Measuring Multifunctional Agricultural Landscapes
Abstract
:1. Introduction—Multifunctional Agriculture (MFA)
2. The Nature of MFA
3. Assessing and Measuring Multifunctionality
3.1. The Literature Search
3.2. Previous Surveys
3.3. Measuring MFA
3.3.1. Economic Valuation
3.3.2. Biophysical Valuation
3.3.3. Social-Cultural Valuations
3.3.4. Holistic Valuations
3.4. Relational Values
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Isachenko, A.G. On the method of applied landscape research. Sov. Geogr. 1973, 14, 229–243. [Google Scholar] [CrossRef]
- Kostrowicki, J. Rural areas as multifunctional space: Some research and planning problems. In Rural Development in Highlands and High-Latitude Zones: Proceedings of A Symposium Held by The International Geographical Union’s Commission on Rural Development; University of Oulu: Oulu, Finland, 1978; p. 175. [Google Scholar]
- Manten, A.A. Fifty years of rural landscape planning in The Netherlands. Landsc. Plan. 1975, 2, 197–217. [Google Scholar] [CrossRef]
- Smith, P.C.; Raitz, K.B. Negro hamlets and agricultural estates in Kentucky’s inner bluegrass. Geogr. Rev. 1974, 64, 217–234. [Google Scholar] [CrossRef]
- Carter, I. The Highlands of Scotland as an underdeveloped region. In Sociology and Development; de Kadt, E., Williams, G., Eds.; Routledge: Abingdon, UK, 1974; pp. 279–311. [Google Scholar]
- Chevalier, F. Land and Society in Colonial Mexico: The Great Hacienda; University of California Press: Berkeley, CA, USA, 1963. [Google Scholar]
- Martins, S.W.; Wade, S.M. A Great Estate at Work: The Holkham Estate and Its Inhabitants in the Nineteenth Century; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Fielke, S.J. Multifunctional agricultural transition: Essential for local diversity in a globalised world. In Handbook on the Globalisation of Agriculture; Robinson, G.M., Carson, D.A., Eds.; Edward Elgar Publishing: Cheltenham, UK; Northampton, MA, USA, 2015. [Google Scholar]
- Madureira, L.; Susete, C. Multifunctional agriculture as an innovation path for rural areas. Econ. Agric. 2018, 57, 121–132. [Google Scholar]
- Wilson, G.A. Multifunctional Agriculture: A Transition Theory Perspective; CABI: Wallingford, UK; Cambridge, MA, USA, 2007. [Google Scholar]
- Bretagnolle, V.; Berthet, E.; Gross, N.; Gauffre, B.; Plumejeaud, C.; Houte, S.; Badenhausser, I.; Monceau, K.; Allier, F.; Monestiez, P.; et al. Towards sustainable and multifunctional agriculture in farmland landscapes: Lessons from the integrative approach of a French LTSER platform. Sci. Total Environ. 2018, 627, 822–834. [Google Scholar] [CrossRef]
- Granvik, M.; Lindberg, G.; Stigzelius, K.A.; Fahlbeck, E.; Surry, Y. Prospects of multifunctional agriculture as a facilitator of sustainable rural development: Swedish experience of Pillar 2 of the Common Agricultural Policy (CAP). Nor. Geogr. Tidsskr. 2012, 66, 155–166. [Google Scholar] [CrossRef]
- Leakey, R.R.B. Multifunctional Agriculture: Achieving Sustainable Development in Africa; Academic Press: London, UK, 2017. [Google Scholar]
- Spataru, A.; Faggian, R.; Docking, A. Principles of multifunctional agriculture for supporting agriculture in metropolitan peri-urban areas: The case of Greater Melbourne, Australia. J. Rural Stud. 2020, 74, 34–44. [Google Scholar] [CrossRef]
- Commission of the European Communities (CEC). The Future of Rural Society; CEC: Brussels, Belgium, 1988. [Google Scholar]
- Belletti, G.; Brunori, G.; Marescotti, A.; Rossi, A. Multifunctionality and rural development: A multilevel approach. In Multifunctional Agriculture: A New Paradigm for European Agriculture and Rural Development; van Huylenbroeck, G., Durand, G., Eds.; Ashgate: Farnham, UK, 2003; pp. 55–80. [Google Scholar]
- Committee of Agricultural Organisations in the European Union (CAOEU). The European Model of Agriculture: The Way ahead; Committee of Agricultural Organizations in the European Union: Brussels, Belgium, 1999. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). Multifunctionality: Towards and Analytical Framework; Organisation for Economic Co-operation and Development: Paris, France, 2001. [Google Scholar]
- Randall, A. Valuing the outputs of multifunctional agriculture. Eur. Rev. Agric. Econ. 2002, 29, 289–307. [Google Scholar] [CrossRef]
- Swaffield, S.R.; Corry, R.C.; Opdam, P.; McWilliam, W.; Primdahl, J. Connecting business with the agricultural landscape: Business strategies for sustainable rural development. Bus. Strategy Environ. 2019, 28, 1357–1369. [Google Scholar] [CrossRef]
- Brummel, R.F.; Nelson, K.C. Does multifunctionality matter to US farmers? Farmer motivations and conceptions of multifunctionality in dairy systems. J. Environ. Manag. 2014, 146, 451–462. [Google Scholar] [CrossRef]
- Pelucha, M.; Kveton, V. The role of EU rural development policy in the neo-productivist agricultural paradigm. Reg. Stud. 2017, 51, 1860–1870. [Google Scholar] [CrossRef]
- Raymond, C.M.; Reed, M.S.; Bieling, C.; Robinson, G.M.; Plieninger, T. Integrating different understandings of landscape stewardship into the design of agri-environmental schemes. Environ. Conserv. 2016, 43, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Kawai, M.; Lee, J.W. Beyond the crisis: Toward balanced and sustainable growth. In Rebalancing for Sustainable Growth; Kawai, M., Lee, J.-W., Eds.; Springer: Tokyo, Japan, 2015; pp. 251–260. [Google Scholar]
- Fielke, S.J.; Bardsley, D.K. Regional agricultural governance in peri-urban and rural South Australia: Strategies to improve multifunctionality. Sustain. Sci. 2015, 10, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Fielke, S.J.; Bardsley, D.K. South Australian farmers’ markets: Tools for enhancing the multifunctionality of Australian agriculture. GeoJournal 2013, 78, 759–776. [Google Scholar] [CrossRef]
- Parrott, L.; Kyle, C.; Hayot-Sasson, V.; Bouchard, C.; Cardille, J.A. Planning for ecological connectivity across scales of governance in a multifunctional regional landscape. Ecosyst. People 2019, 15, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Rallings, A.M.; Smukler, S.M.; Gergel, S.E.; Mullinix, K. Towards multifunctional land use in an agricultural landscape: A trade-off and synergy analysis in the Lower Fraser Valley, Canada. Landsc. Urban Plan. 2019, 184, 88–100. [Google Scholar] [CrossRef]
- Liu, Y. Research on the urban-rural integration and rural revitalization in the new era in China. Acta Geogr. Sin. 2018, 73, 637–650. [Google Scholar]
- Zhao, X.; Sun, H.; Chen, B.; Xia, X.; Li, P. China’s rural human settlements: Qualitative evaluation, quantitative analysis and policy implications. Ecol. Indic. 2019, 105, 398–405. [Google Scholar] [CrossRef]
- Marsden, T.; Sonnino, R. Rural development and the regional state: Denying multifunctional agriculture in the UK. J. Rural Stud. 2008, 24, 422–431. [Google Scholar] [CrossRef]
- Bardsley, D.K. Risk alleviation via in situ agrobiodiversity conservation: Drawing from experiences in Switzerland, Turkey and Nepal. Agric. Ecosyst. Environ. 2003, 99, 149–157. [Google Scholar] [CrossRef]
- Maye, D.; Ilbery, B.; Watts, D. Farm diversification, tenancy and CAP reform: Results from a survey of tenant farmers in England. J. Rural Stud. 2009, 25, 333–342. [Google Scholar] [CrossRef]
- Van der Ploeg, J.D.; Long, A.; Banks, J. Rural development: The state of the art. In Living Countrysides: Rural Development Processes in Europe: The State of the Art; Van der Ploeg, J.D., Long, A., Banks, J., Eds.; Elsevier: Doetinchem, The Netherlands, 2002; pp. 8–17. [Google Scholar]
- Van der Ploeg, J.D.; Renting, H.; Brunori, G.; Knickel, K.; Mannion, J.; Marsden, T.; de Roest, K.; Sevilla-Guzmán, E.; Ventura, F. Rural development: From practices and policies towards theory. Sociol. Rural. 2000, 40, 391–408. [Google Scholar] [CrossRef]
- Pinto-Correia, T.; Primdahl, J. When rural landscapes change functionality: Constraints and development options for multifunctional landscapes. Examples from contrasting case-studies in Portugal and Denmark. In Multifunctional Rural Land Management: Economics and Policies; Brouwer, F., van der Heide, C.M., Eds.; Earthscan: London, UK, 2009; pp. 213–234. [Google Scholar]
- Galler, C.; von Haaren, C.; Albert, C. Optimizing environmental measures for landscape multi-functionality: Effectiveness, efficiency and recommendations for agri-environmental programs. J. Environ. Manag. 2015, 151, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Liu, Y.; Liu, Z.; Yang, Y. Mapping spatial non-stationarity of human-natural factors associated with agricultural landscape multifunctionality in Beijing–Tianjin–Hebei region, China. Agric. Ecosyst. Environ. 2017, 246, 221–233. [Google Scholar] [CrossRef]
