Improving Infrastructure Installation Planning Processes using Procedural Modeling
Abstract
:1. Introduction
2. Procedural Modeling
3. A Virtual Development Project
4. Comparing the Two Methods of Infrastructure Installation Planning
4.1. The Traditional Method and Procedural Modeling
4.2. Benefits of Procedural Modeling Using CityEngine
- Draw a center line to define the origin, destination, orientation, and shape of the new road feature;
- Secure some buffer space to edit the feature;
- Develop a rough draft of the feature in the secured space;
- Complete design of feature details, such as nodes (i.e., intersections) and street corners;
- Convert the remaining parts of the buffer space to residential use;
- Dissolve the parts into adjacent residential blocks;
- Subdivide the updated residential blocks;
- Recalculate and assign attribute values to road and parcel features.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nahrin, K. Urban development policies for the provision of utility infrastructure: A case study of Dhaka, Bangladesh. Util. Policy 2018, 54, 107–114. [Google Scholar] [CrossRef]
- Cui, Y.; Sun, Y. Social benefit of urban infrastructure: An empirical analysis of four Chinese autonomous municipalities. Util. Policy 2019, 58, 16–26. [Google Scholar] [CrossRef]
- Levine, J.C. Equity in Infrastructure Finance: When Are Impact Fees Justified? Land Econ. 1994, 70, 210–222. [Google Scholar] [CrossRef]
- Manaugh, K.; Badami, M.G.; El-Geneidy, A.M. Integrating social equity into urban transportation planning: A critical evaluation of equity objectives and measures in transportation plans in North America. Transp. Policy 2015, 37, 167–176. [Google Scholar] [CrossRef]
- Page, S.N.; Ankner, D.W.; Jones, C.; Fetterman, R. The Risks and Rewards of Private Equity in Infrastructure. Public Works Manag. Policy 2008, 13, 100–113. [Google Scholar] [CrossRef]
- Mullen, C. State Impact Fee Enabling Acts. In Impact Fees: Principles and Practice of Proportionate-Share Development Fees; Nelson, A.C., Nicholas, J.C., Juergensmeyer, J.C., Eds.; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Porter, D.R. Managing Growth in America’s Communities: Second Edition, 2nd ed.; Island Press: Washington, DC, USA, 2012; ISBN 978-1-59726-610-9. [Google Scholar]
- Nelson, A.C. Development impact fees. J. Am. Plan. Assoc. 1988, 54, 3–6. [Google Scholar] [CrossRef]
- Stroud, N. Legal Considerations of Development Impact Fees. J. Am. Plan. Assoc. 1988, 54, 29–37. [Google Scholar] [CrossRef]
- Altshuler, A.A.; Gomez-Ibanez, J.A. Regulation for Revenue: The Political Economy of Land Use Exactions; Brookings Institution Press: Washington, DC, USA, 1993; ISBN 978-0-8157-9127-0. [Google Scholar]
- Bae, S.-S.; Kwon, S.-W.; Coutts, C.; Park, S.-C.; Feiock, R.C. Development Impact Fees: A Vehicle or Restraint for Land Development? Lex Localis 2015, 13, 1047–1065. [Google Scholar] [CrossRef]
- Blanco, A.G.; Steiner, R.L.; Kim, J.; Chung, H. Effects of Impact Fees on Urban Form and Congestion in Florida. Transp. Res. Rec. 2012, 2297, 38–46. [Google Scholar] [CrossRef]
- Burge, G.S.; Nelson, A.C.; Matthews, J. Effects of proportionate-share impact fees. Hous. Policy Debate 2007, 18, 679–710. [Google Scholar] [CrossRef]
