Synergies and Determinants of Sustainable Intensification Practices in Pakistani Agriculture
Abstract
:1. Introduction
2. Theoretical and Conceptual Frameworks
2.1. Sustainable Intensification Practices Selected for the Study
2.2. Explanatory Variables for Multivariate Probit Model
2.3. Empirical Model
3. Materials and Methods
3.1. Study Area
3.2. Data Collection
3.3. Socioeconomic and Demographic Profile of Respondent
4. Results
4.1. The Extent of the Adoption and Intensities
4.2. Complementarities and Substitutability
4.3. Drivers and Barriers of Adoption of SIPs
5. Discussion
5.1. Synergies and Adoption Intensities of SIPs
5.2. Determinants of SIPs Adoption
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Description | Mean | SD |
---|---|---|---|
Household Characteristics | |||
Farming Experience | Farming experience of household head in years | 20.57 | 14.39 |
Family Size | Total adult members of family | 5.40 | 2.37 |
Family Type | 0 = single family, 1 = joint family | 0.86 | 0.33 |
Education | The education level of the household head, 0 = illiterate, 1 = primary, 2 = 8th standard, 3 = 10th standard, 4 = intermediate | 1.28 | 0.56 |
Risk Willingness | Household head is willing to take risk, 1 = yes, 0 = otherwise | 0.55 | 0.49 |
Assets Endowment | |||
Plot Size | Area size under cultivation in acres | 11.04 | 14.99 |
Land Tenure | Households ownership status, 0 = tenant, 1 = owner | 0.80 | 0.39 |
Livestock Ownership | 1 = farmer owns livestock, 0 = otherwise | 0.86 | 0.47 |
Institutional Characteristics | |||
Access to Credit | 1 = household has access to credit, 0 = otherwise | 0.58 | 0.48 |
Access to Information on New Agriculture Technologies | 1 = household has access to information on new agricultural technologies, 0 = otherwise | 0.58 | 0.50 |
Urban Linkage | 1 = household has friends or relatives living in urban areas, 0 = otherwise | 0.54 | 0.49 |
Extension Access | 1 = household has access to extension services, 0 = otherwise | 0.42 | 0.47 |
Social Participation | 1 = household head is a member of any farmer cooperative or village committee, 0 = otherwise | 0.55 | 0.48 |
Distance to Market | Distance to nearest market in kilometers | 6.34 | 1.91 |
Environmental Characteristics | |||
Increase in Temperature | 1 = farmer has experienced a change in temperature in recent years, 0 = otherwise | 0.41 | 0.46 |
Rainfall Variability | 1 = farmer has experienced unusual rain in recent years, 0 = otherwise | 0.39 | 0.45 |
Crop Pest Attack | 1 = farmers has experienced an increase in crop pest attack in recent years, 0 = otherwise | 0.59 | 0.49 |
Locational Dummies | |||
Mixed Crop Zone | 1 = If household is from mixed crop zone, 0 = otherwise | 0.33 | 0.47 |
Wheat Cotton Zone | 1 = If household is from wheat cotton zone, 0 = otherwise | 0.33 | 0.47 |
References
- Farooq, O. Chapter Agriculture, in Pakistan Economic survey 2012–13; Ministry of Finance, Government of Pakistan: Islamabad, Pakistan, 2013.
- Government of Pakistan. Economic Survey of Pakistan 2018–19; Government of Pakistan: Islamabad, Pakistan, 2019.