- Stürck, J.; Verburg, P.H. Multifunctionality at what scale? A landscape multifunctionality assessment for the European Union under conditions of land use change. Landsc. Ecol. 2017, 32, 481–500. [Google Scholar] [CrossRef] [Green Version]
- Bardsley, D.K.; Thomas, I. Valuing local wheat landraces for agrobiodiversity conservation in Northeast Turkey. Agric. Ecosyst. Environ. 2005, 106, 407–412. [Google Scholar] [CrossRef]
- Clark, S. Financial viability of an on-farm processing and retail enterprise: A case study of value-added agriculture in rural Kentucky (USA). Sustainability 2020, 12, 708. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.G. The role of agriculture and farm household diversification in the US rural economy. In Rural Policies and Employment: Transatlantic Experiences; Davidova, S.M., Thomson, K.J., Mishra, A.K., Eds.; World Scientific Publishing Europe: London, UK, 2019; pp. 315–330. [Google Scholar]
- Renting, H.; Rossing, W.A.H.; Groot, J.C.J.; Van der Ploeg, J.D.; Laurent, C.; Perraud, D.; Van Ittersum, M.K. Exploring multifunctional agriculture. A review of conceptual approaches and prospects for an integrative transitional framework. J. Environ. Manag. 2009, 90, S112–S123. [Google Scholar] [CrossRef]
- Stojferahn, C.W. The condition of rural sustainability, by Terry Marsden. Rural Sociol. 2004, 69, 313–316. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Qiu, S.; Meersmans, J.; Liu, Y. Multifunctional landscapes identification and associated development zoning in mountainous area. Sci. Total Environ. 2019, 660, 765–775. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, P.R.; Kremen, C.; Ehrlich, A.H. Human impacts on ecosystems: An overview. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 153–161. [Google Scholar]
- Meerburg, B.G.; Korevaar, H.; Haubenhofer, D.K.; Blom-Zandstra, M.; Van Keulen, H. The changing role of agriculture in Dutch society. J. Agric. Sci. 2009, 147, 511–521. [Google Scholar] [CrossRef]
- Holmes, J. Impulses towards a multifunctional transition in rural Australia: Gaps in the research agenda. J. Rural Stud. 2006, 22, 142–160. [Google Scholar] [CrossRef]
- Hölting, L.; Beckmann, M.; Volk, M.; Cord, A.F. Multifunctionality assessments–More than assessing multiple ecosystem functions and services? A quantitative literature review. Ecol. Indic. 2019, 103, 226–235. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Randall, A.; Kidder, A.; Chen, D.R. Meta-Analysis for Benefits Transfer–Toward Value Estimates for Some Outputs of Multifunctional Agriculture (No. 725-2016-49345). In Proceedings of the International Congress, Ghent, Belgium, 26–29 August 2008. [Google Scholar]
- Randall, A. A consistent valuation and pricing framework for non-commodity outputs: Progress and prospects. Agric. Ecosyst. Environ. 2007, 120, 21–30. [Google Scholar] [CrossRef]
- Yrjölä, T.; Kola, J. Multifunctional agriculture: Cost-benefit approach. Agric. Econ. Res. Inst. Res. Rep. 2000, 241, 39–57. [Google Scholar]
- Sal, A.G.; García, A.G. A comprehensive assessment of multifunctional agricultural land-use systems in Spain using a multi-dimensional evaluative model. Agric. Ecosyst. Environ. 2007, 120, 82–91. [Google Scholar]
- Madureira, L.; Rambonilaza, T.; Karpinski, I. Review of methods and evidence for economic valuation of agricultural non-commodity outputs and suggestions to facilitate its application to broader decisional contexts. Agric. Ecosyst. Environ. 2007, 120, 5–20. [Google Scholar] [CrossRef]
- Ahtiainen, H.; Pouta, E.; Liski, E.; Myyrä, S.; Assmuth, A. Importance of economic, social, and environmental objectives of agriculture for stakeholders—A meta-analysis. Agroecol. Sustain. Food Syst. 2015, 39, 1047–1068. [Google Scholar] [CrossRef]
- El Bilali, H. The multi-level perspective in research on sustainability transitions in agriculture and food systems: A systematic review. Agriculture 2019, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Huber, R.; Finger, R. A meta-analysis of the Willingness to Pay for cultural services from grasslands in Europe. J. Agric. Econ. 2019, 71, 357–383. [Google Scholar] [CrossRef]
- Lee, H.; Lautenbach, S.; Nieto, A.P.G.; Bondeau, A.; Cramer, W.; Geijzendorffer, I.R. The impact of conservation farming practices on Mediterranean agro-ecosystem services provisioning—A meta-analysis. Reg. Environ. Chang. 2019, 19, 2187–2202. [Google Scholar] [CrossRef]
- Van Zanten, B.T.; Verburg, P.H.; Espinosa, M.; Gomez-y-Paloma, S.; Galimberti, G.; Kantelhardt, J.; Kapfer, M.; Lefebvre, M.; Manrique, R.; Piorr, A.; et al. European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agron. Sustain. Dev. 2014, 34, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Wiggering, H.; Weißhuhn, P.; Burkhard, B. Agrosystem services: An additional terminology to better understand ecosystem services delivered by agriculture. Landsc. Online 2016, 49, 1–15. [Google Scholar] [CrossRef]
- García-Martín, M.; Bieling, C.; Hart, A.; Plieninger, T. Integrated landscape initiatives in Europe: Multi-sector collaboration in multi-functional landscapes. Land Use Policy 2016, 58, 43–53. [Google Scholar] [CrossRef] [Green Version]
- van Vliet, J.; de Groot, H.L.; Rietveld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural land use change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef]
- Kizos, T.; Plieninger, T.; Bieling, C.; Martín-Rubí, M.G.; Balatsos, T.; Hart, A.K.; Draux, H.; Fagerholm, N.; Bürgi, M.; Kuemmerle, T.; et al. HERCULES Project—D1. 3: Report on the Three Individual Systematic Reviews (Rates and Patterns, Drivers and Outcomes, Actors) 2016. Available online: http://www.hercules-landscapes.eu/tartalom/HERCULES_WP1_D1_3.pdf (accessed on 1 July 2020).
- Plieninger, T.; Bieling, C.; Fagerholm, N.; Byg, A.; Hartel, T.; Hurley, P.; López-Santiago, C.A.; Nagabhatla, N.; Oteros-Rozas, E.; Raymond, C.M.; et al. The role of cultural ecosystem services in landscape management and planning. Curr. Opin. Environ. Sustain. 2015, 14, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Alcon, F.; Marín-Miñano, C.; Zabala, J.A.; de-Miguel, M.D.; Martínez-Paz, J.M. Valuing diversification benefits through intercropping in Mediterranean agroecosystems: A choice experiment approach. Ecol. Econ. 2020, 171, 106593. [Google Scholar] [CrossRef]
- Bernués, A.; Rodríguez-Ortega, T.; Alfnes, F.; Clemetsen, M.; Eik, L.O. Quantifying the multifunctionality of fjord and mountain agriculture by means of sociocultural and economic valuation of ecosystem services. Land Use Policy 2015, 48, 170–178. [Google Scholar] [CrossRef]
- Chen, B.; Qiu, Z.; Usio, N.; Nakamura, K. Conservation and contingent valuation of farming landscape amenities by visitors: A case study of terraced paddy fields in Central Japan. Paddy Water Environ. 2018, 16, 561–570. [Google Scholar] [CrossRef]
- Dupras, J.; Laurent-Lucchetti, J.; Revéret, J.P.; DaSilva, L. Using contingent valuation and choice experiment to value the impacts of agri-environmental practices on landscapes aesthetics. Landsc. Res. 2018, 43, 679–695. [Google Scholar] [CrossRef]
- Jung, H. Estimating the social value of multifunctional agriculture (MFA) with choice experiment. Agric. Econ. 2020, 66, 120–128. [Google Scholar] [CrossRef]
- Kubíčková, S. Support of the landscape amenity function of agriculture and trade liberalisation. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2015, 52, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Mazzocchi, C.; Sali, G. Assessing the value of pastoral farming in the Alps using choice experiments: Evidence for public policies and management. J. Environ. Plan. Manag. 2019, 62, 552–567. [Google Scholar] [CrossRef]
- Nambuge, V.; Qineti, A.; Rajcaniova, M.; Nambuge, D. Valuation of public goods in agricultural landscape: The case of Slovakia. Adv. Glob. Bus. Econ. 2018, 21. [Google Scholar] [CrossRef]
- Novikova, A.; Rocchi, L.; Vaznonis, B. Valuing Agricultural Landscape: Lithuanian Case Study Using a Contingent Valuation Method. Sustainability 2019, 11, 2648. [Google Scholar] [CrossRef] [Green Version]
- Ohe, Y. Roles of farm pluriactivity on multifunctional agriculture in a mountainous rural community. In Community-Based Rural Tourism and Entrepreneurship; Ohe, Y., Ed.; Springer: Singapore, 2020; pp. 51–73. [Google Scholar]
- Ragkos, A.; Theodoridis, A. Valuation of environmental and social functions of the multifunctional Cypriot agriculture. Land Use Policy 2016, 54, 593–601. [Google Scholar] [CrossRef]
- Sangkapitux, C.; Suebpongsang, P.; Punyawadee, V.; Pimpaoud, N.; Konsurin, J.; Neef, A. Eliciting citizen preferences for multifunctional agriculture in the watershed areas of northern Thailand through choice experiment and latent class models. Land Use Policy 2017, 67, 38–47. [Google Scholar] [CrossRef]
