Does Minimum Tillage Improve Smallholder Farmers’ Welfare? Evidence from Southern Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Variable Description
2.2. Sampling
2.3. Empirical Model Specification
3. Results
3.1. Household Characteristics
3.2. Factors Influencing the Adoption of Minimum Tillage
3.3. Impact of Minimum Tillage Farming on Per Capita Net Crop Income and Labor Demand
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, B.; Llewellyn, R.; Nuberg, I. Global learnings to inform the local adaptation of conservation agriculture in Eastern and Southern Africa. Glob. Food Sec. 2018, 17, 213–220. [Google Scholar] [CrossRef]
- Brown, B.; Nuberg, I.; Llewellyn, R. Negative evaluation of conservation agriculture: Perspectives from African smallholder farmers. Int. J. Agric. Sustain. 2017, 15, 467–481. [Google Scholar] [CrossRef]
- Conyers, M.; Van de Rijt, V.; Oates, A.; Poile, G.; Kirkegaard, J.; Kirkby, C. The strategic use of minimum tillage within conservation agriculture in southern New South Wales, Australia. Soil Till. Res. 2019, 193, 17–26. [Google Scholar] [CrossRef]
- Apesteguía, M.; Virto, I.; Orcaray, L.; Bescansa, P.; Enrique, A.; Imaz, M.J.; Karlen, D.L. Tillage Effects on Soil Quality after Three Years of Irrigation in Northern Spain. Sustainability 2017, 9, 1476. [Google Scholar] [CrossRef] [Green Version]
- Astatke, A.; Jabbar, M.; Tanner, D. Participatory conservation tillage research: An experience with minimum tillage on an Ethiopian highland Vertisol. Agric. Ecosyst. Environ. 2003, 95, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Brüssow, K.; Faße, A.; Grote, U. Implications of climate-smart strategy adoption by farm households for food security in Tanzania. Food Secur. 2017, 9, 1203–1218. [Google Scholar] [CrossRef]
- De Graaff, J.; Kessler, A.; Nibbering, J.W. Agriculture and food security in selected countries in Sub-Saharan Africa: Diversity in trends and opportunities. Food Secur. 2011, 3, 195–213. [Google Scholar] [CrossRef] [Green Version]
- Derpsch, R.; Lange, D.; Birbaumer, G.; Moriya, K. Why do medium- and large-scale farmers succeed practising CA, and small-scale farmers often do not?—Experiences from Paraguay. Int. J. Agric. Sustain. 2016, 14, 269–281. [Google Scholar] [CrossRef]
- Erenstein, O. Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications. Soil Till. Res. 2002, 67, 115–133. [Google Scholar] [CrossRef]
- Fisher, M.; Holden, S.T.; Thierfelder, C.; Katengeza, S.P. Awareness and adoption of conservation agriculture in Malawi: What difference can farmer-to-farmer extension make? Int. J. Agric. Sustain. 2018, 16, 310–325. [Google Scholar] [CrossRef]
- Giller, K.E.; Corbeels, M.; Nyamangara, J.; Triomphe, B.; Affholder, F.; Scopel, E.; Tittonell, P.A. A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Res. 2011, 124, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P.A. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Grabowski, P.P.; Kerr, J.; Haggblade, S.; Kabwe, S. Determinants of adoption and disadoption of minimum tillage by cotton farmers in eastern Zambia. Agric. Ecosyst. Environ. 2016, 231, 54–67. [Google Scholar] [CrossRef]
- Hao, X.; Chang, C.; Larney, F.J.; Nitschelm, J.; Regitnig, P. Effect of minimum tillage and crop sequence on crop yield and quality under irrigation in a southern Alberta clay loam soil. Soil Till. Res. 2001, 59, 45–55. [Google Scholar] [CrossRef]
- Imran, M.A.; Ali, A.; Ashfaq, M.; Hassan, S.; Culas, R.; Ma, C. Impact of Climate-Smart Agriculture (CSA) Practices on Cotton Production and Livelihood of Farmers in Punjab, Pakistan. Sustainability 2018, 10, 2101. [Google Scholar] [CrossRef] [Green Version]
- Issaka, F.; Zhang, Z.; Zhao, Z.Q.; Asenso, E.; Li, J.H.; Li, Y.T.; Wang, J.J. Sustainable Conservation Tillage Improves Soil Nutrients and Reduces Nitrogen and Phosphorous Losses in Maize Farmland in Southern China. Sustainability 2019, 11, 2397. [Google Scholar] [CrossRef] [Green Version]
