Spatial-Temporal Characteristics of Cultivated Land Use Efficiency in Major Function-Oriented Zones: A Case Study of Zhejiang Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. SBM Model with Undesirable Output
2.2.2. Theil Index and Its Decomposition
2.2.3. Convergence Theory Tests
3. Indicator Selection and Data Sources
3.1. Indicator Selection
3.2. Data Sources
4. Results
4.1. Analysis of CLUE
4.2. Regional Disparity of CLUE
4.3. Regional Convergence of CLUE
4.3.1. σ Convergence of CLUE
4.3.2. Absolute β Convergence of CLUE
4.3.3. Conditional β Convergence of CLUE
5. Discussion
5.1. Does CLUE Match the Functional Positioning of the Major Function-Oriented Zones?
5.2. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Zones | Zones Characteristics | Function Positioning | Major Function |
---|---|---|---|
Optimized development zones | More developed economy; High development intensity; High population density; Severe resource and environmental problems. | Promote regional competitiveness; Lead economic and social development; Increase population and economy agglomeration. | Provide industrial products and service |
Key development zones | Certain economic foundation; High development potential; High resource and environmental carrying capacity; Favorable conditions for population agglomeration and economic development. | Support sustained economic development; Undertake population and industrial transfer; Develop a modern industry and marine economy. | Provide industrial products and service |
Agricultural production zones | Adequate cultivated land; Favorable conditions for agricultural production. | Build new socialist countryside; farmer live and work in peace and contentment; Guarantee the effective supply of agricultural products. | Provide agricultural products |
Ecological function zones | Fragile ecosystem or strong ecological sensitivity; Low resource and environmental carrying capacity. | Safeguard the ecological safety; Provide a variety of ecological services. | Provide ecological products |
Ecological economic zones | Ecological service function is more important; Certain resource and environmental carrying capacity. | Develop ecological economy; Promote urbanization and industrialization moderately; Guarantee the supply of agricultural and ecological products. | Provide ecological and cultural products |
Forbidden development zones | Industrial is prohibited; Ecological areas require special protection; Natural and cultural preserves established by law. | Inherit history and culture; Protect natural resources and ecological environment. | Provide agricultural, ecological, and cultural products |
Zones | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|
Optimized development zones | 0.280 | 0.257 | 0.307 | 0.296 | 0.303 | 0.271 | 0.293 | 0.277 | 0.294 | 0.273 |
Key development zones | 0.315 | 0.327 | 0.340 | 0.334 | 0.351 | 0.391 | 0.346 | 0.346 | 0.385 | 0.423 |
Agricultural production zones | 0.288 | 0.283 | 0.347 | 0.403 | 0.438 | 0.461 | 0.493 | 0.515 | 0.507 | 0.481 |
Ecological function zones | 0.335 | 0.308 | 0.343 | 0.346 | 0.391 | 0.374 | 0.335 | 0.381 | 0.357 | 0.301 |
Ecological economic zones | 0.348 | 0.387 | 0.383 | 0.393 | 0.434 | 0.414 | 0.435 | 0.423 | 0.450 | 0.412 |
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | |
---|---|---|---|---|---|---|---|---|---|---|
Optimized development zones | 0.038 | 0.030 | 0.047 | 0.041 | 0.041 | 0.031 | 0.038 | 0.033 | 0.037 | 0.030 |
Key development zones | 0.046 | 0.049 | 0.054 | 0.050 | 0.058 | 0.072 | 0.048 | 0.052 | 0.062 | 0.076 |
Agricultural production zones | 0.034 | 0.034 | 0.050 | 0.067 | 0.081 | 0.093 | 0.107 | 0.117 | 0.112 | 0.110 |
Ecological function zones | 0.048 | 0.047 | 0.063 | 0.065 | 0.079 | 0.066 | 0.054 | 0.066 | 0.059 | 0.042 |
Ecological economic zones | 0.057 | 0.078 | 0.062 | 0.063 | 0.076 | 0.062 | 0.069 | 0.058 | 0.069 | 0.059 |
Theilwithin | 0.046 | 0.049 | 0.055 | 0.053 | 0.06 | 0.058 | 0.052 | 0.052 | 0.058 | 0.056 |
Theilbetween | 0.011 | 0.011 | 0.015 | 0.015 | 0.020 | 0.015 | 0.020 | 0.020 | 0.017 | 0.017 |
Theiloverall | 0.057 | 0.060 | 0.070 | 0.068 | 0.081 | 0.074 | 0.072 | 0.072 | 0.075 | 0.073 |
References
- State Council of China. The National Plan for Major Function-Oriented Zones. Available online: http://www.gov.cn/zhengce/content/2011-06/08/content_1441.htm (accessed on 21 December 2010).
