A Deep Neural Networks Approach for Augmenting Samples of Land Cover Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Area
2.2. Feature Selection from Small-Size Samples
2.3. Similarity Measurement of Image Objects
2.4. Sample Augmentation by Neural Networks
2.5. Postprocessing by Clustering
2.6. Validation
3. Results
3.1. Sample Augmentation Results
3.2. Comparison and Validation
3.2.1. Performance in the Similar Land Cover Region
3.2.2. Performance in Dissimilar Land Cover Region
4. Discussion
4.1. Effects of Segmented Land Cover Image Objects and Intraclass Variability
4.2. Comparisons with Other Sample Augment Methods
4.3. Sample Augmentation for Remote Sensing with an Insufficient Sample Size
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahl, D.E.; Gower, S.T.; Mackay, D.S.; Burrows, S.N.; Norman, J.M.; Diak, G.R. Heterogeneity of light use efficiency in a northern wisconsin forest: Implications for modeling net primary production with remote sensing. Remote Sens. Environ. 2004, 93, 168–178. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2013, 3, 385. [Google Scholar] [CrossRef]
- Findell, K.L.; Berg, A.; Gentine, P.; Krasting, J.P.; Lintner, B.R.; Malyshev, S.; Santanello, J.A.; Shevliakova, E. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 2017, 8, 989. [Google Scholar] [CrossRef]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 2011, 17, 974–989. [Google Scholar] [CrossRef] [Green Version]
- Yifang, B.; Gong, P.; Gini, C. Global land cover mapping using earth observation satellite data: Recent progresses and challenges. ISPRS 2015, 103, 1–6. [Google Scholar]
- Ma, L.; Cheng, L.; Li, M.; Liu, Y.; Ma, X. Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery. ISPRS 2015, 102, 14–27. [Google Scholar] [CrossRef]
- Li, M.; Ma, L.; Blaschke, T.; Cheng, L.; Tiede, D. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth. Obs. Geoinf. 2016, 49, 87–98. [Google Scholar] [CrossRef]
- Rogan, J.; Franklin, J.; Stow, D.; Miller, J.; Woodcock, C.; Roberts, D. Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sens. Environ. 2008, 112, 2272–2283. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information. ISPRS 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, C.; Yang, H.; Song, X.; Chen, J.; Li, Z. Feature selection solution with high dimensionality and low-sample size for land cover classification in object-based image analysis. Remote Sens. 2017, 9, 939. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 2015, 7, 153–168. [Google Scholar] [CrossRef]
- Lake, B.M.; Salakhutdinov, R.; Tenenbaum, J.B. Human-level concept learning through probabilistic program induction. Science 2015, 350, 1332–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persello, C.; Bruzzone, L. Active and semisupervised learning for the classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6937–6956. [Google Scholar] [CrossRef]
- Duong, P.C.; Trung, T.H.; Nasahara, K.N.; Tadono, T. Jaxa high-resolution land use/land cover map for central vietnam in 2007 and 2017. Remote Sens. 2018, 10, 1406. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.A.; Jia, X. Using suitable neighbors to augment the training set in hyperspectral maximum likelihood classification. IEEE Geosci. Remote Sens. Lett. 2008, 5, 774–777. [Google Scholar] [CrossRef]
- Du, L.; Wang, Y.; Xie, W. A Semi-supervised Method for Sar Target Discrimination Based on Co-training. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Pasolli, E.; Melgani, F.; Tuia, D.; Pacifici, F.; Emery, W.J. Svm active learning approach for image classification using spatial information. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2217–2233. [Google Scholar] [CrossRef]
- Tuia, D.; Pasolli, E.; Emery, W.J. Using active learning to adapt remote sensing image classifiers. Remote Sens. Environ. 2011, 115, 2232–2242. [Google Scholar] [CrossRef]
- Bruzzone, L.; Marconcini, M. Toward the automatic updating of land-cover maps by a domain-adaptation svm classifier and a circular validation strategy. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1108–1122. [Google Scholar] [CrossRef]
- Zhu, X.; Lafferty, J.; Rosenfeld, R. Semi-supervised Learning with Graphs. Ph.D Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2005. [Google Scholar]
- Wang, L.; Hao, S.; Wang, Q.; Wang, Y. Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation. ISPRS 2014, 97, 123–137. [Google Scholar]
- Chapelle, O.; Scholkopf, B.; Zien, A. Semi-supervised Learning (Chapelle, O. Et al., Eds.; 2006) [book reviews]. IEEE Trans. Neural Netw. 2009, 20, 542. [Google Scholar] [CrossRef]
- Shi, Q.; Du, B.; Zhang, L. Domain adaptation for remote sensing image classification: A low-rank reconstruction and instance weighting label propagation inspired algorithm. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5677–5689. [Google Scholar]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS 2016, 116, 55–72. [Google Scholar]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning requires rethinking generalization. arXiv preprint 2016, arXiv:1611.03530. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv preprint 2014, arXiv:1409.0473. [Google Scholar]
- Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [Google Scholar] [CrossRef]
- Wang, S.; Quan, D.; Liang, X.; Ning, M.; Guo, Y.; Jiao, L. A deep learning framework for remote sensing image registration. ISPRS 2018, 145, 148–164. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Wei, W.; Zhang, Y. Hyperspectral image classification with data augmentation and classifier fusion. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1420–1424. [Google Scholar] [CrossRef]
- Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4604–4616. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Q.; Zhang, Y.; Yan, H. A deep convolution neural network method for land cover mapping: A case study of Qinhuangdao, China. Remote Sens. 2018, 10, 2053. [Google Scholar]
- Gaetano, R.; Ienco, D.; Ose, K.; Cresson, R. A two-branch cnn architecture for land cover classification of pan and ms imagery. Remote Sens. 2018, 10, 1746. [Google Scholar]
- Felde, G.; Anderson, G.; Cooley, T.; Matthew, M.; Berk, A.; Lee, J. Analysis of Hyperion Data with The FLAASH Atmospheric Correction Algorithm. In Proceedings of the IGARSS 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; IEEE: New York, NY, USA, 2003. [Google Scholar]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. Available online: https://patentimages.storage.googleapis.com/f9/72/45/c9f1fffe687d30/US6011875.pdf (accessed on 3 August 2020).