- Kreft, S.; Eckstein, D. Global Climate Risk Index 2014: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2012 and 1993 to 2012; Germanwatch e.V.: Bonn, Germany, 2014. [Google Scholar]
- Parry, M. The implications of climate change for crop yields, global food supply and risk of hunger. J. Sat Agric. Res. 2007, 4, 1–44. [Google Scholar]
- Waqas, A.H.C.; Maroof, A.M.; Rana, R.M.; Saima, A.; Ali, A. Comparison of Organic Farming and Conventional Farming In the Punjab, Pakistan. Int. J. Sci. Eng. Res. 2017, 8, 29–38. [Google Scholar]
- Peng, S.; Buresh, R.J.; Huang, J.; Zhong, X.; Zou, Y.; Yang, J.; Wang, G.; Liu, Y.; Hu, R.; Tang, Q.; et al. Improving nitrogen fertilization in rice by sitespecific N management. A review. Agron. Sustain. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Pingali, P.; Hossain, M.; Gerpacio, R.V. Asian Rice Bowls: The Returning Crisis? International Rice Research Institute: Los Baños, Philippines, 1997. [Google Scholar]
- Mango, N.; Makate, C.; Tamene, L.; Mponela, P.; Ndengu, G. Awareness and adoption of land, soil and water conservation practices in the Chinyanja Triangle, Southern Africa. Int. Soil Water Conserv. Res. 2017, 5, 122–129. [Google Scholar] [CrossRef]
- Myeni, L.; Moeletsi, M.; Thavhana, M.; Randela, M.; Mokoena, L. Barriers Affecting Sustainable Agricultural Productivity of Smallholder Farmers in the Eastern Free State of South Africa. Sustainability 2019, 11, 3003. [Google Scholar] [CrossRef] [Green Version]
- Oumer, A.M.; Burton, M. Drivers and Synergies in the Adoption of Sustainable Agricultural Intensification Practices: A Dynamic Perspective. In Proceedings of the 2018 Annual Meeting, Washington, DC, USA, 5–7 August 2018. [Google Scholar]
- Pretty, J.; Bharucha, Z.P. Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa. Insects 2015, 6, 152–182. [Google Scholar] [CrossRef]
- Pretty, J.; Toulmin, C.; Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
- Lee, D.R.; Barrett, C.B.; McPeak, J.G. Policy, technology, and management strategies for achieving sustainable agricultural intensification. Agric. Econ. 2006, 34, 123–127. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 671–677. [Google Scholar] [CrossRef]
- Chan, C.; Sipes, B.; Ayman, A.; Zhang, X.; LaPorte, P.; Fernandes, F.; Pradhan, A.; Chan-Dentoni, J.; Roul, P. Efficiency of Conservation Agriculture Production Systems for Smallholders in Rain-Fed Uplands of India: A Transformative Approach to Food Security. Land 2017, 6, 58. [Google Scholar] [CrossRef]
- Stevenson, J.R.; Serraj, R.; Cassman, K.G. Evaluating conservation agriculture for small-scale farmers in Sub-Saharan Africa and South Asia. Agric. Ecosyst. Environ. 2014, 187, 1–10. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. The State Of Food and Agriculture; Food and Agriculture Organization of The United Nations: Rome, Italy, 2009. [Google Scholar]
- Dalton, T.J.; Yahaya, I.; Naab, J. Perceptions and performance of conservation agriculture practices in northwestern Ghana. Agric. Ecosyst. Environ. 2014, 187, 65–71. [Google Scholar] [CrossRef]
- Tappan, G.; McGahuey, M. Tracking environmental dynamics and agricultural intensification in southern Mali. Agric. Syst. 2005, 94, 38–51. [Google Scholar] [CrossRef]
- Baumgart-Getz, A.; Prokopy, L.S.; Floress, K. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. J. Environ. Manag. 2012, 96, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Jat, H.S.; Kumar, P.; Sutaliya, J.M.; Kumar, S.; Choudhary, M.; Singh, Y.; Jat, M.L. Conservation agriculture based sustainable intensification of basmati rice-wheat system in North-West India. Arch. Agron. Soil Sci. 2019, 65, 1370–1386. [Google Scholar] [CrossRef]
