Infiltration Capacity of Rain Gardens Using Full-Scale Test Method: Effect of Infiltration System on Groundwater Levels in Bergen, Norway
Abstract
:1. Introduction
1.1. Study Area
1.2. The Rain Garden at Bryggen
2. Methods
2.1. Modified Phillip-Dunne Infiltration (MPD) Method
2.2. Full-Scale Infiltration Capacity Test at Bryggen
2.3. Continuous Monitoring of Groundwater Level in Boreholes
3. Results and Discussion
3.1. Soil Moisture Results
3.2. Small-Scale Results
3.3. Full-Scale Results
3.4. Comparison between Small-Scale and Full-Scale Results
3.5. Continuous Monitoring of Groundwater
3.6. Lesson Learned
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Fletcher, T.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.D.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Majidi, A.N.; Vojinovic, Z.; Alves, A.; Weesakul, S.; Sánchez, A.; Boogaard, F.C.; Kluck, J. Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement. Sustainability 2019, 11, 6361. [Google Scholar] [CrossRef] [Green Version]
- Prudencio, L.; Null, S.E. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Haughton, G.; Hunter, C. Sustainable Cities; Jessica Kingsley Publishers: London, UK, 1994; p. 357. ISBN 1134996071, 9781134996070. [Google Scholar]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Marsalek, J.; Jiménez-Cisneros, B.E.; Malmquist, P.-A.; Karamouz, M.; Goldenfum, J.; Chocat, B. Urban Water Cycle Process and Interactions; UNESCO Publishing and Taylor and Francis Group: Paris, France, 2006; ISBN 0-203-93246-3. [Google Scholar]
- Nie, L.; Lindholm, O.; Lindholm, G.; Syversen, E. Impacts of climate change on urban drainage systems – a case study in Fredrikstad, Norway. Urban Water J. 2009, 6, 323–332. [Google Scholar] [CrossRef]
- Ashley, R.; Christensson, A.; De Beer, J.; Walker, L.; Moore, S.; Saul, A. Selling Sustainability in SKINT (SSIS), SKINT Water Series II. 2012. Available online: https://brage.bibsys.no/xmlui/bitstream/handle/11250/176007/Kulturlag_SKINT_Waterseries_2.pdf?sequence=1 (accessed on 1 August 2020).
- Boogaard, F.C.; Van De Ven, F.; Langeveld, J.G.; Van De Giesen, N. Stormwater Quality Characteristics in (Dutch) Urban Areas and Performance of Settlement Basins. Challenges 2014, 5, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Wakode, H.B.; Baier, K.; Jha, R.; Azzam, R. Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India. Int. Soil Water Conserv. Res. 2018, 6, 51–62. [Google Scholar] [CrossRef]
- Foster, S.S.D. Impacts of urbanization on groundwater. In Hydrological Processes and Water Management in Urban Areas; IAHS-AISH Pub. No. 198; International Association of Hydrological Sciences: Wallingford, UK, 1990. [Google Scholar]
- Lerner, D.N. Identifying and quantifying urban recharge: A review. Hydrogeol. J. 2002, 10, 143–152. [Google Scholar] [CrossRef]
- De Beer, J.; Matthiesen, H.; Christensson, A. Quantification and Visualization of In Situ Degradation at the World Heritage Site Bryggen in Bergen, Norway. Conserv. Manag. Archaeol. Sites 2012, 14, 215–227. [Google Scholar] [CrossRef]
- De Beer, J.; Seither, A. Groundwater balance. In Monitoring, Mitigation, Management: The Groundwater Project—Safeguarding the World Heritage Site of Bryggen in Bergen; Rytter, J., Schonhowd, I., Eds.; Riksantikvaren: Bergen, Norway, 2015; pp. 106–123. [Google Scholar]
- Matthiesen, H.; Hollesen, J.; Gregory, D. Preservation Conditions and Decay Rates. In Monitoring, Mitigation, Management: The Groundwater Project—Safeguarding the World Heritage Site of Bryggen in Bergen 2015; Rytter, J., Schonhowd, I., Eds.; Riksantikvaren: Bergen, Norway, 2015; pp. 76–91. [Google Scholar]