- Murray, N.J.; Clemens, R.S.; Phinn, S.R.; Possingham, H.P.; Fuller, R.A. Tracking the rapid loss of tidal wetlands in the yellow sea. Front. Ecol. Environ. 2014, 12, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS 2014, 88, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal landsat ndvi time-series. ISPRS 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Racine, J.S. Nonparametric econometrics: A primer. Found. Trends Econom. 2008, 3, 1–88. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Gulli, A.; Pal, S. Deep Learning with Keras; Packt: Birmingham, UK, 2017; pp. 1–318. [Google Scholar]
- Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Ng, A.Y.; Jordan, M.I.; Weiss, Y. On spectral clustering: Analysis and an algorithm. In Proceedings of the NIPS’01: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, BC, Canada, 3–8 December 2001; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Bruneau, P.; Parisot, O.; Otjacques, B. A heuristic for the automatic parametrization of the spectral clustering algorithm. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Dronova, I.; Gong, P.; Wang, L. Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at poyang lake, China. Remote Sens. Environ. 2011, 115, 3220–3236. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in china during 1995–2000. Sci. China Ser. D 2003, 46, 373–384. [Google Scholar]
- Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.F.; Emery, W.J. Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2218. [Google Scholar] [CrossRef]
- McIver, D.; Friedl, M. Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sens. Environ. 2002, 81, 253–261. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P. Some issues in the classification of dais hyperspectral data. Int. J. Remote Sens. 2006, 27, 2895–2916. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Available online: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf (accessed on 1 August 2020).
- Goodchild, M.F.; Guo, H.; Annoni, A.; Bian, L.; de Bie, K.; Campbell, F.; Craglia, M.; Ehlers, M.; van Genderen, J.; Jackson, D. Next-generation digital earth. Proc. Natl. Acad. Sci. USA 2012, 109, 11088–11094. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, J.; Li, W.; Wu, J. Rethinking big data: A review on the data quality and usage issues. ISPRS 2016, 115, 134–142. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef] [Green Version]
- Bruzzone, L.; Demir, B. Land Use and Land Cover Mapping in Europe; Springer: Berlin/Heidelberg, Germany, 2014; pp. 127–143. [Google Scholar]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and cart algorithms for the land-cover classification using limited training data points. ISPRS 2012, 70, 78–87. [Google Scholar]
Features Category | Object Features | Number of Features |
---|---|---|
Spectral | Mean (4), Standard deviation (4), Skewness (4), Brightness | 13 |
Geometry | Border index, Compactness, Shape index | 3 |
Texture | Gray level co-occurrence matrix (GLCM) Homogeneity (all direction), GLCM Contrast (all direction), GLCM Dissimilarity (all direction), GLCM Entropy (all direction), GLCM Ang. 2nd moment (all direction), GLCM Mean (all direction), GLCM Standard Deviation (all direction), GLCM Correlation (all direction) | 8 |
Customized | Normalized difference vegetation index (NDVI), Normalized difference water index of McFeeters (NDWIF), Soil adjusted vegetation index (SAVI), Optimized soil adjusted vegetation index (OSAVI) | 4 |
Total | 28 |
Land Cover | Number of Samples | |
---|---|---|
Training Objects | Testing Objects | |
Water | 29 | 1504 |
Forest land | 36 | 3788 |
Grass land | 32 | 3266 |
Crop land | 33 | 8722 |
Bare land | 22 | 1063 |
Residential and built-up land | 32 | 5141 |
Iterative | Noniterative | |||
---|---|---|---|---|
Overall Accuracy | Imbalance | Overall Accuracy | Imbalance | |
LP | min: 65.65% | min: 3.23 | min: 84.50% | min: 3.23 |
max: 89.45% | max: 38.80 | max: 88.77% | max: 31.13 | |
mean: 74.47% | mean: 30.77 | mean: 87.64% | mean: 20.06 | |
deviation: 8.32% | deviation: 6.59 | deviation: 0.61% | deviation: 5.59 | |
SVM | min: 84.50% | min: 3.31 | min: 78.30% | min: 2.96 |
max: 96.60% | max: 127.52 | max: 92.58% | max: 40.85 | |
mean: 94.09% | mean: 72.20 | mean: 86.65% | mean: 15.68 | |
deviation: 2.67% | deviation: 40.19 | deviation: 2.57% | deviation: 6.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Huang, Y. A Deep Neural Networks Approach for Augmenting Samples of Land Cover Classification. Land 2020, 9, 271. https://doi.org/10.3390/land9080271
Zhao C, Huang Y. A Deep Neural Networks Approach for Augmenting Samples of Land Cover Classification. Land. 2020; 9(8):271. https://doi.org/10.3390/land9080271
Chicago/Turabian StyleZhao, Chuanpeng, and Yaohuan Huang. 2020. "A Deep Neural Networks Approach for Augmenting Samples of Land Cover Classification" Land 9, no. 8: 271. https://doi.org/10.3390/land9080271
APA StyleZhao, C., & Huang, Y. (2020). A Deep Neural Networks Approach for Augmenting Samples of Land Cover Classification. Land, 9(8), 271. https://doi.org/10.3390/land9080271