- Burge, G.S.; Ihlanfeldt, K.R. Promoting Sustainable Land Development Patterns through Impact Fee Programs. Cityscape 2013, 15, 83–105. [Google Scholar]
- Delaney, C.J.; Smith, M.T. Pricing Implications of Development Exactions on Existing Housing Stock. Growth Chang. 1989, 20, 1–12. [Google Scholar] [CrossRef]
- Delaney, C.J.; Smith, M.T. Impact Fees and the Price of New Housing: An Empirical Study. Real Estate Econ. 1989, 17, 41–54. [Google Scholar] [CrossRef]
- Downing, P.B.; McCaleb, T.S. The Economics of Development Exactions; Planners Press: Chicago, IL, USA, 1987. [Google Scholar]
- Huffman, F.E.; Nelson, A.C.; Smith, M.T.; Stegman, M.A. Who Bears the Burden of Development Impact Fees? J. Am. Plan. Assoc. 1988, 54, 49–55. [Google Scholar] [CrossRef]
- Singell, L.D.; Lillydahl, J.H. An Empirical Examination of the Effect of Impact Fees on the Housing Market. Land Econ. 1990, 66, 82–92. [Google Scholar] [CrossRef]
- Snyder, T.; Stegman, M.A.; Moreau, D.H. Paying for Growth: Using Development Fees to Finance Infrastructure, 3rd ed.; Urban Land Institute: Washington, DC, USA, 1989; ISBN 978-0-87420-663-0. [Google Scholar]
- Burge, G.S.; Trosper, T.L.; Nelson, A.C.; Juergensmeyer, J.C.; Nicholas, J.C. Can Development Impact Fees Help Mitigate Urban Sprawl? J. Am. Plan. Assoc. 2013, 79, 235–248. [Google Scholar] [CrossRef]
- Jepson, E.J. Could Impact Fees Be Used for CO2 Mitigation? J. Urban Plan. Dev. 2011, 137, 204–206. [Google Scholar] [CrossRef]
- Nicholas, J.C.; Juergensmeyer, J.C. Market Based Approaches to Environmental Preservation: To Environmental Mitigation Fees and Beyond. Nat. Resour. J. 2003, 43, 837–863. [Google Scholar]
- Ahrens, A.; Lyons, S. Changes in Land Cover and Urban Sprawl in Ireland from a Comparative Perspective over 1990–2012. Land 2019, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Aurambout, J.-P.; Barranco, R.; Lavalle, C. Towards a Simpler Characterization of Urban Sprawl across Urban Areas in Europe. Land 2018, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- DeSalvo, J.S.; Su, Q. The determinants of urban sprawl: Theory and estimation. Int. J. Urban Sci. 2019, 23, 88–104. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.-N. Shaping suburbia: A comparison of state-led and market-led suburbs in Seoul Metropolitan Area, South Korea. Urban Des. Int. 2016, 21, 131–150. [Google Scholar] [CrossRef]
- Kim, H.; Lee, N.; Kim, S.-N. Suburbia in evolution: Exploring polycentricity and suburban typologies in the Seoul metropolitan area, South Korea. Land Use Policy 2018, 75, 92–101. [Google Scholar] [CrossRef]
- Kim, H.-A.; Park, S.; Kim, H.-J. A Study on Infrastructure Financing Scheme for Local Public Services: Development Impact Fee System; Korea Institute of Public Finance: Sejong, Korea, 2004. [Google Scholar]
- Ministry of Construction and Transportation. Management Handbook for Infrastructure Rolling Systems; Ministry of Construction and Transportation: Seoul, Korea, 2004. [Google Scholar]
- Kim, S.-J.; Park, S.-H.; Lee, J.-H. An Approach on Policy Improvement for Impact Fee Area Considering the Smart Growth; Korea Research Institute for Human Settlements: Sejong, Korea, 2010. [Google Scholar]
- Cheoi, N.-Y. A Study on Enhancemet and Improvement of Infrastructure Bearing Area System; Ministry of Land, Infrastructure and Transport: Sejong, Korea, 2013.