- Jena, P.R.; Stellmacher, T.; Grote, U. Can coffee certification schemes increase incomes of smallholder farmers? Evidence from Jinotega, Nicaragua. Environ. Dev. Sustain. 2017, 19, 45–66. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of Conservation Agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Kiboi, M.N.; Ngetich, K.F.; Diels, J.; Mucheru-Muna, M.; Mugwe, J.; Mugendi, D. Minimum tillage, tied ridging and mulching for better maize yield and yield stability in the Central Highlands of Kenya. Soil Till. Res. 2017, 170, 157–166. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Kaweesa, S.; Mkomwa, S.; Loiskandl, W. Adoption of Conservation Agriculture in Uganda: A Case Study of the Lango Subregion. Sustainability 2018, 10, 3375. [Google Scholar] [CrossRef] [Green Version]
- Komarek, A.M. Conservation agriculture in western China increases productivity and profits without decreasing resilience. Food Secur. 2018, 10, 1251–1262. [Google Scholar] [CrossRef]
- Lahmar, R. Adoption of conservation agriculture in Europe: Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Madarász, B.; Juhos, K.; Ruszkiczay-Rudiger, Z.; Benke, S.; Jakab, G.; Szalai, Z. Conservation tillage vs conventional tillage: Long-term effects on yields in continental, sub-humid Central Europe, Hungary. Int. J. Agric. Sustain. 2016, 14, 408–427. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.W.; Hanks, J. Economic analysis of no-tillage and minimum tillage cotton-corn rotations in the Mississippi Delta. Soil Till. Res. 2009, 102, 135–137. [Google Scholar] [CrossRef]
- Muriithi, B.W.; Menale, K.; Diiro, G.; Muricho, G. Does gender matter in the adoption of push-pull pest management and other sustainable agricultural practices? Evidence from Western Kenya. Food Secur. 2018, 10, 253–272. [Google Scholar] [CrossRef]
- Myeni, L.; Moeletsi, M.; Thavhana, M.; Randela, M.; Mokoena, L. Barriers Affecting Sustainable Agricultural Productivity of Smallholder Farmers in the Eastern Free State of South Africa. Sustainability 2019, 11, 3003. [Google Scholar] [CrossRef] [Green Version]
- Ndah, H.T.; Schuler, J.; Diehl, K.; Bateki, C.; Sieber, S.; Knierim, A. From dogmatic views on conservation agriculture adoption in Zambia towards adapting to context. Int. J. Agric. Sustain. 2018, 16, 228–242. [Google Scholar] [CrossRef]
- Ndoli, A.; Baudron, F.; Sida, T.S.; Schut, A.G.T.; van Heerwaarden, J.; Giller, K.E. Conservation agriculture with trees amplifies negative effects of reduced tillage on maize performance in East Africa. Field Crops Res. 2018, 221, 238–244. [Google Scholar] [CrossRef]
- Ngoma, H.; Mason, N.M.; Sitko, N.J. Does minimum tillage with planting basins or ripping raise maize yields? Meso-panel data evidence from Zambia. Agric. Ecosyst. Environ. 2015, 212, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Pannell, D.J.; Llewellyn, R.S.; Corbeels, M. The farm-level economics of conservation agriculture for resource-poor farmers. Agric. Ecosyst. Environ. 2014, 187, 52–64. [Google Scholar] [CrossRef]
- Pedzisa, T.; Rugube, L.; Winter-Nelson, A.; Baylis, K.; Mazvimavi, K. The Intensity of adoption of Conservation agriculture by smallholder farmers in Zimbabwe. Agrekon 2015, 54, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, M.; Zambrana, E.; Fite, R.; Sole, A.; Tenorio, J.L.; Benavente, E. Yield and Quality Performance of Traditional and Improved Bread and Durum Wheat Varieties under Two Conservation Tillage Systems. Sustainability 2019, 11, 4522. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.K.; Smith, J.P.; Stirling, G.R. Integration of minimum tillage, crop rotation and organic amendments into a ginger farming system: Impacts on yield and soilborne diseases. Soil Till. Res. 2011, 114, 108–116. [Google Scholar] [CrossRef]
- Swanepoel, C.M.; Swanepoel, L.H.; Smith, H.J. A review of conservation agriculture research in South Africa. S. Afr. J. Plant Soil. 2018, 35, 297–306. [Google Scholar] [CrossRef]
- Thierfelder, C.; Chivenge, P.; Mupangwa, W.; Rosenstock, T.S.; Lamanna, C.; Eyre, J.X. How climate-smart is conservation agriculture (CA)?—Its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. Food Secur. 2017, 9, 537–560. [Google Scholar] [CrossRef] [Green Version]