- Tagliafierro, C.; Boeri, M.; Longo, A.; Hutchinson, W.G. Stated preference methods and landscape ecology indicators: An example of transdisciplinarity in landscape economic valuation. Ecol. Econ. 2016, 127, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Torres-Miralles, M.; Grammatikopoulou, I.; Rescia, A.J. Employing contingent and inferred valuation methods to evaluate the conservation of olive groves and associated ecosystem services in Andalusia (Spain). Ecosyst. Serv. 2017, 26, 258–269. [Google Scholar] [CrossRef]
- van Zanten, B.T.; Zasada, I.; Koetse, M.J.; Ungaro, F.; Häfner, K.; Verburg, P.H. A comparative approach to assess the contribution of landscape features to aesthetic and recreational values in agricultural landscapes. Ecosyst. Serv. 2016, 17, 87–98. [Google Scholar] [CrossRef]
- Vivithkeyoonvong, S.; Jourdain, D. Willingness to pay for ecosystem services provided by irrigated agriculture in Northeast Thailand. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Sejati, L.B.; Arifien, Y.; Maad, F. Economic valuation of rice agricultural land in Bogor regency. J. Phys. Conf. Ser. 2020, 1517, 012024. [Google Scholar] [CrossRef]
- Zabala, J.A.; Marín-Miñano, C.; Albaladejo-García, J.A.; López-Becerra, E.I.; de Miguel, M.D.; Martínez-Paz, J.M.; Alcon, F. A valuation-based approach for irrigated agroecosystem services. In Proceedings of the 172nd EAAE Seminar, Brussels, Belgium, 28–29 May 2019. [Google Scholar]
- Zhao, F.; Huang, M. Exploring the non-use value of an important agricultural heritage system: Case of Lingnan Litchi Cultivation System (Zengcheng) in Guangdong, China. Sustainability 2020, 12, 3638. [Google Scholar] [CrossRef]
- Baum, R.; Kozera-Kowalska, M. Value of agricultural externalities on the example of an agritourism farm. Rocz. Ann. 2019, 2019. [Google Scholar] [CrossRef]
- Dong, S.; Cheng, H.; Li, Y.; Li, F.; Wang, Z.; Chen, F. Rural landscape types and recreational value spatial analysis of valley area of Loess Plateau: A case of Hulu Watershed, Gansu Province, China. Chin. Geogr. Sci. 2017, 27, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.H.; Wang, C.H. Estimating the total economic value of cultivated flower land in Taiwan. Sustainability 2015, 7, 4764–4782. [Google Scholar] [CrossRef] [Green Version]
- Münch, A.; Nielsen, S.P.P.; Racz, V.J.; Hjalager, A.M. Towards multifunctionality of rural natural environments?—An economic valuation of the extended buffer zones along Danish rivers, streams and lakes. Land Use Policy 2016, 50, 1–16. [Google Scholar] [CrossRef]
- Blasi, E.; Passeri, N.; Franco, S.; Galli, A. An ecological footprint approach to environmental–economic evaluation of farm results. Agric. Syst. 2016, 145, 76–82. [Google Scholar] [CrossRef]
- Ketema, H.; Wu, W.; Temesgen, H. Quantifying the ecological values of land use types via criteria-based farmers’ assessment and empirically analysed soil properties in southern Ethiopia. Appl. Ecol. Environ. Res. 2018, 16, 7713–7739. [Google Scholar] [CrossRef]
- Yu, Z.; Qin, T.; Yan, D.; Yang, M.; Yu, H.; Shi, W. The Impact on the ecosystem services value of the ecological shelter zone reconstruction in the Upper Reaches Basin of the Yangtze River in China. Int. J. Environ. Res. Public Health 2018, 15, 2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aneva, I.Y.; Zhelev, P.; Topchieva, M.K. Evaluation of natural habitats in Western Balkan range and in Pazardzhik-Plovdiv region in relation to sustainable agriculture. In Book of Abstracts, First European Symposium Research, Conservation and Management of Biodiversity in The European Seashores (RCMBES); Peev, D.R., Gärtner, G., Stoyneva-Gärtner, M.P., Popova, N.P., Georgieva, E.E., Eds.; Bulgarian Academy of Sciences: Sofia, Bulgaria, 2017; p. 58. [Google Scholar]
- Lecina-Diaz, J.; Alvarez, A.; De Cáceres, M.; Herrando, S.; Vayreda, J.; Retana, J. Are protected areas preserving ecosystem services and biodiversity? Insights from Mediterranean forests and shrublands. Landsc. Ecol. 2019, 34, 2307–2321. [Google Scholar] [CrossRef]
- Lefcheck, J.S.; Byrnes, J.E.; Isbell, F.; Gamfeldt, L.; Griffin, J.N.; Eisenhauer, N.; Hensel, M.J.S.; Hector, A.; Cardinale, B.J.; Duffy, J.E. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 2015, 6, 6936. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, M.; Zhang, X.; Zhang, X.; Yu, Z.; Axmacher, J.C. Effects of plant diversity, habitat and agricultural landscape structure on the functional diversity of carabid assemblages in the North China Plain. Insect Conserv. Divers. 2015, 8, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Puig-Montserrat, X.; Stefanescu, C.; Torre, I.; Palet, J.; Fàbregas, E.; Dantart, J.; Arrizabalaga, A.; Flaquer, C. Effects of organic and conventional crop management on vineyard biodiversity. Agric. Ecosyst. Environ. 2017, 243, 19–26. [Google Scholar] [CrossRef]
- Rollin, O.; Pérez-Méndez, N.; Bretagnolle, V.; Henry, M. Preserving habitat quality at local and landscape scales increases wild bee diversity in intensive farming systems. Agric. Ecosyst. Environ. 2019, 275, 73–80. [Google Scholar] [CrossRef]
- Bhagabati, N.K.; Ricketts, T.; Sulistyawan, T.B.S.; Conte, M.; Ennaanay, D.; Hadian, O.; McKenzie, E.; Olwero, N.; Rosenthal, A.; Tallis, H.; et al. Ecosystem services reinforce Sumatran tiger conservation in land use plans. Biol. Conserv. 2014, 169, 147–156. [Google Scholar] [CrossRef]
- Dai, L.; Li, S.; Lewis, B.J.; Wu, J.; Yu, D.; Zhou, W.; Wu, S. The influence of land use change on the spatial–temporal variability of habitat quality between 1990 and 2010 in Northeast China. J. For. Res. 2019, 30, 2227–2236. [Google Scholar] [CrossRef]
- Du, S.; Rong, Y. The biodiversity assessment of land use in Shanxi Province based on InVEST model. Environ. Sustain. Dev. 2015, 40, 65–70. (In Chinese) [Google Scholar]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Shi, Y.; Hao, S.; Zhao, J. Evolution and prediction of land cover and biodiversity function in Loess Hilly Region. Arta Ecol. Sin. 2019, 39, 2806–2815. (In Chinese) [Google Scholar]
- Pham, H.V.; Sperotto, A.; Torresan, S.; Acuña, V.; Jorda-Capdevila, D.; Rianna, G.; Marcomini, A.; Critto, A. Coupling scenarios of climate and land-use change with assessments of potential ecosystem services at the river basin scale. Ecosyst. Serv. 2019, 40, 101045. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use changes on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Belem, M.; Saqalli, M. Development of an integrated generic model for multi-scale assessment of the impacts of agro-ecosystems on major ecosystem services in West Africa. J. Environ. Manag. 2017, 202, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Eneji, A.E.; Liu, J. Assessment of ecosystem services and dis-services of an agro-ecosystem based on extended emergy framework: A case study of Luancheng county, North China. Ecol. Eng. 2015, 82, 241–251. [Google Scholar] [CrossRef]
- Mattsson, E.; Ostwald, M.; Nissanka, S.P.; Pushpakumara, D.K.N.G. Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala district, Sri Lanka. Agrofor. Syst. 2015, 89, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Liu, Z.; Liu, Y.; Hu, X.; Wang, A. Multifunctionality assessment of urban agriculture in Beijing City, China. Sci. Total Environ. 2015, 537, 343–351. [Google Scholar] [CrossRef]
- Peng, J.; Chen, X.; Liu, Y.; Lü, H.; Hu, X. Spatial identification of multifunctional landscapes and associated influencing factors in the Beijing-Tianjin-Hebei region, China. Appl. Geogr. 2016, 74, 170–181. [Google Scholar] [CrossRef]
- Tenerelli, P.; Püffel, C.; Luque, S. Spatial assessment of aesthetic services in a complex mountain region: Combining visual landscape properties with crowdsourced geographic information. Landsc. Ecol. 2017, 32, 1097–1115. [Google Scholar] [CrossRef]
- Williams, A.T. Some scenic evaluation techniques. In Coastal Scenery: Evaluatuion and Management; Rangel-Buitraro, N., Ed.; Springer: Cham, Switzerland, 2019; pp. 43–65. [Google Scholar]
- Rewitzer, S.; Huber, R.; Grêt-Regamey, A.; Barkmann, J. Economic valuation of cultural ecosystem service changes to a landscape in the Swiss Alps. Ecosyst. Serv. 2017, 26, 197–208. [Google Scholar] [CrossRef]
- Bullock, C.; Joyce, D.; Collier, M. An exploration of the relationships between cultural ecosystem services, socio-cultural values and well-being. Ecosyst. Serv. 2018, 31, 142–152. [Google Scholar] [CrossRef]
- Vlami, V.; Kokkoris, I.P.; Zogaris, S.; Cartalis, C.; Kehayias, G.; Dimopoulos, P. Cultural landscapes and attributes of “culturalness” in protected areas: An exploratory assessment in Greece. Sci. Total Environ. 2017, 595, 229–243. [Google Scholar] [CrossRef]
- Willemen, L.; Hein, L.; van Mensvoort, M.E.; Verburg, P.H. Space for people, plants, and livestock? Quantifying interactions among multiple landscape functions in a Dutch rural region. Ecol. Indic. 2010, 10, 62–73. [Google Scholar] [CrossRef]