- Cheoi, N.-Y. Determination of the Impact Fee Zone Based on the Grid Analysis of Population Increase. J. Korean Assoc. Geogr. Inf. Stud. 2009, 12, 74–83. [Google Scholar]
- Cheoi, N.-Y. A Grid Analysis to Designate the Zone to Levy the Impact Fee for Infrastructure Provision: The Case of the Industrial Localities. J. Korean Urban Geogr. Soc. 2009, 12, 65–75. [Google Scholar]
- Cheoi, N.-Y. Spatial Designation of Impact Fee Zone based on the Parcel Development Permit Information. J. Korean Assoc. Geogr. Inf. Stud. 2009, 12, 116–127. [Google Scholar]
- Lee, Y.J.; Cheoi, N.-Y. A Method to Use the Land-Use Zoning Information to Extract the DIF Zones. Korea Soc. Geospat. Inf. Syst. 2014, 22, 89–99. [Google Scholar]
- Parish, Y.I.H.; Müller, P. Procedural Modeling of Cities. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques; ACM: Los Angeles, CA, USA, 2001; pp. 301–308. [Google Scholar]
- Müller, P.; Wonka, P.; Haegler, S.; Ulmer, A.; Van Gool, L. Procedural Modeling of Buildings. In ACM SIGGRAPH 2006 Papers; ACM: New York, NY, USA, 2006; pp. 614–623. [Google Scholar]
- Stiny, G.; Gips, J. Shape Grammars and the Generative Specification of Painting and Sculpture. In Proceedings of the IFIP Congress, Ljubljana, Yugoslavia, 23–28 August 1971; Volume 2, pp. 1460–1465. [Google Scholar]
- Çağdaş, G. A Shape Grammar: The Language of Traditional Turkish Houses. Environ. Plan. B Plan. Des. 1996, 23, 443–464. [Google Scholar] [CrossRef]
- Flemming, U. More Than the Sum of Parts: The Grammar of Queen Anne Houses. Environ. Plan. B Plan. Des. 1987, 14, 323–350. [Google Scholar] [CrossRef]
- Knight, T.W. The Forty-One Steps. Environ. Plan. B Plan. Des. 1981, 8, 97–114. [Google Scholar] [CrossRef]
- Stiny, G.; Mitchell, W.J. The Palladian Grammar. Environ. Plan. B Plan. Des. 1978, 5, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Duarte, J.P. Automatic generation and fabrication of designs. Autom. Constr. 2002, 11, 291–302. [Google Scholar] [CrossRef]
- Agarwal, M.; Cagan, J. A Blend of Different Tastes: The Language of Coffeemakers. Environ. Plan. B Plan. Des. 1998, 25, 205–226. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, M.J.; Cagan, J. Capturing a rebel: Modeling the Harley-Davidson brand through a motorcycle shape grammar. Res. Eng. Des. 2002, 13, 139–156. [Google Scholar] [CrossRef]
- Lindenmayer, A. Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theor. Biol. 1968, 18, 280–299. [Google Scholar] [CrossRef]
- Bruneton, E.; Neyret, F. Real-Time Rendering and Editing of Vector-Based Terrains. Comput. Graph. Forum 2008, 27, 311–320. [Google Scholar] [CrossRef]
- Hnaidi, H.; Guérin, E.; Akkouche, S.; Peytavie, A.; Galin, E. Feature based terrain generation using diffusion equation. Comput. Graph. Forum 2010, 29, 2179–2186. [Google Scholar] [CrossRef]
- Alsweis, M.; Deussen, O. Modeling and Visualization of symmetric and asymmetric plant competition. In Proceedings of the Eurographics, Dublin, Ireland, 29 August–2 September 2005; pp. 83–88. [Google Scholar]
- Livny, Y.; Yan, F.; Olson, M.; Chen, B.; Zhang, H.; El-Sana, J. Automatic Reconstruction of Tree Skeletal Structures from Point Clouds. In ACM SIGGRAPH Asia 2010 Papers; ACM: New York, NY, USA, 2010; p. 151. [Google Scholar]
- Longay, S.; Runions, A.; Boudon, F.; Prusinkiewicz, P. TreeSketch: Interactive Procedural Modeling of Trees on a Tablet. In Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling, Annecy, France, 4–6 June 2012; Eurographics Association: Goslar, Germany, 2012; pp. 107–120. [Google Scholar]