- Thierfelder, C.; Mutenje, M.; Mujeyi, A.; Mupangwa, W. Where is the limit? Lessons learned from long-term conservation agriculture research in Zimuto Communal Area, Zimbabwe. Food Secur. 2015, 7, 15–31. [Google Scholar] [CrossRef]
- Wekesah, F.M.; Mutua, E.N.; Izugbara, C.O. Gender and conservation agriculture in sub-Saharan Africa: A systematic review. Int. J. Agric. Sustain. 2019, 17, 78–91. [Google Scholar] [CrossRef] [Green Version]
Variables | MT Adopters (130) | Non-Adopters (478) | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p-Value | |
Age | 48.47 | 13.11 | 48.53 | 14.67 | 0.9671 |
Gender of the household head | 0.9077 | 0.2906 | 0.8264 | 0.3792 | 0.0235 |
Years of residence in the village | 18.55 | 13.07 | 19.39 | 13.37 | 0.5211 |
Household size | 5.22 | 2.27 | 4.92 | 2.25 | 0.1756 |
Literacy index | 0.1143 | 0.1740 | 0.1068 | 0.1735 | 0.6637 |
Asset index | 0.4658 | 2.059 | 0.1267 | 1.9509 | 0.0025 |
Arable land | 2.288 | 2.5839 | 1.8235 | 1.8556 | 0.0212 |
Farming experience | 24.51 | 15.5607 | 24.6423 | 13.7164 | 0.6779 |
Variables | MT Adopters (130) | Non-Adopters (478) | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p-Value | |
Household preparation labor | 14.19 | 6.094 | 19.36 | 13.24 | 0.0000 |
Household planting labor | 17.70 | 6.30 | 16.47 | 10.19 | 0.1902 |
Household weeding labor | 18.66 | 7.04 | 23.64 | 13.07 | 0.0000 |
Household spraying labor | 2.74 | 2.75 | 2.17 | 3.52 | 0.086 |
Household harvest labor | 14.62 | 5.813 | 16.52 | 10.65 | 0.0504 |
Household total labor | 67.908 | 19.8007 | 78.163 | 35.791 | 0.0018 |
Variable | Marginal Effect | Standard Error | p-Value |
---|---|---|---|
Gender | 0.1365 | 0.0515 | 0.008 *** |
Household head age | 0.00054 | 0.0017 | 0.745 |
Years of residence | −0.00060 | 0.0017 | 0.727 |
Household size | 0.0095 | 0.0074 | 0.201 |
Literacy index | 0.0041 | 0.0973 | 0.967 |
Asset index | 0.01951 | 0.0091 | 0.033 ** |
Personal value training | 0.1429 | 0.0563 | 0.011 ** |
Drought experience | 0.0890 | 0.0350 | 0.011 ** |
Future climate change | 0.1393 | 0.1035 | 0.179 |
Government extension | 0.00198 | 0.0350 | 0.955 |
Farmer organization | −0.1354 | 0.03617 | 0.000 *** |
NGO information | 0.1383 | 0.05131 | 0.007 *** |
Agricultural group | −0.0328 | 0.0452 | 0.467 |
Water user group | 0.06033 | 0.04556 | 0.185 |
Household arable land | 0.00080 | 0.00324 | 0.825 |
Credit access | −0.0378 | 0.04161 | 0.364 |
Farming experience | −0.000828 | 0.001156 | 0.474 |
-constant | −1.6263 | 0.4890 | 0.001 *** |
Sample | Ps R2 | LR chi2 | p > chi2 | Mean Bias | Median Bias |
---|---|---|---|---|---|
Unmatched | 0.090 | 56.63 | 0.000 | 15.2 | 13.4 |
Matched | 0.012 | 4.02 | 1.000 | 4.9 | 4.4 |
Outcome Variables | Algorithms | ATT | S. E | t-Values |
---|---|---|---|---|
Per capita net crop income | NNM | 162,429.761 | 84,063.14 | 2.19 |
KBM | 192,207.55 | 88,474.76 | 2.17 | |
RM | 174,432.369 | 80,252.65 | 2.24 | |
Total household labor | NNM | −15.5478 | 3.3957 | −4.58 |
KBM | −14.1721 | 4.8622 | −2.91 | |
RM | −15.8062 | 2.7974 | −5.65 |
Gamma | Sig+ | Sig− |
---|---|---|
1 | 0.155612 | 0.155612 |
1.25 | 0.51926 | 0.018479 |
1.5 | 0.819905 | 0.001431 |
1.75 | 0.950879 | 8.5 × 10−5 |
2 | 0.989301 | 4.3 × 10−6 |
2.25 | 0.998014 | 1.9 × 10−7 |
2.5 | 0.999672 | 8.1 × 10−9 |
2.75 | 0.99995 | 3.2 × 10−10 |
3 | 0.999993 | 1.2 × 10−11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osewe, M.; Miyinzi Mwungu, C.; Liu, A. Does Minimum Tillage Improve Smallholder Farmers’ Welfare? Evidence from Southern Tanzania. Land 2020, 9, 513. https://doi.org/10.3390/land9120513
Osewe M, Miyinzi Mwungu C, Liu A. Does Minimum Tillage Improve Smallholder Farmers’ Welfare? Evidence from Southern Tanzania. Land. 2020; 9(12):513. https://doi.org/10.3390/land9120513
Chicago/Turabian StyleOsewe, Maurice, Chris Miyinzi Mwungu, and Aijun Liu. 2020. "Does Minimum Tillage Improve Smallholder Farmers’ Welfare? Evidence from Southern Tanzania" Land 9, no. 12: 513. https://doi.org/10.3390/land9120513
APA StyleOsewe, M., Miyinzi Mwungu, C., & Liu, A. (2020). Does Minimum Tillage Improve Smallholder Farmers’ Welfare? Evidence from Southern Tanzania. Land, 9(12), 513. https://doi.org/10.3390/land9120513