- He, S.; Su, Y.; Shahtahmassebi, A.R.; Huang, L.; Zhou, M.; Gan, M.; Deng, J.; Zhao, G.; Wang, K. Assessing and mapping cultural ecosystem services supply, demand and flow of farmlands in the Hangzhou metropolitan area, China. Sci. Total Environ. 2019, 692, 756–768. [Google Scholar] [CrossRef]
- Chen, L.; Qu, F.; Shi, X. The social value of cultivated land resources: A case study in Liulin county of Shanxi province. Resour. Sci. 2006, 28, 86–90. (In Chinese) [Google Scholar]
- Bonenberg, W. The role of cultural heritage in sustainable development. Values and valuation as key factors in spatial planning of rural areas. In International Conference on Applied Human Factors and Ergonomics; Springer: Cham, Switzerland, 2019; pp. 124–134. [Google Scholar]
- Bernués, A.; Tello-García, E.; Rodríguez-Ortega, T.; Ripoll-Bosch, R.; Casasús, I. Agricultural practices, ecosystem services and sustainability in High Nature Value farmland: Unraveling the perceptions of farmers and nonfarmers. Land Use Policy 2016, 59, 130–142. [Google Scholar] [CrossRef]
- Darvill, R.; Lindo, Z. Quantifying and mapping ecosystem service use across stakeholder groups: Implications for conservation with priorities for cultural values. Ecosyst. Serv. 2015, 13, 153–161. [Google Scholar] [CrossRef]
- Gosal, A.S.; Newton, A.C.; Gillingham, P.K. Comparison of methods for a landscape-scale assessment of the cultural ecosystem services associated with different habitats. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Hahn, T.; Heinrup, M.; Lindborg, R. Landscape heterogeneity correlates with recreational values: A case study from Swedish agricultural landscapes and implications for policy. Landsc. Res. 2018, 43, 696–707. [Google Scholar] [CrossRef]
- Junge, X.; Schüpbach, B.; Walter, T.; Schmid, B.; Lindemann-Matthies, P. Aesthetic quality of agricultural landscape elements in different seasonal stages in Switzerland. Landsc. Urban Plan. 2015, 133, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Kvakkestad, V.; Rørstad, P.K.; Vatn, A. Norwegian farmers’ perspectives on agriculture and agricultural payments: Between productivism and cultural landscapes. Land Use Policy 2015, 42, 83–92. [Google Scholar] [CrossRef]
- Plieninger, T.; Dijks, S.; Oteros-Rozas, E.; Bieling, C. Assessing, mapping, and quantifying cultural ecosystem services at community level. Land Use Policy 2013, 33, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Plieninger, T.; Torralba, M.; Hartel, T.; Fagerholm, N. Perceived ecosystem services synergies, trade-offs, and bundles in European high nature value farming landscapes. Landsc. Ecol. 2019, 34, 1565–1581. [Google Scholar] [CrossRef]
- Schmidt, K.; Walz, A.; Martín-López, B.; Sachse, R. Testing socio-cultural valuation methods of ecosystem services to explain land use preferences. Ecosyst. Serv. 2017, 26, 270–288. [Google Scholar] [CrossRef]
- Schirpke, U.; Altzinger, A.; Leitinger, G.; Tasser, E. Change from agricultural to touristic use: Effects on the aesthetic value of landscapes over the last 150 years. Landsc. Urban Plan. 2019, 187, 23–35. [Google Scholar] [CrossRef]
- Schirpke, U.; Timmermann, F.; Tappeiner, U.; Tasser, E. Cultural ecosystem services of mountain regions: Modelling the aesthetic value. Ecol. Indic. 2016, 69, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Soy-Massoni, E.; Langemeyer, J.; Varga, D.; Sáez, M.; Pintó, J. The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia. Ecosyst. Serv. 2016, 17, 43–52. [Google Scholar] [CrossRef]
- Tulla, A.F.; Vera, A.; Valldeperas, N.; Guirado, C. Social return and economic viability of social farming in Catalonia: A Case-Study Analysis. Eur. Countrys. 2018, 10, 398–428. [Google Scholar] [CrossRef] [Green Version]
- Villegas-Palacio, C.; Berrouet, L.; López, C.; Ruiz, A.; Upegui, A. Lessons from the integrated valuation of ecosystem services in a developing country: Three case studies on ecological, socio-cultural and economic valuation. Ecosyst. Serv. 2016, 22, 297–308. [Google Scholar] [CrossRef]
- Włodarczyk-Marciniak, R.; Frankiewicz, P.; Krauze, K. Socio-cultural valuation of Polish agricultural landscape components by farmers and its consequences. J. Rural Stud. 2020, 74, 190–200. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, W.; Pereira, P.; Liu, Y. Socio-cultural valuation of rural and urban perception on ecosystem services and human well-being in Yanhe watershed of China. J. Environ. Manag. 2019, 251, 109615. [Google Scholar] [CrossRef] [PubMed]
- Zoderer, B.M.; Stanghellini, P.S.L.; Tasser, E.; Walde, J.; Wieser, H.; Tappeiner, U. Exploring socio-cultural values of ecosystem service categories in the Central Alps: The influence of socio-demographic factors and landscape type. Reg. Environ. Chang. 2016, 16, 2033–2044. [Google Scholar] [CrossRef]
- Bogdan, S.M.; Stupariu, I.; Andratopârceanu, A.; Nastase, I.I. Mapping social values for cultural ecosystem services in a mountain landscape in the Romanian Carpathians. Carpathian J. Earth Environ. Sci. 2019, 14, 199–208. [Google Scholar] [CrossRef]
- Qin, K.; Li, J.; Liu, J.; Yan, L.; Huang, H. Setting conservation priorities based on ecosystem services-A case study of the Guanzhong-Tianshui Economic Region. Sci. Total Environ. 2019, 650, 3062–3074. [Google Scholar] [CrossRef]
- Semmens, D.J.; Sherrouse, B.C.; Ancona, Z.H. Using social-context matching to improve spatial function-transfer performance for cultural ecosystem service models. Ecosyst. Serv. 2019, 38, 100945. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Ancona, Z.H.; Brunner, N.M. Analyzing land-use change scenarios for trade-offs among cultural ecosystem services in the Southern Rocky Mountains. Ecosyst. Serv. 2017, 26, 431–444. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, B.; Lyu, Y.; Yang, K.; Che, Y. Assessment of the social values of ecosystem services based on SolVES model: A case study of Wusong Paotaiwan Wetland Forest Park, Shanghai, China. Chin. J. Appl. Ecol. 2016, 27, 1767–1774. (In Chinese) [Google Scholar]
- Bachi, L.; Ribeiro, S.C.; Hermes, J.; Saadi, A. Cultural Ecosystem Services (CES) in landscapes with a tourist vocation: Mapping and modeling the physical landscape components that bring benefits to people in a mountain tourist destination in southeastern Brazil. Tour. Manag. 2020, 77, 104017. [Google Scholar] [CrossRef]
- Oteros-Rozas, E.; Martín-López, B.; Fagerholm, N.; Bieling, C.; Plieninger, T. Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites. Ecol. Indic. 2018, 94, 74–86. [Google Scholar] [CrossRef]
- Carmona-Torres, C.; Parra-López, C.; Hinojosa-Rodríguez, A.; Sayadi, S. Farm-level multifunctionality associated with farming techniques in olive growing: An integrated modeling approach. Agric. Syst. 2014, 127, 97–114. [Google Scholar] [CrossRef]
- Gu, X.; Xie, B.; Zhang, Z.; Guo, H.D. Rural multifunction in Shanghai suburbs: Evaluation and spatial characteristics based on villages. Habitat Int. 2019, 92, 102041. [Google Scholar] [CrossRef]
- Johansen, P.H.; Ejrnæs, R.; Kronvang, B.; Olsen, J.V.; Præstholm, S.; Schou, J.S. Pursuing collective impact: A novel indicator-based approach to assessment of shared measurements when planning for multifunctional land consolidation. Land Use Policy 2018, 73, 102–114. [Google Scholar] [CrossRef]
- Rovai, M.; Andreoli, M. Integrating AHP and GIS techniques for rural landscape and agricultural activities planning. In Multicriteria Annalysis in Agriculture; Berbel, J., Bournaris, T., Manos, B., Matsatsinis, N., Viaggi, D., Eds.; Springer: Cham, Switzerland, 2018; pp. 69–98. [Google Scholar]
- Sajadian, M.; Khoshbakht, K.; Liaghati, H.; Veisi, H.; Damghani, A.M. Developing and quantifying indicators of organic farming using analytic hierarchy process. Ecol. Indic. 2017, 83, 103–111. [Google Scholar] [CrossRef]
- Sousa, A.R.; Parra-López, C.; Sayadi-Gmada, S.; Barandica, J.M.; Rescia, A.J. A multifunctional assessment of integrated and ecological farming in olive agroecosystems in southwestern Spain using the Analytic Hierarchy Process. Ecol. Econ. 2020, 173, 106658. [Google Scholar] [CrossRef]
- Shipley, N.J.; Johnson, D.N.; van Riper, C.J.; Stewart, W.P.; Chu, M.L.; Suski, C.D.; Stein, J.A.; Shew, J.J. A deliberative research approach to valuing agro-ecosystem services in a worked landscape. Ecosyst. Serv. 2020, 42, 101083. [Google Scholar] [CrossRef]
- Song, B.; Robinson, G.M.; Zhou, Z. Agricultural transformation and ecosystem services: A case study from Shaanxi Province, China. Habitat Int. 2017, 69, 114–125. [Google Scholar] [CrossRef]