- Génevaux, J.-D.; Galin, É.; Guérin, E.; Peytavie, A.; Benes, B. Terrain Generation Using Procedural Models Based on Hydrology. ACM Trans. Graph. 2013, 32, 143. [Google Scholar] [CrossRef] [Green Version]
- Huijser, R.; Dobbe, J.; Bronsvoort, W.F.; Bidarra, R. Procedural Natural Systems for Game Level Design. In Proceedings of the 2010 Brazilian Symposium on Games and Digital Entertainment, Florianopolis, Brazil, 8–10 November 2010; pp. 189–198. [Google Scholar]
- Schwarz, M.; Müller, P. Advanced Procedural Modeling of Architecture. ACM Trans. Graph. 2015, 34, 107. [Google Scholar] [CrossRef]
- Smelik, R.M.; Tutenel, T.; Bidarra, R.; Benes, B. A Survey on Procedural Modelling for Virtual Worlds. Comput. Graph. Forum 2014, 33, 31–50. [Google Scholar] [CrossRef]
- Choe, H.; Tai, H.-S.; Jung, Y.; Kim, S.; Yun, S.-J.; Yoo, B.; Kim, S.; Moon, K.; Kang, K.; Kim, D.; et al. Jeju, the Island of the Commons I; Jin In Jin: Gwacheon, Korea, 2016. [Google Scholar]
- Kwon, Y.; Kim, H.; Yoo, S. Assessment of the conservation value of Munseom area in Jeju Island, South Korea. Int. J. Sustain. Dev. World Ecol. 2018, 25, 739–746. [Google Scholar] [CrossRef]
- Koh, E.-H.; Lee, S.H.; Kaown, D.; Moon, H.S.; Lee, E.; Lee, K.-K.; Kang, B.-R. Impacts of land use change and groundwater management on long-term nitrate-nitrogen and chloride trends in groundwater of Jeju Island, Korea. Environ. Earth Sci. 2017, 76, 176. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yang, W.J.; Jeong, H.J.; Seo, D.J.; Lee, J.C. Distribution and Pollution Assessment of River Sediments Flowing into the Jeju Coast. J. Korean Soc. Urban Environ. 2017, 17, 409–417. [Google Scholar]
- Kam, S.; Paik, B.C.; Kim, K. A Study on the Presence of Perfluorinated Compounds (PFCs) in the Public Sewage Treatment Plants: Case of Jeju Province Sewage Treatment Plants. J. Korean Soc. Urban Environ. 2016, 16, 35–45. [Google Scholar]
- Han, S.; Park, K. The Problem and Solution on the Chinese‘s Purchase of Jeju -do Real Estate. Law Policy Rev. 2015, 21, 405–437. [Google Scholar]
- Paik, W. Chinese Investment in Foreign Real Estate and its Interactions with the Host State and Society: The Case of Jeju, South Korea. Pac. Aff. 2019, 92, 49–70. [Google Scholar] [CrossRef]
- Yang, S.K.; Jung, W.Y.; Han, W.K.; Chung, I.M. Impact of land-use changes on stream runoff in Jeju Island, Korea. AJAR 2012, 7, 6097–6109. [Google Scholar]
- Song, C. (Jeju Provincial Council, Jeju, South Korea). Interview. 28 March 2019. [Google Scholar]
- Southworth, M.; Owens, P.M. The Evolving Metropolis: Studies of Community, Neighborhood, and Street Form at the Urban Edge. J. Am. Plan. Assoc. 1993, 59, 271–287. [Google Scholar] [CrossRef]
- Benedikt, M.L. To Take Hold of Space: Isovists and Isovist Fields. Environ. Plan. B Plan. Des. 1979, 6, 47–65. [Google Scholar] [CrossRef]
- Teklenburg, J.A.F.; Timmermans, H.J.P.; van Wagenberg, A.F. Space Syntax: Standardised Integration Measures and Some Simulations. Environ. Plan. B Plan. Des. 1993, 20, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Stiglitz, J.E. The Theory of Local Public Goods Twenty-Five Years after Tiebout: A Perspective; National Bureau of Economic Research: Cambridge, MA, USA, 1982. [Google Scholar]