- Wang, W.X.; Wang, W.J.; Xie, P.C.; Zhao, D.Q. Spatial and temporal disparities of carbon emissions and interregional carbon compensation in major function-oriented zones: A case study of Guangdong province. J. Clean. Prod. 2020, 245, 118873. [Google Scholar] [CrossRef]
- Liu, W.C.; Liu, J.Y.; Kuang, W.H.; Ning, J. Examining the influence of the implementation of major function-oriented zones on built-up area expansion in China. J. Geogr. Sci. 2017, 27, 643–660. [Google Scholar] [CrossRef]
- Wu, D.; Zou, C.X.; Cao, W.; Liu, L.L. Analysis of the ecosystem soil conservation function based on the major function-oriented zones across the Yangtze River Economic Belt, China. Sustainability 2018, 10, 3425. [Google Scholar] [CrossRef] [Green Version]
- Su, M.; Guo, R.Z.; Hong, W.Y. Institutional transition and implementation path for cultivated land protection in highly urbanized regions: A case study of Shenzhen, China. Land Use Policy 2019, 81, 493–501. [Google Scholar] [CrossRef]
- Janus, J.; Bozek, P. Land abandonment in Poland after the collapse of socialism: Over a quarter of a century of increasing tree cover on agricultural land. Ecol. Eng. 2019, 138, 106–117. [Google Scholar] [CrossRef]
- Deng, X.Z.; Gibson, J.; Wang, P. Management of trade-offs between cultivated land conversions and land productivity in Shandong province. J. Clean. Prod. 2017, 142, 767–774. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, L.Y.; Liu, Y.S. Land consolidation boosting poverty alleviation in China: Theory and practice. Land Use Policy. 2019, 82, 339–348. [Google Scholar] [CrossRef]
- Ciaian, P.; Guri, F.; Rajcaniova, M.; Drabik, D.; Paloma, S.G.Y. Land fragmentation and production diversification: A case study from rural Albania. Land Use Policy 2018, 76, 589–599. [Google Scholar] [CrossRef]
- Lu, X.H.; Kuang, B.; Li, J. Regional difference decomposition and policy implications of China’s urban land use efficiency under the environmental restriction. Habitat Int. 2018, 77, 32–39. [Google Scholar] [CrossRef]
- Xie, H.L.; Chen, Q.R.; Lu, F.C.; Wang, W.; Yao, G.R.; Yu, J.L. Spatial-temporal disparities and influencing factors of total-factor green use efficiency of industrial land in China. J. Clean. Prod. 2019, 207, 1047–1058. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.L.; Zhang, X.; Wu, Y.Z. Utilization benefit of cultivated land and land institution reforms: Economy, society and ecology. Habitat. Int. 2018, 77, 64–70. [Google Scholar] [CrossRef]
- Reddy, N.B.K.; Ramanaiah, Y.V. Changes in agricultural land use efficiency in Andhra Pradesh: A study by the Standard Coefficient method. Land Use Policy 1985, 6, 210–216. [Google Scholar] [CrossRef]
- Han, H.; Zhang, X. Static and dynamic cultivated land use efficiency in China: A minimum distance to strong efficient frontier approach. J. Clean. Prod. 2019, 246, 119002. [Google Scholar] [CrossRef]
- Deng, X.Z.; Huang, J.K.; Rozelle, S.; Uchida, E. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 2006, 23, 372–384. [Google Scholar] [CrossRef]
- Y, Y.; Stomph, T.J.; Makowski, D.; Werf, W.V.D. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Res. 2015, 184, 133–144. [Google Scholar]
- Xiang, M.T.; Yu, Q.Y.; Wu, W.B. From multiple cropping index to multiple cropping frequency: Observing cropland use intensity at a finer scale. Ecol. Indic. 2019, 101, 892–903. [Google Scholar] [CrossRef]
- Hiebesch, C.K.; McCollum, R.E. Area×time equivalency ratio: A method for evaluating the productivity of intercrops. Agron. J. 1987, 79, 15–22. [Google Scholar] [CrossRef]
- Yang, C.H.; Wu, L.; Lin, H.L. Analysis of total-factor cultivated land efficiency in China’s agriculture. Agric. Econ. 2010, 56, 231–242. [Google Scholar]