- Dai, J.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem. Renew. Sustain. Energy Rev. 2015, 41, 347–355. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhang, R.; Wu, J.; Zhang, Y.Z.; Lin, L.L.; Deng, S.H.; Li, L.; Yang, G.; Yu, X.-Y.; Qi, H.; et al. An emergy evaluation of the sustainability of Chinese crop production system during 2000–2010. Ecol. Indic. 2016, 60, 622–633. [Google Scholar] [CrossRef]
- Damani, O. Design of Farm Assessment Index (FAI) for a holistic comparison of farming practices: Case of organic and conventional farming systems from two Indian states. Agroecol. Sustain. Food Syst. 2019, 43, 329–357. [Google Scholar]
- Fagioli, F.F.; Rocchi, L.; Paolotti, L.; Słowiński, R.; Boggia, A. From the farm to the agri-food system: A multiple criteria framework to evaluate extended multi-functional value. Ecol. Indic. 2017, 79, 91–102. [Google Scholar] [CrossRef]
- Fleskens, L.; Duarte, F.; Eicher, I. A conceptual framework for the assessment of multiple functions of agro-ecosystems: A case study of Trás-os-Montes olive groves. J. Rural Stud. 2009, 25, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Hrabák, J.; Konečný, O. Multifunctional agriculture as an integral part of rural development: Spatial concentration and distribution in Czechia. Nor. Geogr. Tidsskr. Nor. J. Geogr. 2018, 72, 257–272. [Google Scholar] [CrossRef]
- Marques-Perez, I.; del Río, B.S.G. Identifying functionality of peri-urban agricultural systems: A case study. In Urban agriculture; Samer, M., Ed.; InTech: London, UK, 2016; pp. 61–88. [Google Scholar]
- Modernel, P.; Dogliotti, S.; Alvarez, S.; Corbeels, M.; Picasso, V.; Tittonell, P.; Rossing, W.A. Identification of beef production farms in the Pampas and Campos area that stand out in economic and environmental performance. Ecol. Indic. 2018, 89, 755–770. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Verdoodt, A.; Van, Y.T.; Delbecque, N.; Tran, T.C.; Van Ranst, E. Design of a GIS and multi-criteria-based land evaluation procedure for sustainable land-use planning at the regional level. Agric. Ecosyst. Environ. 2015, 200, 1–11. [Google Scholar] [CrossRef]
- Troiano, S.; Novelli, V.; Geatti, P.; Marangon, F.; Ceccon, L. Assessment of the sustainability of wild rocket (Diplotaxis tenuifolia) production: Application of a multi-criteria method to different farming systems in the province of Udine. Ecol. Indic. 2019, 97, 301–310. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Ma, L.; Ge, D.; Tu, S.; Qu, Y. Farmland function evolution in the Huang-Huai-Hai Plain: Processes, patterns and mechanisms. J. Geogr. Sci. 2018, 28, 759–777. [Google Scholar] [CrossRef] [Green Version]
- Li, J.G.; Ou, M.H.; Zhang, X.J.; Zang, J.M.; Gao, Y.M.; Zhang, Q.J. Reconstruction of cultivated land resources value system and its evaluation: A case study of Qingdao. J. Nat. Resour. 2009, 24, 1870–1877. (In Chinese) [Google Scholar]
- Marques-Perez, I.; Segura, B. Integrating social preferences analysis for multifunctional peri-urban farming in planning. An application by multi-criteria analysis techniques and stakeholders. Agroecol. Sustain. Food Syst. 2018, 42, 1029–1057. [Google Scholar] [CrossRef]
- Schaller, L.; Targetti, S.; Villanueva, A.J.; Zasada, I.; Kantelhardt, J.; Arriaza, M.; Bal, T.; Fedrigotti, V.B.; Giray, F.H.; Häfner, K.; et al. Agricultural landscapes, ecosystem services and regional competitiveness—Assessing drivers and mechanisms in nine European case study areas. Land Use Policy 2018, 76, 735–745. [Google Scholar] [CrossRef]
- Fagerholm, N.; Eilola, S.; Kisanga, D.; Arki, V.; Käyhkö, N. Place-based landscape services and potential of participatory spatial planning in multifunctional rural landscapes in Southern highlands, Tanzania. Landsc. Ecol. 2019, 34, 1769–1787. [Google Scholar] [CrossRef] [Green Version]
- Fagerholm, N.; Torralba, M.; Moreno, G.; Girardello, M.; Herzog, F.; Aviron, S.; Burgess, P.; Crous-Duran, J.; Ferrero-Domínguez, N.; Graves, A.; et al. Cross-site analysis of perceived ecosystem service benefits in multi-functional landscapes. Glob. Environ. Chang. 2019, 56, 134–147. [Google Scholar] [CrossRef] [Green Version]
- García-Nieto, A.P.; Quintas-Soriano, C.; García-Llorente, M.; Palomo, I.; Montes, C.; Martín-López, B. Collaborative mapping of ecosystem services: The role of stakeholders’ profiles. Ecosyst. Serv. 2015, 13, 141–152. [Google Scholar] [CrossRef]
- Kivinen, S.; Vartiainen, K.; Kumpula, T. People and post-mining environments: PPGIS mapping of landscape values, knowledge needs, and future perspectives in northern Finland. Land 2018, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Verbrugge, L.; Buchecker, M.; Garcia, X.; Gottwald, S.; Müller, S.; Præstholm, S.; Olafsson, A.S. Integrating sense of place in planning and management of multifunctional river landscapes: Experiences from five European case studies. Sust. Sci. 2019, 14, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, J.; Short, C.J.; Berriet-Solliec, M.; Gael-Lataste, F.; Pham, H.V.; Affleck, M.; Courtney, P.; Déprès, C. Public Goods and Ecosystem Services from Agriculture and Forestry—A Conceptual Appro; PEGASUS: Brussels, Belgium, 2015. [Google Scholar]
- Pronyk, P.; Schaefer, J.; Somers, M.A.; Heise, L. Evaluating structural interventions in public health: Challenges, options and global best practice. In Structural Approaches in Public Health; Pronyk, P., Schaefer, J., Somers, M.-A., Heise, L., Eds.; Taylor and Francis: Abingdon, UK; New York, NY, USA, 2013; pp. 187–205. [Google Scholar]
- Fang, Y.G.; Liu, J.S. Diversified agriculture and rural development in China based on multifunction theory: Beyond modernization paradigm. Acta Geogr. Sin. 2015, 70, 257–270. [Google Scholar]
- Moon, W.; Griffith, J.W. Assessing holistic economic value for multifunctional agriculture in the US. Food Policy 2011, 36, 455–465. [Google Scholar] [CrossRef]
- Heringa, P.W.; Van der Heide, C.M.; Heijman, W.J. The economic impact of multifunctional agriculture in Dutch regions: An input-output model. Njas-Wagening. J. Life Sci. 2013, 64, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Mölders, T. Multifunctional agricultural policies: Pathways towards sustainable rural development? Int. J. Sociol. Agric. Food 2014, 21, 97–114. [Google Scholar]
- Boyle, K.J. Contingent valuation in practice. In A Primer on Nonmarket Valuation; Champ, P.A., Boyle, K.J., Brown, T.C., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 83–131. [Google Scholar]
- Cucchia, T. Contingent valuation. In Handbook of Cultural Economics, 3rd ed.; Towse, R., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2020; pp. 90–99. [Google Scholar]
- Kallas, Z.; Gómez-Limón, J.A.; Hurlé, J.B. Decomposing the value of agricultural multifunctionality: Combining contingent valuation and the analytical hierarchy process. J. Agric. Econ. 2007, 58, 218–241. [Google Scholar] [CrossRef]
- Howley, P.; Hynes, S.; Donoghue, C.O. Countryside preferences: Exploring individuals’ willingness to pay for the conservation of the traditional farm landscape. Landsc. Res. 2012, 37, 703–719. [Google Scholar] [CrossRef]
- Bennett, J.; Van Bueren, M.; Whitten, S. Estimating society’s willingness to pay to maintain viable rural communities. Aust. J. Agric. Resour. Econ. 2004, 48, 487–512. [Google Scholar] [CrossRef] [Green Version]
- Bergstrom, J.C.; Ready, R.C. What have we learned from over 20 years of farmland amenity valuation research in North America? Rev. Agric. Econ. 2009, 31, 21–49. [Google Scholar] [CrossRef]
- Hellerstein, D.; Nickerson, C.; Cooper, J.C.; Feather, P.; Gadsby, D.; Mullarkey, D.; Tegene, A. Farmland protection: The role of public preferences for rural amenities. Econ. Res. Serv ERR 2002, 183. [Google Scholar]
- Moon, W.; Chang, J.B.; Asirvatham, J. Measuring public preferences for multifunctional attributes of agriculture in the United States. J. Agric. Appl. Econ. 2017, 49, 273–295. [Google Scholar] [CrossRef] [Green Version]
- Dahal, R.P.; Grala, R.K.; Gordon, J.S.; Petrolia, D.R.; Munn, I.A. Estimating the willingness to pay to preserve waterfront open spaces using contingent valuation. Land Use Policy 2018, 78, 614–626. [Google Scholar] [CrossRef]
- Grala, R.K.; Tyndall, J.C.; Mize, C.W. Willingness to pay for aesthetics associated with field windbreaks in Iowa, United States. Landsc. Urban Plan. 2012, 108, 71–78. [Google Scholar] [CrossRef]
- Mutandwa, E.; Grala, R.K.; Petrolia, D.R. Estimates of willingness to accept compensation to manage pine stands for ecosystem services. For. Policy Econ. 2019, 102, 75–85. [Google Scholar] [CrossRef]
- Gao, Q.; Ao, C.L.; Chen, H.G.; Tong, R. Spatial differentiation research of non-use value WTP based on the residents’ ecological cognition: Taking the Sanjiang Plain as a case. Acta Ecol. Sin. 2014, 34, 1851–1859. [Google Scholar]