- Rytter, J.; Schonhowd, I. Operation Groundwater Rescue. In Monitoring, Mitigation, Management: The Groundwater Project—Safeguarding the World Heritage Site of Bryggen in Bergen 2015; Rytter, J., Schonhowd, I., Eds.; Riksantikvaren: Bergen, Norway, 2015; pp. 50–59. [Google Scholar]
- Christensson, A.; Paszkowski, Z.; Spriggs, J.A.; Verhoef, L. (Eds.) Safeguarding Historic Waterfront Sites. In Bryggen in Bergen as a Case Study, 1st ed.; Stiftelsen Bryggen and Polytechnika Szczecinska: Bergen, Norway, 2004. [Google Scholar]
- De Beer, J.; Matthiesen, H. Groundwater monitoring and modelling from an archaeological perspective: Possibilities and challenges. In Geology for Society; Slagstad, T., Ed.; Geological Survey of Norway Special Publication: Trondheim, Norway, 2008; Volume 11, pp. 67–81. [Google Scholar]
- Rytter, J.; Schonhowd, I. (Eds.) Monitoring, Mitigation, Management: The Groundwater Project—Safeguarding the World Heritage Site of Bryggen in Bergen 2015; Riksantikvaren: Bergen, Norway, 2015; p. 213. ISBN 978-82-7574-085-2. [Google Scholar]
- De Beer, J.; Seither, A.; Vorenhout, M. Effects of a New Hdrological Barrier on the Temperatures in the Organic Ardheaeological Remains at Bryggen in Bergen, Norway. J. Conserv. Manag. Archaeol. Sites 2016, 18, 99–115. [Google Scholar] [CrossRef]
- Nestingen, R.S. The Comparison of Infiltration Devices and Modification of the Philip-Dunne Permeameter for the Assessment of Rain Gardens. Master’s Thesis, Department of Civil Engineering, University of Minnesota, Minneapolis, MN, USA, 2007. [Google Scholar]
- Asleson, B.C.; Nestingen, R.S.; Gulliver, J.S.; Hozalski, R.M.; Nieber, J.L. Performance Assessment of Rain Gardens. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1019–1031. [Google Scholar] [CrossRef]
- American Society for Testing and Materials ASTM D3385-09. Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometers; ASTM: West Conshohocken, PA, USA, 2009. [Google Scholar]
- Boogaard, F.C.; Lucke, T.; Van De Giesen, N.; Van De Ven, F. Evaluating the Infiltration Performance of Eight Dutch Permeable Pavements Using a New Full-Scale Infiltration Testing Method. Water 2014, 6, 2070–2083. [Google Scholar] [CrossRef]
- Lucke, T.; Boogaard, F.; Van De Ven, F. Evaluation of a new experimental test procedure to more accurately determine the surface infiltration rate of permeable pavement systems. Urban Plan. Transp. Res. 2014, 2, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Boogaard, F.C. Stormwater Characteristics and New Testing Methods for Certain Sustainable Urban Drainage Systems in the Netherlands 2015a. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, July 2015; p. 149. [Google Scholar] [CrossRef]
- Boogaard, F.C. Stormwater quality and sustainable urban drainage management. In Monitoring, Mitigation, Management: The Groundwater Project—Safeguarding the World Heritage Site of Bryggen in Bergen 2015b; Rytter, J., Schonhowd, I., Eds.; Riksantikvaren: Bergen, Norway, 2015; pp. 136–149. [Google Scholar]
- Boogaard, F.C.; Lucke, T. Long-Term Infiltration Performance Evaluation of Dutch Permeable Pavements Using the Full-Scale Infiltration Method. Water 2019, 11, 320. [Google Scholar] [CrossRef] [Green Version]
- Muthanna, T.M.; Viklander, M.; Thorolfsson, S.T. Seasonal climatic effects on the hydrology of a rain garden. Hydrol. Process. 2008, 22, 1640–1649. [Google Scholar] [CrossRef]
- Paus, K.H.; Braskerud, B.C. Suggestions for designing and constructing bioretention cells for a nordic climate. VATTEN. J. Water Manag. Res. 2014, 70, 139–150. [Google Scholar]
- MNI Metrological Institute of Norway. Available online: www.eKlima.no or www.yr.no (accessed on 10 November 2018).