- Charnes, A.; Cooper, W.W. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. Dealing with Undesirable Outputs in DEA: A slacks-based measure (SBM) approach. In Proceedings of the North American Productivity Workshop, Toronto, ON, Canada, 23–25 June 2004; pp. 44–45. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.L.; Chen, Q.R.; Wang, W.; He, Y.F. Analyzing the green efficiency of arable land use in china. Technol. Forecast. Soc. Chang. 2018, 133, 15–28. [Google Scholar] [CrossRef]
- Han, H.B.; Zhong, Z.Q.; Wen, C.C.; Sun, H.G. Agricultural environmental total factor productivity in China under technological heterogeneity: Characteristics and determinants. Environ. Sci. Pollut. Res. 2018, 25, 32096–32111. [Google Scholar] [CrossRef]
- Chen, Q.R.; Xie, H.L. Temporal-spatial differentiation and optimization analysis of cultivated land green utilization efficiency in China. Land 2019, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.H.; Liu, J.M.; Zhang, D.J.; Zhao, M.J.; Xia, C.Y. Impact of urbanization on the eco-efficiency of cultivated land utilization: A case study on the Yangtze River Economic Belt, China. J. Clean Prod. 2019, 238, 117916. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.H.; Zhou, M.; Chen, D.L. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Xie, H.L.; Chen, Q.R.; Choi, Y.R. Measuring the cultivated land use efficiency of the main grain-producing areas in China under the constraints of carbon emissions and agricultural non-point source pollution. Sustainability 2018, 10, 1932. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.F.; Zhu, J.X.; Pan, Y.; Wu, S.H.; Dang, Y.X.; Xu, B.G.; Yang, H. The positive impacts of landscape fragmentation on the diversification of agricultural production in Zhejiang Province, China. J. Clean. Prod. 2020, 251, 119722. [Google Scholar] [CrossRef]
- Statistical Bureau of Zhejiang Province, Survey Office of the National Bureau of Statistics in Zhejiang. Zhejiang Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2018.
- People’s Government of Zhejiang Province. The Planning of the Major Function-Oriented Zones in Zhejiang Province. Available online: http://jz.docin.com/p-732612115.html (accessed on 29 November 2013).
- Theil, H. World Income Inequality and its Components. Econ. Lett. 1979, 2, 99–102. [Google Scholar] [CrossRef]
- Chen, Z.H.; Haynes, K.E. Impact of high-speed rail on regional economic disparity in China. J. Transp. Geogr. 2017, 65, 80–91. [Google Scholar] [CrossRef]
- Lu, X.; Xu, C.X. The difference and convergence of total factor productivity of inter-provincial water resources in China based on three- stage DEA-Malmquist index model. Sustain. Comput.-Inform. 2019, 22, 75–83. [Google Scholar] [CrossRef]
- Barro, R.J.; Sala-I-Martin, X. Convergence across states and regions. Brook. Pap. Econ. Act. 1991, 22, 107–182. [Google Scholar] [CrossRef] [Green Version]
- Islam, N. What have we learnt from the convergence debate? J. Econ. Surv. 2003, 17, 309–362. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.M.; Upadhyay, M.P. Total factor productivity and the convergence hypothesis. J. Macroecon. 2002, 24, 267–286. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G.A. Synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Institute of Resource, Ecosystem and Environment of Agriculture in Nanjing Agricultural University. Available online: http://ireea.njau.edu.cn/ch/DownShow.asp?ID=101 (accessed on 5 November 2007).
- Wu, F.L.; Li, L.; Zhang, H.L.; Chen, F. Effects of conservation tillage on net carbon flux from farmland ecosystems. Chin. J. Eco. 2007, 26, 2035–2039. (In Chinese) [Google Scholar]
- Li, J.J. Research on characteristics and driving factors of agricultural land carbon emission in provinces of minorities in China. China Popul. Resour. Environ. 2012, 22, 42–47. (In Chinese) [Google Scholar]
- Statistical Bureau of Zhejiang Province, Survey Office of the National Bureau of Statistics in Zhejiang. Zhejiang Statistical Yearbook; China Statistics Press: Beijing, China, 2009–2017.