- Byrnes, J.E.; Gamfeldt, L.; Isbell, F.; Lefcheck, J.S.; Griffin, J.N.; Hector, A.; Carindale, B.J.; Hooper, D.U.; Dee, L.E.; Duffy, J.E. Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions. Methods Ecol. Evol. 2014, 5, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Sun, K.; He, H.; Zhou, Y. Research advances in habitat suitability index model. Chin. J. Ecol. 2008, 27, 841–846. (In Chinese) [Google Scholar]
- Yi, Y.; Cheng, X.; Zhou, J. Research progress in habitat suitability assessment methods. Ecol. Environ. Sci. 2013, 22, 887–893. (In Chinese) [Google Scholar]
- Duflot, R.; Avon, C.; Roche, P.; Bergès, L. Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: An applied methodological framework and a species case study. J. Nat. Conserv. 2018, 46, 38–47. [Google Scholar] [CrossRef]
- Latifiana, K.; Danoedoro, P.; As-Singkily, M.; Cahyana, A.N. Spatial habitat suitability modeling of the Roti snake-necked turtle (Chelodina mccordi) based on Landsat-8 imagery and GIS. In Proceedings of the 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 7–8 August 2018; pp. 1–6. [Google Scholar]
- Lewis, N.S.; Fox, E.W.; DeWitt, T.H. Estimating the distribution of harvested estuarine bivalves with natural-history-based habitat suitability models. Estuarine, Coastal Shelf Sci. 2019, 219, 453–472. [Google Scholar] [CrossRef] [PubMed]
- Martinig, A.R. Habitat suitability modeling for mink passage activity: A cautionary tale. J. Wildl. Manag. 2017, 81, 1439–1448. [Google Scholar] [CrossRef]
- Steenweg, R.; Hebblewhite, M.; Gummer, D.; Low, B.; Hunt, B. Assessing potential habitat and carrying capacity for reintroduction of plains bison (Bison bison bison) in Banff National Park. PLoS ONE 2016, 11, e0150065. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, S.A.; Kotler, B.P. Habitat quality assessed with a habitat suitability model and habitat selection revealed by isodar analysis for the Mountain Nyala (Tragelaphus buxtoni) in Munessa, Ethiopia. Asian J. Appl. Sci. 2016, 4. Available online: https://python.zzx.us/index.php/AJAS/article/view/3838 (accessed on 1 August 2020).
- Zubizarreta-Gerendiain, A.; Pukkala, T.; Peltola, H. Effect of wind damage on the habitat suitability of saproxylic species in a boreal forest landscape. J. For. Res. 2019, 30, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef] [Green Version]
- Kija, H.K.; Ogutu, J.O.; Mangewa, L.J.; Bukombe, J.; Verones, F.; Graae, B.; Kideghesho, J.T.; Said, M.Y.; Nzunda, E.F. Spatio-temporal changes in wildlife habitat quality in the Greater Serengeti ecosystem. Sustainability 2020, 12, 2440. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, Y.; Du, Y. Study on the spatio—Temporal patterns of habitat quality and its terrain gradient effects of the middle of the Yangtze River Economic Belt based on InVEST model. Resour. Environ. Yangtze Basin 2019, 28, 2429–2440. (In Chinese) [Google Scholar]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafo, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, J.; Li, M. Analysis on spatial and temporal changes of regional habitat quality based on the spatial pattern reconstruction of land use. Acta Geogr. Sin. 2020, 75, 160–178. [Google Scholar]
- Zhong, L.; Wang, J. Evaluation on effect of land consolidation on habitat quality based on InVEST model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 250–255. (In Chinese) [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Sun, J. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecol. 2018, 18, 10. [Google Scholar] [CrossRef] [Green Version]
- Qiao, H.; Hu, J.; Huang, J. Theoretical basis, future directions, and challenges for ecological niche models. Sci. Sin. Vitae 2013, 43, 915–927. (In Chinese) [Google Scholar] [CrossRef]
- Warren, D.L.; Wright, A.N.; Seifert, S.N.; Shaffer, H.B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 2014, 20, 334–343. [Google Scholar] [CrossRef]
- Alfaya, P.; Casanovas, J.G.; Lobón-Rovira, J.; Matallanas, B.; Cruz, A.; Arana, P.; Alonso, G. Using MaxEnt algorithm to assess habitat suitability of a potential Iberian lynx population in central Iberian Peninsula. Community Ecol. 2019, 20, 266–276. [Google Scholar] [CrossRef]
- Almasieh, K.; Zoratipour, A.; Negaresh, K.; Hasanzadeh, K.D. Habitat quality modelling and effect of climate change on the distribution of Centaurea pabotii in Iran. Span. J. Agric. Res. 2018, 16, 5. [Google Scholar] [CrossRef]
- Healy, A.; Lippitt, C.D.; Phillips, D.; Lane, M. A comparison of suitability models to identify prehistoric agricultural fields in western New Mexico. J. Archaeol. Sci. Rep. 2017, 11, 427–434. [Google Scholar] [CrossRef]
- Khosravi, R.; Hemami, M.R.; Cushman, S.A. Multi-scale niche modeling of three sympatric felids of conservation importance in central Iran. Landsc. Ecol. 2019, 34, 2451–2467. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, H.; Teng, L.; Su, Y.; Wang, X.; Kong, F. Habitat suitability assessment of blue sheep in Helan Mountain based on MAXENT modeling. Acta Ecol. Sin. 2013, 33, 7243–7249. (In Chinese) [Google Scholar]
- Mammola, S.; Milano, F.; Vignal, M.; Andrieu, J.; Isaia, M. Associations between habitat quality, body size and reproductive fitness in the alpine endemic spider Vesubia jugorum. Glob. Ecol. Biogeogr. 2019, 28, 1325–1335. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Assandri, G.; Bogliani, G.; Pedrini, P.; Brambilla, M. Beautiful agricultural landscapes promote cultural ecosystem services and biodiversity conservation. Agric. Ecosyst. Environ. 2018, 256, 200–210. [Google Scholar] [CrossRef]
- Danley, B.; Widmark, C. Evaluating conceptual definitions of ecosystem services and their implications. Ecol. Econ. 2016, 126, 132–138. [Google Scholar] [CrossRef]
- Helm, D. Taking natural capital seriously. Oxf. Rev. Econ. Policy 2014, 30, 109–125. [Google Scholar] [CrossRef]
- Huang, J.; Tichit, M.; Poulot, M.; Darly, S.; Li, S.; Petit, C.; Aubry, C. Comparative review of multifunctionality and ecosystem services in sustainable agriculture. J. Environ. Manag. 2015, 149, 138–147. [Google Scholar] [CrossRef]
- Rodríguez-Robayo, K.J.; Merino-Perez, L. Contextualizing context in the analysis of payment for ecosystem services. Ecosyst. Serv. 2017, 23, 259–267. [Google Scholar] [CrossRef]
- Robinson, D.A.; Fraser, I.; Dominati, E.; Davíðsdóttir, B.; Jónsson, J.O.G.; Jones, L.; Jones, S.B.; Tuller, M.; Lebron, I.; Bristow, K.L.; et al. On the value of soil resources in the context of natural capital and ecosystem service delivery. Soil Sci. Soc. Am. J. 2014, 78, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Robinson, G.M.; Song, B. ‘Trade-offs in ecosystem services: The agro-ecosystem functional spectrum and experimental research’. Ecol. Indic. 2019, 106, 105536. [Google Scholar] [CrossRef]
- Andersen, P.S.; Vejre, H.; Dalgaard, T.; Brandt, J. An indicator-based method for quantifying farm multifunctionality. Ecol. Indic. 2013, 25, 166–179. [Google Scholar] [CrossRef]
- Fagerholm, N.; Käyhkö, N.; Ndumbaro, F.; Khamis, M. Community stakeholders’ knowledge in landscape assessments—Mapping indicators for landscape services. Ecol. Indic. 2012, 18, 421–433. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Z.C.; Liu, Y.X. Research progress on assessing multi-functionality of agriculture. Chin. J. Agric. Resour. Reg. Plan. 2014, 35, 1–8. [Google Scholar]
- Cheng, X.; Van Damme, S.; Li, L.; Uyttenhove, P. Evaluation of cultural ecosystem services: A review of methods. Ecosyst. Serv. 2019, 37, 100925. [Google Scholar] [CrossRef]
- Miao, J.; Yang, W.; Yang, B.; Ma, Y.; Huang, G. Evaluating the ecosystem services of Chongyi Hakka terraces in Gannan, Jiangxi Province. J. Nat. Resour. 2016, 31, 1817–1831. [Google Scholar]
- Gomezelj, D.O.; Mihalič, T. Destination competitiveness—Applying different models, the case of Slovenia. Tour. Manag. 2008, 29, 294–307. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B. Review of cultural heritage indicators related to landscape: Types, categorisation schemes and their usefulness in quality assessment. Ecol. Indic. 2017, 81, 526–542. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. CICES Version 4: Response to Consultation; Centre for Environmental Management, University of Nottingham: Nottingham, UK, 2012. [Google Scholar]
- Casalegno, S.; Inger, R.; DeSilvey, C.; Gaston, K.J. Spatial covariance between aesthetic value and other ecosystem services. PLoS ONE 2013, 8, e68437. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, N.; Hiura, T. Demand and supply of cultural ecosystem services: Use of geotagged photos to map the aesthetic value of landscapes in Hokkaido. Ecosyst. Serv. 2017, 24, 68–78. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J. Social Values for Ecosystem Services, version 3.0 (SolVES 3.0): Documentation and User Manual; US Geological Survey: Washington, DC, USA, 2015; p. 65.