- Kaweesa, S.; Mkomwa, S.; Loiskandl, W. Adoption of Conservation Agriculture in Uganda: A Case Study of the Lango Subregion. Sustainability 2018, 10, 3375. [Google Scholar] [CrossRef] [Green Version]
- Mekuriaw, A.; Heinimann, A.; Zeleke, G.; Hurni, H. Factors influencing the adoption of physical soil and water conservation practices in the Ethiopian highlands. Int. Soil Water Conserv. Res. 2018, 6, 23–30. [Google Scholar] [CrossRef]
- Teshager Abeje, M.; Tsunekawa, A.; Adgo, E.; Haregeweyn, N.; Nigussie, Z.; Ayalew, Z.; Elias, A.; Molla, D.; Berihun, D. Exploring Drivers of Livelihood Diversification and Its Effect on Adoption of Sustainable Land Management Practices in the Upper Blue Nile Basin, Ethiopia. Sustainability 2019, 11, 2991. [Google Scholar] [CrossRef] [Green Version]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Kotu, B.H.; Alene, A.; Manyong, V.; Hoeschle-Zeledon, I.; Larbi, A. Adoption and impacts of sustainable intensification practices in Ghana. Int. J. Agric. Sustain. 2017, 15, 539–554. [Google Scholar] [CrossRef]
- Ngwira, A.R.; Aune, J.B.; Mkwinda, S. On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crop. Res. 2012, 132, 149–157. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- Mungai, L.M.; Snapp, S.; Messina, J.P.; Chikowo, R.; Smith, A.; Anders, E.; Richardson, R.B.; Li, G. Smallholder Farms and the Potential for Sustainable Intensification. Front. Plant Sci. 2016, 7, 1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Sumberg, J. Constraints to the adoption of agricultural innovations Is it time for a re-think? Out Look Agric. 2005, 34, 7–10. [Google Scholar] [CrossRef]
- Baig, M.B.; Shahid, S.A.; Straquadine, G.S. Making rainfed agriculture sustainable through environmental friendly technologies in Pakistan: A review. Int. Soil Water Conserv. Res. 2013, 1, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Aziz, M.; Mahmood, A.; Asif, M.; Ali, A. Wheat-Based Intercropping: A Review. J. Anim. Plant Sci. 2015, 25, 896–907. [Google Scholar]
- Shahzad, M.; Hussain, M.; Farooq, M.; Farooq, S.; Jabran, K.; Nawaz, A. Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan. Environ. Sci. Pollut. Res. Int. 2017, 24, 24634–24643. [Google Scholar] [CrossRef]
- The Sustainable Development Policy Institute. Food Insecurity in Pakistan Report; Vulnerability Analysis and Mapping (VAM) Unit: Islamabad, Pakistan, 2009. [Google Scholar]
- Abid, M.; Scheffran, J.; Schneider, U.A.; Ashfaq, M. Farmers’ perceptions of and adaptation strategies to climate change and their determinants: The case of Punjab province, Pakistan. Earth Syst. Dyn. 2015, 6, 225–243. [Google Scholar] [CrossRef] [Green Version]
- International Center for Tropical Agriculture (CIAT); The World Bank. Climate-Smart Agriculture in Pakistan; CSA Country Profiles for Asia Series; The World Bank: Washington, DC, USA, 2017; pp. 1–28. [Google Scholar]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Jabbar, A.; Ahmad, R.; Bhatti, I.H.; Ur Rehman, A.; Virk, Z.A.; Vains, S.N. Effect of different rice based intercropping systems on rice grain yield and residual soil fertility. Pak. J. Bot. 2010, 42, 2339–2348. [Google Scholar]
- Ahmed, S.; Khan, M.A.; Qasam, M. Effect of Intercropping of Maize In Citrus Orchards on Citrus Leaf Miner Infestation and Population of Its Natural Enemies. Pak. J. Agric. Sci. 2013, 50, 91–93. [Google Scholar]
- Katyayan, A. Fundamentals of Agriculture; Kushal Publications & Distributors: Varanasi, India, 2005; pp. 10–11. [Google Scholar]
- Ehsanullah, M.J.; Ahmad, R.; Tariq, A. Bioeconomic assessment of maize-mash intercropping system. Crop Environ. 2011, 2, 41–46. [Google Scholar]