- Zhang, J.R.; Zeng, W.H.; Wang, J.N.; Yang, F.L.; Jiang, H.Q. Regional low-carbon economy efficiency in China: Analysis based on the Super-SBM model with CO2 Emiss. J. Clean. Prod. 2017, 163, 202–211. [Google Scholar] [CrossRef]
1 | Considering the multiple-crop index, we used the total sown area of farm crops to represent cultivated land input, instead of the total area of cultivated land. |
Indicators | Unit | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Labor force | 104 person.103 hm−2 | 0.161 | 0.133 | 0.023 | 1.092 |
Machinery | 104 kW.103 hm−2 | 4,621.454 | 2,662.910 | 745.828 | 21,006.024 |
Irrigation | % | 56.924 | 21.502 | 3.846 | 166.422 |
Chemical fertilizer | t.103 hm−2 | 353.685 | 173.869 | 16.312 | 1931.995 |
Pesticides | t.103 hm−2 | 22.927 | 14.915 | 3.831 | 156.553 |
Agricultural film | t.103 hm−2 | 24.518 | 26.455 | 2.018 | 193.121 |
Crop farming output value | 108 Yuan.103 hm−2 | 4306.965 | 1921.234 | 808.406 | 11,697.643 |
Agricultural Carbon emissions | t.103 hm−2 | 572.579 | 271.153 | 92.292 | 2742.118 |
Carbon Source | Emission Coefficient | Units | References |
---|---|---|---|
Chemical fertilizer | 0.8956 | kg.kg−1 | [38] |
Pesticides | 4.9341 | kg.kg−1 | [39] |
Agricultural film | 5.18 | kg.kg−1 | [40] |
Tillage | 312.6 | kg.km−2 | [41] |
Irrigation | 20.476 | kg.km−2 | [42] |
Agricultural machinery | 0.18 | kg.kW−1 | [42] |
Optimized Development Zones | Key Development Zones | Agricultural Production Zone | Ecological Function Zones | Ecological Economic Zones | ||||||
---|---|---|---|---|---|---|---|---|---|---|
With | Without | With | Without | With | Without | With | Without | With | Without | |
2008 | 0.485 | 0.624 | 0.343 | 0.461 | 0.301 | 0.416 | 0.417 | 0.580 | 0.406 | 0.546 |
2009 | 0.507 | 0.644 | 0.372 | 0.492 | 0.299 | 0.411 | 0.461 | 0.624 | 0.451 | 0.591 |
2010 | 0.611 | 0.738 | 0.425 | 0.557 | 0.314 | 0.425 | 0.505 | 0.656 | 0.488 | 0.635 |
2011 | 0.642 | 0.777 | 0.452 | 0.592 | 0.327 | 0.439 | 0.548 | 0.692 | 0.519 | 0.665 |
2012 | 0.711 | 0.832 | 0.471 | 0.609 | 0.322 | 0.424 | 0.591 | 0.723 | 0.549 | 0.688 |
2013 | 0.681 | 0.821 | 0.493 | 0.635 | 0.321 | 0.418 | 0.577 | 0.730 | 0.538 | 0.683 |
2014 | 0.732 | 0.848 | 0.495 | 0.642 | 0.318 | 0.407 | 0.575 | 0.733 | 0.567 | 0.708 |
2015 | 0.748 | 0.859 | 0.514 | 0.663 | 0.317 | 0.407 | 0.642 | 0.785 | 0.588 | 0.742 |
2016 | 0.789 | 0.884 | 0.571 | 0.711 | 0.341 | 0.432 | 0.659 | 0.805 | 0.663 | 0.790 |
2017 | 0.824 | 0.911 | 0.614 | 0.735 | 0.348 | 0.450 | 0.748 | 0.865 | 0.688 | 0.825 |
mean | 0.673 | 0.794 | 0.475 | 0.610 | 0.321 | 0.423 | 0.572 | 0.719 | 0.546 | 0.687 |
Zones | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|
Optimized development zones | 0.276 | 0.244 | 0.310 | 0.284 | 0.280 | 0.241 | 0.269 | 0.252 | 0.264 | 0.236 |
Key development zones | 0.303 | 0.311 | 0.330 | 0.316 | 0.346 | 0.390 | 0.300 | 0.300 | 0.349 | 0.385 |