- Tang, Y.; Mu, H.Z. Literature review of value accounting for arable land in China. Chin. J. Agric. Resour. Reg. Plan. 2014, 35, 73–79. [Google Scholar]
- Di Fazio, S.; Modica, G. Historic rural landscapes: Sustainable planning strategies and action criteria. The Italian experience in the global and European context. Sustainability 2018, 10, 3834. [Google Scholar] [CrossRef] [Green Version]
- Modica, G.; Vizzari, M.; Pollino, M.; Fichera, C.R.; Zoccali, P.; Di Fazio, S. Spatio-temporal analysis of the urban–rural gradient structure: An application in a Mediterranean mountainous landscape (Serra San Bruno, Italy). Earth Syst. Dyn. 2012, 3, 263–279. [Google Scholar] [CrossRef] [Green Version]
- Loures, L.; Loures, A.; Nunes, J.; Panagopoulos, T. Landscape valuation of environmental amenities throughout the application of direct and indirect methods. Sustainability 2015, 7, 794–810. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.; Handley, J. Landscape dynamics and the management of change. Lands. Res. 2001, 26, 45–54. [Google Scholar] [CrossRef]
- Fairclough, G.; Herlin, I.S.; Swanwick, C. Routledge Handbook of Landscape Character Assessment: Current Approaches to Characterisation and Assessment; Routledge: London, UK, 2018. [Google Scholar]
- Lanucara, S.; Praticó, S.; Modica, G. Harmonization and interoperable sharing of multi-temporal geospatial data of rural landscapes. In New Metropolitian Perspectives: Local Knowledge and Innovation Dynamics Towards Territory Attractiveness Through the Implementation of Horizon; Calabró, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Germany, 2019; pp. 51–59. [Google Scholar]
- Della Spina, L. Scenarios for sustainable valorisation of cultural landscape as driver of loca; development. In New Metropolitian Perspectives: Local Knowledge and Innovation Dynamics Towards Territory Attractiveness Through the Implementation of Horizon; Calabró, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Germany, 2019; pp. 113–122. [Google Scholar]
- Morano, P.; Tajani, F. Saving soil and financial feasibility. A model to support public-private partnerships in the regeneration of abandoned areas. Land Use Policy 2018, 73, 40–48. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.S.; Guo, L.Y. Spatio-temporal differentiation of county multi-functions along the Bohai Rim in China. Acta Sci. Nat. Univ. Pekin. 2012, 48, 998–1008. [Google Scholar]
- Liu, Z.; Robinson, G.M. Residential development in the peri-urban fringe: The example of Adelaide, South Australia. Land Use Policy 2016, 57, 179–192. [Google Scholar] [CrossRef]
- Moroney, J.; Castellano, R.S. Farmland loss and concern in the Treasure Valley. Agric. Hum. Values 2018, 35, 529–536. [Google Scholar] [CrossRef]
- Yu, M.; Yang, Y.; Chen, F.; Zhu, F.; Qu, J.; Zhang, S. Response of agricultural multifunctionality to farmland loss under rapidly urbanizing processes in Yangtze river delta, China. Sci. Total Environ. 2019, 666, 1–11. [Google Scholar] [CrossRef]
- Ren, Y.; Lu, Y.; Long, H. The study on non-agricultural transformation co-evolution characteristics of population-land-Industry: Case study of the Bohai Rim in China. Geogr. Res. 2015, 34, 475–486. [Google Scholar]
- Wu, Z.; Wei, C.; Ding, S. Research on the social security function of cultivated land in a hilly-mountainous region. Resour. Sci. 2013, 35, 95–103. [Google Scholar]
- Ye, S.; Li, S. Assessment on the social value of cultivated land resources—Taking Xi’an as an example. Chin. J. Agric. Resour. Reg. Plan. 2013, 2, 27–32. (In Chinese) [Google Scholar]
- Fagerholm, N.; Martín-López, B.; Torralba, M.; Oteros-Rozas, E.; Lechner, A.M.; Bieling, C.; Stahl Olafsson, A.; Albert, C.; Raymond, C.M.; Garcia-Martin, M.; et al. Perceived contributions of multifunctional landscapes to human well-being: Evidence from 13 European sites. People Nat. 2020, 2, 217–234. [Google Scholar] [CrossRef]
- Eilola, S.; Fagerholm, N.; Mäki, S.; Khamis, M.; Käyhkö, N. Realization of participation and spatiality in participatory forest management – a policy–practice analysis from Zanzibar, Tanzania. J. Environ. Plan. Manag. 2015, 58, 1242–1269. [Google Scholar] [CrossRef]
- García-Martín, M. Landscape values in Europe: Insights from participatory mapping research. In Landscape Values: Place and Praxis; Collins, T., Kindermann, G., Newman, C., Cronin, N., Eds.; Centre for Landscape Studies, NUI Galway: Galway, Ireland, 2016; pp. 127–134. [Google Scholar]
- West, S.; Haider, L.J.; Masterson, V.; Enqvist, J.P.; Svedin, U.; Tengö, M. Stewardship, care and relational values. Curr. Opin. Environ. Sustain. 2018, 35, 30–38. [Google Scholar] [CrossRef]
- Chapman, M.; Satterfield, T.; Chan, K.M. When value conflicts are barriers: Can relational values help explain farmer participation in conservation incentive programs? Land Use Policy 2019, 82, 464–475. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, S.; Kenter, J.O. Making intrinsic values work; integrating intrinsic values of the more-than-human world through the Life Framework of Values. Sustain. Sci. 2019, 14, 1247–1265. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, J.J. Intrinsic values in nature: Objective good or simply half of an unhelpful dichotomy? J. Nat. Conserv. 2017, 37, 8–11. [Google Scholar] [CrossRef]
- Cox, M. The pathology of command and control: A formal synthesis. Ecol. Soc. 2016, 21, 1–8. [Google Scholar] [CrossRef]
- Milne, S.; Niesten, E. Direct payments for biodiversity conservation in developing countries: Practical insights for design and implementation. Oryx 2009, 43, 530–541. [Google Scholar] [CrossRef] [Green Version]
- Patton, M.; Kostov, P.; McErlean, S.; Moss, J. Assessing the influence of direct payments on the rental value of agricultural land. Food Policy 2008, 33, 397–405. [Google Scholar] [CrossRef]
- Klain, S.C.; Olmsted, P.; Chan, K.M.; Satterfield, T. Relational values resonate broadly and differently than intrinsic or instrumental values, or the New Ecological Paradigm. PLoS ONE 2017, 12, e0183962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, K.E.; Quinn, C.E.; English, C.; Quinn, J.E. Relational values in agroecosystem governance. Curr. Opin. Environ. Sustain. 2018, 35, 108–115. [Google Scholar] [CrossRef]
- Chan, K.M.; Balvanera, P.; Benessaiah, K.; Chapman, M.; Díaz, S.; Gómez-Baggethun, E.; Gould, R.; Hannahs, N.; Jax, K.; Klain, S.; et al. Opinion: Why protect nature? Rethinking values and the environment. Proc. Natl. Acad. Sci. USA 2016, 113, 1462–1465. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.M.; Gould, R.K.; Pascual, U. Editorial overview: Relational values: What are they, and what’s the fuss about? Curr. Opin. Environ. Sustain. 2018, 35, A1–A7. [Google Scholar] [CrossRef]
- Lokhorst, A.M.; Hoon, C.; le Rutte, R.; de Snoo, G. There is an I in nature: The crucial role of the self in nature conservation. Land Use Policy 2014, 39, 121–126. [Google Scholar] [CrossRef]
- Maybery, D.; Crase, L.; Gullifer, C. Categorising farming values as economic, conservation and lifestyle. J. Econ. Psychol. 2005, 26, 59–72. [Google Scholar] [CrossRef]
- Mould, S.; Fryirs, K.; Howitt, R. The importance of relational values in river management: Understanding enablers and barriers for effective participation. Ecol. Soc. 2020, 25. [Google Scholar] [CrossRef]
- Fielke, S.J.; Wilson, G.A. Multifunctional intervention and market rationality in agricultural governance: A comparative study of England and South Australia. GeoJournal 2017, 82, 1067–1083. [Google Scholar] [CrossRef]
- Leakey, R.R.B.; Prabhu, R. Towards multifunctional agriculture—An African initiative. In Multifunctional Agriculture: Achieving Sustainable Development in Africa; Academic Press: London, UK, 2017; pp. 395–416. [Google Scholar]
- Bardsley, D.K.; Palazzo, E.; Stringer, R. What should we conserve? Farmer narratives on biodiversity values in the McLaren Vale, South Australia. Land Use Policy 2019, 83, 594–605. [Google Scholar] [CrossRef]