- Khaliq, A.; Khan, M.B.; Saleem, M.F.; Zamir, S.I. Lentil yield as influenced by density of wheat intercropping. J. Res. (Sci.) 2001, 12, 159–162. [Google Scholar]
- Khan, S.; Khan, M.A.; Akmal, M.; Ahmad, M.; Zafar, M.; Jabeen, A. Efficiency of wheat brassica mixtures with different seed rates in rainfed areas of potohar-pakistan. Pak. J. Bot. 2014, 46, 759–766. [Google Scholar]
- The Montpellier Panel. Sustainable Intensification: A New Paradigm for African Agriculture; Imperial College London: London, UK, 2013; pp. 1–40. [Google Scholar]
- Singh, R.P.; Prasad, P.V.V.; Reddy, K.R. Climate Change: Implications for Stakeholders in Genetic Resources and Seed Sector. Adv. Agron. 2015, 129, 117–180. [Google Scholar] [CrossRef]
- Shiferaw, B.A.; Okello, J.; Reddy, R.V. Adoption and adaptation of natural resource management innovations in smallholder agriculture: Reflections on key lessons and best practices. Environ. Dev. Sustain. 2007, 11, 601–619. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B.; Köhlin, G. Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor. Ecol. Econ. 2013, 93, 85–93. [Google Scholar] [CrossRef]
- Lin, C.-T.J.; Jensen, K.L.; Yen, S.T. Awareness of foodborne pathogens among US consumers. Food Qual. Prefer. 2005, 16, 401–412. [Google Scholar] [CrossRef]
- Ashfaq, M.; Razzaq, A.; Hassan, S.; ul Haq, S. Factors Affecting the Economic Losses Due to Livestock Diseases: A Case Study Of District Faisalabad. Pak. J. Agri. Sci. 2015, 52, 503–508. [Google Scholar]
- Pasha, H.A. Growth of the Provincial Economies; Institute for Policy Reforms (IPR): Islamabad, Pakistan, 2015. [Google Scholar]
- Razzaq, A.; Qing, P.; Naseer, M.; Abid, M.; Anwar, M.; Javed, I. Can the informal groundwater markets improve water use efficiency and equity? Evidence from a semi-arid region of Pakistan. Sci. Total Environ. 2019, 666, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S. Supply Response of Major Crops in Different Agro-Ecologic, Zones in Punjab. Ph.D. Thesis, University of Agriculture, Faisalabad, Pakistan, 2005. [Google Scholar]
- Abbas, Q.; Han, J.; Adeel, A.; Ullah, R. Dairy Production under Climatic Risks: Perception, Perceived Impacts and Adaptations in Punjab, Pakistan. Int. J. Environ. Res. Public Health 2019, 16, 4036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afrakhteh, H.; Armand, M.; Bozayeh, F. Analysis of Factors Affecting Adoption and Application of Sprinkler Irrigation by Farmers in Famenin County, Iran. Int. J. Agric. Manag. Dev. 2015, 5, 89. [Google Scholar] [CrossRef]
- Rezaei, A.; Salmani, M.; Razaghi, F.; Keshavarz, M. An empirical analysis of effective factors on farmers adaptation behavior in water scarcity conditions in rural communities. Int. Soil Water Conserv. Res. 2017, 5, 265–272. [Google Scholar] [CrossRef]
- Pinckney, T.C. The Demand for Public Storage of Wheat in Pakistan, Research Report 77; International Food Policy Research Institute: Washington, DC, USA, 1989. [Google Scholar]
- Dai, X.; Pu, L.; Rao, F. Assessing the Effect of a Crop-Tree Intercropping Program on Smallholders’ Incomes in Rural Xinjiang, China. Sustainability 2017, 9, 1542. [Google Scholar] [CrossRef] [Green Version]
- Clay, D.; Reardon, T.; Kangasniemi, J. Sustainable intensification in the highland tropics: Rwandan farmers’ investments in land conservation and soil fertility. Econ. Dev. Cult. Chang. 1998, 46, 351–377. [Google Scholar] [CrossRef] [Green Version]
- Ajayi, O.C.; Akinnifesi, F.K.; Sileshi, G.; Chakeredza, S. Adoption of renewable soil fertility replenishment technologies in the Southern African region: Lessons learnt and the way forward. Nat. Resour. Forum 2007, 31, 306–317. [Google Scholar] [CrossRef]
