics (IBGE). Statistics of Agricultural Production—LSPA, 2020. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9201-levantamento-sistematico-da-producao-agricola.html?=&t=series-historicas (accessed on 3 August 2020).
- EBC. Empresa Brasil de Comunicação/ Agĉncia Brasil. Estimativa de Junho Prevê Safra Recorde de 247,4 Milhões de Toneladas, 2020. Available online: https://agenciabrasil.ebc.com.br/economia/noticia/2020-07/estimativa-de-junho-preve-safra-recorde-de-2474-milhoes-de-toneladas (accessed on 3 August 2020).
Change Pattern | Description | Trajectory Example |
---|---|---|
Stability | An agricultural practice remains constant during the study period. | …→ SC → SC → SC → SC → SC → … |
Intensification | There is a conversion from single crop to double crop practice. | …→ SC → SC → SC → DC → DC → … |
Reduction | There is a conversion from double crop to single crop practice. | …→ DC → DC → SC → SC → SC → … |
Interchange | Two agricultural practices interchange during entire study period. | …→ SC → DC → SC → DC → DC → … |
Expansion | An agricultural practice is in expansion during the study period. | …→ PT → SC → SC → PT → SC → … |
Change Pattern | LUC Calculus Expression |
---|---|
Stability | |
Intensification | |
Reduction | |
Interchange | |
Expansion |
(a) Amazon | ||
---|---|---|
Class in 2001 | Class in 2017 | Conversion (%) |
Forest | Pasture | 55.50 |
Pasture | Double cropping | 24.34 |
Forest | Double cropping | 17.28 |
Single cropping | Double cropping | 1.13 |
Double cropping | Pasture | 0.74 |
Pasture | Single cropping | 0.56 |
Forest | Single cropping | 0.28 |
Single cropping | Pasture | 0.17 |
Double cropping | Single cropping | 0.02 |
(b) Cerrado | ||
Class in 2001 | Class in 2017 | Conversion (%) |
Cerrado | Pasture | 44.84 |
Pasture | Double cropping | 23.71 |
Single cropping | Double cropping | 9.80 |
Forest | Pasture | 7.08 |
Cerrado | Double cropping | 6.48 |
Double cropping | Pasture | 3.73 |
Forest | Double cropping | 2.88 |
Single cropping | Pasture | 0.53 |
Double cropping | Single cropping | 0.37 |
Cerrado | Single cropping | 0.09 |
Forest | Single cropping | 0.07 |
(c) Pantanal | ||
Class in 2001 | Class in 2017 | Conversion (%) |
Cerrado | Pasture | 89.04 |
Forest | Pasture | 8.45 |
Pasture | Double cropping | 1.50 |
Single cropping | Pasture | 0.27 |
Double cropping | Pasture | 0.43 |
Forest | Double cropping | 0.09 |
Cerrado | Single cropping | 0.09 |
Cerrado | Double cropping | 0.06 |
Pasture | Single cropping | 0.04 |
Forest | Single cropping | 0.02 |
Double cropping | Single cropping | 0.01 |
Amazon | Cerrado | Pantanal | |
---|---|---|---|
Expansion | 6609.01 (83.9%) | 8104.53 (54.6%) | 27.13 (99.1%) |
Stability | 816.87 (10.4%) | 4399.61 (29.7%) | 0.20 (0.7%) |
Interchange | 335.19 (4.3%) | 1940.48 (13.1%) | 0.01 (0.0%) |
Intensification | 112.52 (1.4%) | 378.62 (2.6%) | 0.04 (0.2%) |
Reduction | 1.03 (0.0%) | 7.89 (0.1%) | 0.00 (0.0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel, A.M.; Picoli, M.C.A.; Vinhas, L.; Camara, G. Identifying Land Use Change Trajectories in Brazil’s Agricultural Frontier. Land 2020, 9, 506. https://doi.org/10.3390/land9120506
Maciel AM, Picoli MCA, Vinhas L, Camara G. Identifying Land Use Change Trajectories in Brazil’s Agricultural Frontier. Land. 2020; 9(12):506. https://doi.org/10.3390/land9120506
Chicago/Turabian StyleMaciel, Adeline M., Michelle C. A. Picoli, Lubia Vinhas, and Gilberto Camara. 2020. "Identifying Land Use Change Trajectories in Brazil’s Agricultural Frontier" Land 9, no. 12: 506. https://doi.org/10.3390/land9120506
APA StyleMaciel, A. M., Picoli, M. C. A., Vinhas, L., & Camara, G. (2020). Identifying Land Use Change Trajectories in Brazil’s Agricultural Frontier. Land, 9(12), 506. https://doi.org/10.3390/land9120506