Site Characteristics | Grid | Loop | Cul-de-sac | Grid and Loop | Loop and Cul-de-sac | Cul-de-sac and Grid |
---|---|---|---|---|---|---|
Site area (m2) | 208.332 | 208.332 | 208.332 | 208.332 | 208.332 | 208.332 |
Total area of parcels (m2) | 164,823 | 172,615 | 171,321 | 171,764 | 172,787 | 166,895 |
Total number of parcels | 457 | 477 | 487 | 463 | 434 | 460 |
Total area of roads (m2) | 43,510 | 35,717 | 37,011 | 36,569 | 35,546 | 41,438 |
Total length of roads (m) | 5414 | 4299 | 3770 | 4425 | 3972 | 4941 |
% area of roads | 20.9 | 17.1 | 17.8 | 17.6 | 17.1 | 19.9 |
Total length of water and sewage (m) | 5414 | 4299 | 3770 | 4425 | 3972 | 4941 |
Metrics | Rules or Definitions | |
---|---|---|
Quality of the development typology | Isovist [67] | Mean amount of areas visible from a specific location |
Integration [68] | where is integreation of street ; is a normalizing factor depending on ; and is relative asymmetry | |
Betweenness [69] | where is betweenness at node ; is trip origin; is trip destination; is the number of paths between and ; and is the number of paths between and that contain node . | |
Installation Costs | Road a | (total road length) x (cost per meter)/(total area of residential parcels) |
Water and sewage a | (total water and sewage length) x (cost per meter)/(total area of residential parcels) | |
Land compensation a | (total price of parcels acquired for road construction)/(total area of residential parcels) |
Metrics | Grid | Loop | Cul-de-sac | Grid and Loop | Loop and Cul-de-sac | Cul-de-sac and Grid | |
---|---|---|---|---|---|---|---|
Quality of the development typology | Isovist | 7381 0.97 | 7041 0.27 | 6601 0.00 | 7283 0.89 | 6964 0.11 | 7473 1.00 |
Integration | 5943 1.00 | 5124 0.06 | 5139 0.07 | 5617 0.06 | 4818 0.00 | 5927 1.00 | |
Betweenness | 941,300 0.99 | 175,119 0.00 | 465,663 0.17 | 827,554 0.94 | 254,803 0.01 | 958,839 1.00 | |
Mean normalized value | 0.99 | 0.11 | 0.08 | 0.63 | 0.04 | 1.00 | |
Rank | 2 | 4 | 5 | 3 | 6 | 1 |
Metrics | Grid | Loop | Cul-de-sac | Grid and Loop | Loop and Cul-de-sac | Cul-de-sac and Grid | |
---|---|---|---|---|---|---|---|
Installation costs (million KRW) | Road | 5050 | 4146 | 4296 | 4245 | 4126 | 4810 |
Water and sewage | 1560 | 1239 | 1087 | 1275 | 1145 | 1424 | |
Land compensation | 9603 | 7491 | 7962 | 7948 | 9106 | 7693 | |
Total installation cost (million KRW) | 16,214 | 12,876 | 13,345 | 13,468 | 14,377 | 13,926 | |
Expected Total DIF (million KRW) | 4864 | 3863 | 4003 | 4040 | 4313 | 4178 | |
Expected DIF per household (million KRW) | 10.6 | 8.1 | 8.2 | 8.7 | 9.9 | 9.1 | |
Rank | 6 | 1 | 2 | 3 | 5 | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choei, N.-Y.; Kim, H.; Kim, S. Improving Infrastructure Installation Planning Processes using Procedural Modeling. Land 2020, 9, 48. https://doi.org/10.3390/land9020048
Choei N-Y, Kim H, Kim S. Improving Infrastructure Installation Planning Processes using Procedural Modeling. Land. 2020; 9(2):48. https://doi.org/10.3390/land9020048
Chicago/Turabian StyleChoei, Nae-Young, Hyungkyoo Kim, and Seonghun Kim. 2020. "Improving Infrastructure Installation Planning Processes using Procedural Modeling" Land 9, no. 2: 48. https://doi.org/10.3390/land9020048
APA StyleChoei, N. -Y., Kim, H., & Kim, S. (2020). Improving Infrastructure Installation Planning Processes using Procedural Modeling. Land, 9(2), 48. https://doi.org/10.3390/land9020048