Agricultural production zones | 0.249 | 0.253 | 0.307 | 0.357 | 0.396 | 0.427 | 0.460 | 0.484 | 0.488 | 0.447 |
Ecological function zones | 0.305 | 0.309 | 0.367 | 0.375 | 0.408 | 0.362 | 0.331 | 0.362 | 0.342 | 0.289 |
Ecological economic zones | 0.339 | 0.416 | 0.347 | 0.349 | 0.384 | 0.339 | 0.361 | 0.319 | 0.353 | 0.326 |
Zones | 2008–2012 | 2013–2017 | ||||||
---|---|---|---|---|---|---|---|---|
β | R-squared | λ | θ | β | R-squared | λ | θ | |
Optimized development zones | −0.093 | 0.151 | 0.117 | 5.952 | −0.041 | 0.077 | 0.044 | 15.603 |
(0.075) | (0.028) | |||||||
Key development zones | 0.005 | 0.002 | — | — | −0.016 | 0.014 | 0.017 | 40.863 |
(0.030) | (0.033) | |||||||
Agricultural production zones | 0.103 | 0.344 | — | — | 0.005 | 0.010 | — | — |
(0.056) | (0.012) | |||||||
Ecological function zones | −0.013 | 0.006 | 0.013 | 53.613 | −0.093 ** | 0.352 | 0.117 | 5.935 |
(0.054) | (0.038) | |||||||
Ecological economic zones | 0.029 | 0.040 | — | — | −0.013 | 0.028 | 0.013 | 52.754 |
(0.042) | (0.024) |
Zones | 2008–2012 | 2013–2017 | ||||||
---|---|---|---|---|---|---|---|---|
β | R−squared | λ | τ | β | R−squared | λ | τ | |
Optimized development zones | −0.810 *** | 0.586 | 0.415 | 1.668 | −0.928 *** | 0.322 | 0.659 | 1.052 |
(0.098) | (0.191) | |||||||
Key development zones | −0.558 *** | 0.494 | 0.204 | 3.399 | −0.632 *** | 0.407 | 0.250 | 2.771 |
(0.120) | (0.162) | |||||||
Agricultural production zones | 0.002 | 0.290 | — | — | −0.632 | 0.697 | 0.250 | 2.774 |
(0.063) | (0.298) | |||||||
Ecological function zones | −0.367 | 0.192 | 0.114 | 6.063 | −1.247 *** | 0.506 | — | — |
(0.237) | (0.262) | |||||||
Ecological economic zones | −0.763 *** | 0.521 | 0.360 | 1.928 | −0.545 *** | 0.319 | 0.197 | 3.526 |
(0.204) | (0.107) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Su, Y.; Yang, G.; Chen, D.; Yang, R. Spatial-Temporal Characteristics of Cultivated Land Use Efficiency in Major Function-Oriented Zones: A Case Study of Zhejiang Province, China. Land 2020, 9, 114. https://doi.org/10.3390/land9040114
Zhang C, Su Y, Yang G, Chen D, Yang R. Spatial-Temporal Characteristics of Cultivated Land Use Efficiency in Major Function-Oriented Zones: A Case Study of Zhejiang Province, China. Land. 2020; 9(4):114. https://doi.org/10.3390/land9040114
Chicago/Turabian StyleZhang, Chaozheng, Yangyue Su, Gangqiao Yang, Danling Chen, and Rongxuan Yang. 2020. "Spatial-Temporal Characteristics of Cultivated Land Use Efficiency in Major Function-Oriented Zones: A Case Study of Zhejiang Province, China" Land 9, no. 4: 114. https://doi.org/10.3390/land9040114
APA StyleZhang, C., Su, Y., Yang, G., Chen, D., & Yang, R. (2020). Spatial-Temporal Characteristics of Cultivated Land Use Efficiency in Major Function-Oriented Zones: A Case Study of Zhejiang Province, China. Land, 9(4), 114. https://doi.org/10.3390/land9040114