- Ersland, G.A. The history of Bryggen until C. 1900. In Monitoring, Mitigation, Management: The Groundwater Project—Safeguarding the World Heritage Site of Bryggen in Bergen 2015; Rytter, J., Schonhowd, I., Eds.; Riksantikvaren: Bergen, Norway, 2015; pp. 12–23. [Google Scholar]
- Jensen, J.A. 2015 Subsidence at the Bryggen site. In Monitoring, Mitigation, Management: The Groundwater Project—Safeguarding the World Heritage Site of Bryggen in Bergen; Rytter, J., Schonhowd, I., Eds.; Riksantikvaren: Bergen, Norway, 2015. [Google Scholar]
- De Beer, J.; Price, S.J.; Ford, J.R. 3D modelling of geological and anthropogenic deposits at the World Heritage Site of Bryggen in Bergen, Norway. Quat. Int. 2012, 251, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Christensson, A.; Rytter, J.; Schonhowd, I. Management History. In Monitoring, Mitigation, Management: The Groundwater Project—Safeguarding the World Heritage Site of Bryggen in Bergen 2015; Rytter, J., Schonhowd, I., Eds.; Riksantikvaren: Bergen, Norway, 2015; pp. 38–47. [Google Scholar]
- Schlumberger Water Services, Diver Manual, Delft. November 2014. Available online: https://usermanual.wiki/Datasheet/SchlumbergerDiverCompleteSpecs.428302045.pdf (accessed on 1 October 2018).
- Boogaard, F.; Wentink, R.; Vorenhout, M.; De Beer, J. Implementation of Sustainable Urban Drainage Systems to Preserve Cultural Heritage—Pilot Motte Montferland. Conserv. Manag. Archaeol. Sites 2016, 18, 328–341. [Google Scholar] [CrossRef]
- De Beer, J.; Boogaard, F. Good practices in cultural heritage management and the use of subsurface knowledge in urban areas. Procedia Eng. 2017, 209, 34–41. [Google Scholar] [CrossRef]
- Woods Ballard, B.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashely, R.; Kellagher, R. CIRIA—The SuDS Manual; CIRIA Research Project 2015, (RP)992; Department for Environment Food & Rural Affairs: London, UK, 2015; ISBN 978-0-86017-760-9. Available online: https://www.ciria.org/ItemDetail?iProductCode=C753&Category=BOOK&WebsiteKey=3f18c87a-d62b-4eca-8ef4-9b09309c1c91 (accessed on 1 September 2017).
- CRC (Cooperative Research Centre for Water Sensitive Cities). Adoption Guidelines for Stormwater Biofiltration Systems; CRC: Clayton, Australia, 2015; Available online: https://watersensitivecities.org.au/wp-content/uploads/2016/06/Adoption-Guidelines-for-Stormwater-Biofiltration-Systems-Chapter-1.pdf (accessed on 14 December 2020).
- Minnesota Pollution Control Agency (MPCA). Minnesota Stormwater Manual; Minnesota Pollution Control Agency (MPCA): St. Paul, MN, USA; Melbourne, Australia, 2008; Available online: https://www.pca.state.mn.us/water/minnesotas-stormwater-manual (accessed on 14 December 2020).
- Prince George’s County, Maryland (PGCM). Bioretention Manual. In Environmental Services Division; Department of Environmental Resources, Prince George’s County: Upper Marlboro, MD, USA, 2007. Available online: https://www.princegeorgescountymd.gov/Government/AgencyIndex/DER/ESG/Bioretention/pdf/Bioretention%20Manual_2009%20Version.pdf (accessed on 14 December 2020).
- Paus, K.H.; Morgan, J.; Gulliver, J.S.; Leiknes, T.; Hozalski, R.M. Assessment of the Hydraulic and Toxic Metal Removal Capacities of Bioretention Cells after 2 to 8 Years of Service. Watern Air Soil Pollut. 2013, 225, 1–12. [Google Scholar] [CrossRef]
- Vannlaboratoriet Bergen Vann KF. Analysis for Soil Moisture. September 2017. Available online: http://www.bergenvann.com/laboratoriet/om-vannlaboratoriet/ (accessed on 1 October 2017).