- Doss, C.R. Analyzing technology adoption using microstudies: Limitations, challenges, and opportunities for improvement. Agric. Econ. 2006, 34, 207–219. [Google Scholar] [CrossRef]
- Feder, G.; Lau, L.; Lin, J.Y.; Luo, X. The relationship between credit and productivity in Chinese agriculture: A microeconomic model of disequilibrium. Am. J. Agric. Econ. 1990, 72, 1151–1157. [Google Scholar] [CrossRef]
- Arslan, A.; McCarthy, N.; Lipper, L.; Asfaw, S.; Cattaneo, A.; Kokwe, M. Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia. J. Agric. Econ. 2015, 66, 753–780. [Google Scholar] [CrossRef]
- Sesmero, J.; Ricker-Gilbert, J.; Cook, A. How Do African Farm Households Respond to Changes in Current and Past Weather Patterns? A Structural Panel Data Analysis from Malawi. Am. J. Agric. Econ. 2018, 100, 115–144. [Google Scholar] [CrossRef]
- Koppmair, S.; Kassie, M.; Qaim, M. The influence of farm input subsidies on the adoption of natural resource management technologies. Aust. J. Agric. Resour. Econ. 2017, 61, 539–556. [Google Scholar] [CrossRef]
- Wainaina, P.; Tongruksawattana, S.; Qaim, M. Tradeoffs and complementarities in the adoption of improved seeds, fertilizer, and natural resource management technologies in Kenya. Agric. Econ. 2016, 47, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Ndiritu, S.W.; Kassie, M.; Shiferaw, B. Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya. Food Policy 2014, 49, 117–127. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Sivakumar, M.V.K. Global Climate Change and Food Security in South Asia: An Adaptation and Mitigation Framework; Springer: Dordrecht, The Netherlands, 2010; pp. 253–275. [Google Scholar] [CrossRef]
- Usman, I.S.; Abdullahi, A.; Qasimu, A.I.; Adamu, T. Farmers Perception On Orgainc Manure Usage Among Arable Crop Farmers In Jalingo local Government Area of Taraba State, Nigeria. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2016, 16, 353–359. [Google Scholar]
- Kurgat, B.K.; Ngenoh, E.; Bett, H.K.; Stöber, S.; Mwonga, S.; Lotze-Campen, H.; Rosenstock, T.S. Drivers of sustainable intensification in Kenyan rural and peri-urban vegetable production. Int. J. Agric. Sustain. 2018, 16, 385–398. [Google Scholar] [CrossRef] [Green Version]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Nakano, Y.; Tsusaka, T.W.; Aida, T.; Pede, V.O. Is farmer-to-farmer extension effective? The impact of training on technology adoption and rice farming productivity inTanzania. World Dev. 2018, 105, 336–351. [Google Scholar] [CrossRef] [Green Version]
- Rondhi, M.; Fatikhul Khasan, A.; Mori, Y.; Kondo, T. Assessing the Role of the Perceived Impact of Climate Change on National Adaptation Policy: The Case of Rice Farming in Indonesia. Land 2019, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Stöber, S.; Chepkoech, W.; Neubert, S.; Kurgat, B.; Bett, H.; Lotze Campen, H. Adaptation Pathways for African Indigenous Vegetables’ Value Chains. In Climate Change Adaptation in Africa; Springer: Cham, Switzerland, 2017; pp. 413–433. [Google Scholar] [CrossRef]
Sustainable Intensification Practices (SIPs) | Description | Percentage | |
---|---|---|---|
Crop rotation | Farmer is practicing crop rotation | (1 = yes; 0 = no) | 0.74 |
Intercropping | Farmer is practicing intercropping | (1 = yes; 0 = no) | 0.28 |
improved seeds | Farmers using improved seeds | (1 = yes; 0 = no) | 0.34 |
Low tillage | Farmers using low tillage practices | (1 = yes; 0 = no) | 0.20 |
Organic manure | Farmers using organic manure | (1 = yes; 0 = no) | 0.69 |
Organic Manure | Intercropping | Low Tillage | Crop Rotation | |
---|---|---|---|---|
Intercropping | 0.1864 ** | |||
Low Tillage | 0.0621 | 0.1059 ** | ||
Crop Rotation | 0.0743 * | 0.0784 * | 0.0406 | |