- Fouilleux, E.; Bricas, N.; Alpha, A. ‘Feeding 9 billion people’: Global food security debates and the productionist trap. J. Eur. Public Policy 2017, 24, 1658–1677. [Google Scholar] [CrossRef]
- Candel, J.J.; Biesbroek, R. Policy integration in the EU governance of global food security. Food Secur. 2018, 10, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Robinson, G.M. New frontiers in agricultural geography: Transformations, food security, land grabs and climate change. Bage: Boletín De La Asoc. De Geógrafos Españoles 2018, 78, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Rivaroli, S.; Bertazzoli, A.; Ghelfi, R.; Laghi, A. Multifunctional farming in Emilia-Romagna region: An analysis through agricultural census data. New Medit. 2016, 15, 37–44. [Google Scholar]
- Jordan, N.R.; Mulla, D.J.; Slotterback, C.; Runck, B.; Hays, C. Multifunctional agricultural watersheds for climate adaptation in Midwest USA: Commentary. Renew. Agric. Food Syst. 2018, 33, 292. [Google Scholar] [CrossRef]
Topic | Step 1 Keywords | Step 2 Keywords |
---|---|---|
Economic | multifunctional agriculture | Contingent Valuation Method agriculture |
Valuation | economic quantifying | Willingness to Pay agriculture |
Choice experiment approach agriculture | ||
Stated preference approach agriculture | ||
Biophysical | ecological evaluations + | HSI model agriculture |
Valuation | agriculture | InVEST agriculture |
biodiversity evaluation + | SoLVES agriculture | |
agriculture | MaxEnt agriculture | |
ecosystem services + multi- | ||
functional agriculture | ||
Socio-cultural | quantify social functions + agriculture | |
Valuation | qualify social functions + agriculture | |
quantify cultural functions + agriculture | ||
qualify cultural functions + agriculture | ||
assess socio-cultural agriculture | ||
valuate social functions + agriculture | ||
valuate cultural functions + agriculture | ||
Holistic | quantify holistic multifunctional agriculture | |
Valuation | qualify holistic multifunctional agriculture | |
assess holistic multifunctional agriculture |
Approach | Methods | Exemplar References |
---|---|---|
Economic | Stated-preference method (using contingent valuation, willingness to pay, choice experiments, conjoint analysis) | Alcon et al. [67]; Bernués et al. [68]; Chen et al. [69]; Dupras et al. [70]; Jung [71]; Kubíčková [72]; Mazzocchi and Sali [73]; Nambuge et al. [74]; Novikova et al. [75]; Ohe [76]; Ragkos and Theodoridis [77]; Sangkapitux et al. [78]; Tagliafierro et al. [79]; Torres-Miralles et al. [80] 2017; van Zanten et al. [81]; Vivithkeyoonvong and Jourdain [82] 2017; Sejati et al. [83]; Zabala et al. [84]; Zhao and Huang. [85] |
Revealed preference method (using hedonic pricing, estimated travel costs) | Baum and Kozer-Kowalska [86]; Dong et al. [87]; Huang and Wang. [88]; Münch et al. [89] | |
Biophysical | Ecological footprint | Blasi et al. [90] |
Ecosystems services | Ketema et al. [91]; Yu et al. [92] | |
Experiment based model | Aneva et al. [93] | |
Generalised linear mixed model (GLMM) | Lecina-Diaz et al. [94]; Lefcheck et al. [95]; Liu et al. [96]; Puig-Montserrat et al. [97]; Rollin et al. [98] | |
InVEST model | Bhagabati et al. [99]; Dai et al. [100]; Du and Rong [101]; Goldstein et al. [102]; Ma et al. [103]; Pham et al. [104]; Polasky et al. [105] | |
Models based on biophysical character | Belem and Saqalli. [106]; Ma et al. [107]; Mattsson et al. [108]; Peng et al. [109]; Peng et al. [110]; Peng et al. [45]; Rallings et al. [28] | |
Socio-cultural | Assessment of aesthetics/scenery | Tenerelli et al. [111]; Williams [112] |
Choice experiment method | Rewitzer et al. [113] | |
Cultural ecosystem services | Bullock et al. [114] | |
Landscape indicators | Vlami et al. [115]; Willemen et al. [116] | |
MaxEnt model | He et al. [117] | |
Monetisation | Chen et al. [118] | |
Multi-criteria assessment | Bonenberg [119] | |
Participatory approach/Interviews | Bernués et al. [120]; Darvill and Lindo [121]; Gosal et al. [122]; Hahn et al. [123]; Junge et al. [124]; Kvakkestad et al. [125]; Plieninger et al. [126]; Plieninger et al. [127]; Schmidt et al. [128]; Schirpke et al. [129]; Schirpke et al. [130]; Soy-Massoni et al. [131]; Tulla et al. [132]; Villegas-Palacio et al. [133]; Włodarczyk-Marciniak et al. [134]; Yang et al. [135]; Zoderer et al. [136] | |
SolVES model | Bogdan et al. [137]; Qin et al. [138]; Semmens et al. [139]; Sherrouse et al. [140]; Wang et al. [141] | |
Visualisation methods | Bachi et al. [142]; Oteros-Rozas et al. [143] | |
Holistic | Analytic hierarchy process (AHP) | Carmona-Torres et al. [144]; Gu et al. [145]; Johansen et al. [146]; Rovai and Andreoli [147]; Sajadian et al. [148]; Sousa et al. [149] |
Delphi method | Shipley et al. [150] | |
Ecosystems services (ESS) | Song et al. [151] | |
Emergy valuation | Dai et al. [152] | |
Indicators | Zhang et al. [153] | |
Monetisation | Damani [154]; Fagioli et al. [155]; Fleskens et al. [156]; Hrabák and Konečný [157]; Marques-Perez and del Río et al. [158]; Modernel et al. [159]; Nguyen et al. [160]; Stürck and Verburg [39]; Troiano et al. [161]; Zhang et al. [162] | |
Multi-criteria assessment | Li et al. [163]; Marques-Perez and Segura., [164]; Schaller et al. [165] | |
Participatory approach (PPGIS) | Fagerholm et al. [166,167]; García-Nieto et al. [168]; Kivinen et al. [169]; Verbrugge et al. [170] |
Applied Model | Advantages | Disadvantages | Exemplar References |
---|---|---|---|
Habitat Suitability Index (HSI) model | This model is suitable for expressing simple and easily understood impacts of interventions on targeted species’ distribution and abundance, particularly suitable for fish habitat. | It is quite subjective and lacks universality; it does not consider interactions and correlations between habitat variables [190,191]. | Duflot et al. [192] |
Latifiana et al. [193] | |||
Lewis et al. [194] | |||
Martinig [195] | |||
Steenweg et al. [196] | |||
Tadesse et al. [197] | |||
Zubizarreta-Gerendiain et al. [198] | |||
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model | The model is based on ecological processes, flexible parameter adjustment, spatial expression of evaluation results, time, space, multi-service, and multi-target trade-offs. | Scope of application and scalability are limited, and few sub-modules are designed for cultural services [141,191]. | Aneseyee et al. [199] |
Kija et al. [200] | |||
Liu et al. [201] | |||
Sallustio et al. [202] | |||
Zhang et al. [203] | |||
Zhong and Wang [204] | |||
Maximum Entropy (MaxEnt) model | Developed originally to model geographical distributions of species [205], it uses presence-only data, performs well with incomplete data (via extrapolation), and requires only small sample sizes. | Estimations of the amount of error in its predictions are limited. Extra care is needed when extrapolating to another study area. MaxEnt is not available in standard statistical packages [206,207,208]. | Alfaya et al. [209] |
Almasieh et al. [210] | |||
Healy et al. [211] | |||
Khosravi et al. [212] | |||
Liu et al. [213] | |||
Mammola et al. [214] | |||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, B.; Robinson, G.M.; Bardsley, D.K. Measuring Multifunctional Agricultural Landscapes. Land 2020, 9, 260. https://doi.org/10.3390/land9080260
Song B, Robinson GM, Bardsley DK. Measuring Multifunctional Agricultural Landscapes. Land. 2020; 9(8):260. https://doi.org/10.3390/land9080260
Chicago/Turabian StyleSong, Bingjie, Guy M. Robinson, and Douglas K. Bardsley. 2020. "Measuring Multifunctional Agricultural Landscapes" Land 9, no. 8: 260. https://doi.org/10.3390/land9080260
APA StyleSong, B., Robinson, G. M., & Bardsley, D. K. (2020). Measuring Multifunctional Agricultural Landscapes. Land, 9(8), 260. https://doi.org/10.3390/land9080260