- Ahmed, F.; Gulliver, J.S.; Nieber, J.L. Field infiltration measurements in grassed roadside drainage ditches: Spatial and temporal variability. J. Hydrol. 2015, 530, 604–611. [Google Scholar] [CrossRef]
- Camuffo, D.; Della Valle, A.; Becherini, F. A critical analysis of the definitions of climate and hydrological extreme events. Quat. Int. 2020, 538, 5–13. [Google Scholar] [CrossRef]
- Palhegyi, G.E. Designing storm-water controls to promote sustainable ecosystems: Science and application. J. Hydrol. Eng. 2010, 15, 504–511. [Google Scholar] [CrossRef]
- Bettess, R. Infiltration Drainage-Manual of Good Practice; CIRIA R156 1996 CIRIA: London, UK, 1996; ISBN 978-0-86017-457-8. [Google Scholar]
- BRE Digest 365. Soakway Design; Buildings Research Establishment: Bracknell, UK, 1991; ISBN 0-85125-502-7. [Google Scholar]
- DIN 19682-7. Soil Quality—Field Tests—Part 7: Determination of Infiltration Rate by Double Ring Infiltrometer 2015; German Institute for Standardization: Berlin, Germany, 2015. [Google Scholar]
- Lucke, T.; Beecham, S. Field investigation of clogging in a permeable pavement system. Build. Res. Inf. 2011, 39, 603–615. [Google Scholar] [CrossRef]
- Fassman, E.; Blackbourn, S. Urban Runoff Mitigation by a Permeable Pavement System over Impermeable Soils. J. Hydrol. Eng. 2010, 15, 475–485. [Google Scholar] [CrossRef]
- Pezzaniti, D.; Beecham, S.; Kandasamy, J. Influence of clogging on the effective life of permeable pavements. Proc. Inst. Civ. Eng. Water Manag. 2009, 162, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Venvik, G.; Bang-Kittilsen, A.; Boogaard, F.C. Risk assessment for areas prone to flooding and subsidence: A case study from Bergen, Western Norway. Hydrol. Res. 2019, 51, 322–338. [Google Scholar] [CrossRef]
- Boogaard, F.C.; Kluck, J.; Bosscher, M.; Schoof, G. Flood model Bergen Norway and the need for (sub-)surface INnovations for eXtreme Climatic EventS (INXCES). Procedia Eng. 2017, 209, 56–60. [Google Scholar] [CrossRef]
- Available online: https://climatescan.nl/projects/16/detail (accessed on 1 December 2020).
Sample | Water Content in Percent (%) Before Full-Scale Test | Water Content in Percent (%) After Full-Scale Test |
---|---|---|
1. | 30.50 | 42.40 |
2. | 34.30 | 56.50 |
3. | 28.60 | 40.70 |
4. | 28.10 | 58.50 |
Small-Scale Infiltration Tests | Full-Scale Infiltration Test | Requirement 100–300 mm/h and Empty Time of Max 48 h | |
---|---|---|---|
The large rain garden B | MPD 1: 245 mm/h | Ca. 1600 mm/h | 5 times the requirement of infiltration 11 min empty time |
MPD 2: 241 mm/h | |||
The small rain garden A | MPD 3: 382 mm/h | Ca. 510 mm/h | 1.7 times the requirement of infiltration 35 min empty time |
MPD 4: 404 mm/h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venvik, G.; Boogaard, F.C. Infiltration Capacity of Rain Gardens Using Full-Scale Test Method: Effect of Infiltration System on Groundwater Levels in Bergen, Norway. Land 2020, 9, 520. https://doi.org/10.3390/land9120520
Venvik G, Boogaard FC. Infiltration Capacity of Rain Gardens Using Full-Scale Test Method: Effect of Infiltration System on Groundwater Levels in Bergen, Norway. Land. 2020; 9(12):520. https://doi.org/10.3390/land9120520
Chicago/Turabian StyleVenvik, Guri, and Floris C. Boogaard. 2020. "Infiltration Capacity of Rain Gardens Using Full-Scale Test Method: Effect of Infiltration System on Groundwater Levels in Bergen, Norway" Land 9, no. 12: 520. https://doi.org/10.3390/land9120520
APA StyleVenvik, G., & Boogaard, F. C. (2020). Infiltration Capacity of Rain Gardens Using Full-Scale Test Method: Effect of Infiltration System on Groundwater Levels in Bergen, Norway. Land, 9(12), 520. https://doi.org/10.3390/land9120520