Improved Seeds | 0.0765 | 0.2786 ** | 0.0344 | 0.0785 * |
(χ2 (10) = 25.0091 prob > chi-squared value = 0.005) |
Explanatory Variables | Improved Seed | Low Tillage | Organic Manure | Intercropping | Crop Rotation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Coef. | SD | Coef. | SD | Coef. | SD | Coef. | SD | Coef. | SD | |
Household Characteristics | ||||||||||
Farming Experience | 0.001 | 0.003 | 0.005 | 0.004 | 0.010 ** | 0.004 | 0.006 | 0.004 | 0.005 | 0.004 |
Education | 0.109 | 0.100 | 0.254 ** | 0.108 | −0.068 | 0.106 | 0.413 *** | 0.113 | −0.078 | 0.106 |
Family size | −0.09 *** | 0.025 | −0.001 | 0.028 | −0.012 * | 0.026 | 0.018 | 0.028 | 0.072 ** | 0.027 |
Family type | −0.197 | 0.194 | −0.479 ** | 0.198 | −0.375 | 0.206 | −0.444 ** | 0.199 | 0.563 *** | 0.193 |
Risk willingness | 0.111 | 0.114 | 0.180 | 0.124 | −0.144 | 0.114 | 0.56 *** | 0.131 | 0.192 | 0.117 |
Assets Endowment | ||||||||||
Area under cultivation | 0.226 *** | 0.062 | 0.041 | 0.067 | 0.048 | 0.063 | 0.099 | 0.066 | 0.120 * | 0.066 |
Land tenure | −0.142 | 0.143 | 0.062 | 0.159 | −0.074 | 0.148 | 0.228 | 0.160 | −0.216 | 0.157 |
Livestock Ownership | −0.244 | 0.162 | −0.056 | 0.179 | −0.015 | 0.167 | −0.534 ** | 0.178 | 0.221 | 0.169 |
Institutional Characteristics | ||||||||||
Access to credit | 0.109 | 0.232 | 0.370 | 0.239 | −0.098 | 0.280 | −0.239 | 0.243 | −0.115 | 0.261 |
Social participation | 0.278 * | 0.146 | 0.179 | 0.159 | 0.132 | 0.149 | 0.293 * | 0.162 | 0.265 * | 0.152 |
Urban linkage | 0.001 | 0.153 | 0.176 | 0.168 | 0.239 | 0.158 | 0.036 | 0.170 | −0.077 | 0.162 |
Access to information | 0.332 *** | 0.118 | −0.011 | 0.128 | 0.317 ** | 0.115 | 0.380 *** | 0.133 | 0.141 | 0.121 |
Extension access | 0.247 ** | 0.114 | 0.261 * | 0.123 | 0.058 | 0.115 | 0.141 | 0.129 | 0.119 | 0.119 |
Distance to market | −0.012 | 0.032 | −0.017 | 0.035 | −0.000 | 0.033 | −0.003 | 0.036 | 0.021 | 0.033 |
Environmental Characteristics | ||||||||||
Rainfall Variability | 0.011 | 0.118 | −0.012 | 0.127 | 0.250 ** | 0.120 | 0.229 * | 0.130 | −0.269 ** | 0.123 |
Crop pest attack | −0.010 | 0.222 | −0.159 | 0.227 | 0.001 | 0.270 | −0.253 | 0.232 | 0.094 | 0.252 |
Increase in temperature | 0.316 ** | 0.114 | 0.134 | 0.124 | 0.35 *** | 0. 117 | 0.76 *** | 0.127 | 0.364 *** | 0.121 |
Location Dummies | ||||||||||
Cotton wheat Zone | 0.081 | 0.135 | −0.259 ** | 0.149 | −0.004 | 0.132 | 0.013 | 0.155 | −0.099 | 0.139 |
Mixed crop zone | 0.220 | 0.141 | −0.055 | 0.151 | 0.059 | 0.141 | 0.61 *** | 0.156 | 0.006 | 0.146 |
Constants | −0.801 * | 0.423 | −1.32 *** | 0.460 | 0.259 | 0.438 | −0.54 ** | 0.178 | 0.221 | 0.169 |
Number of observations | 612 | |||||||||
Log pseudo–likelihood | −1283.60 286.4 *** | |||||||||
Wald chi–square (100) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabbar, A.; Wu, Q.; Peng, J.; Zhang, J.; Imran, A.; Yao, L. Synergies and Determinants of Sustainable Intensification Practices in Pakistani Agriculture. Land 2020, 9, 110. https://doi.org/10.3390/land9040110
Jabbar A, Wu Q, Peng J, Zhang J, Imran A, Yao L. Synergies and Determinants of Sustainable Intensification Practices in Pakistani Agriculture. Land. 2020; 9(4):110. https://doi.org/10.3390/land9040110
Chicago/Turabian StyleJabbar, Awais, Qun Wu, Jianchao Peng, Jian Zhang, Asma Imran, and Luo Yao. 2020. "Synergies and Determinants of Sustainable Intensification Practices in Pakistani Agriculture" Land 9, no. 4: 110. https://doi.org/10.3390/land9040110
APA StyleJabbar, A., Wu, Q., Peng, J., Zhang, J., Imran, A., & Yao, L. (2020). Synergies and Determinants of Sustainable Intensification Practices in Pakistani Agriculture. Land, 9(4), 110. https://doi.org/10.3390/land9040110