A Single Animal Species-Based Prediction of Human Clearance and First-in-Human Dose of Monoclonal Antibodies: Beyond Monkey
Abstract
:1. Introduction
- to evaluate the suitability of mouse or rat for the prediction of human CL of mabs and compare with the predicted values from monkey;
- to predict the first-in-human dose of mabs based on a single species and compare it with the doses given to humans (dose range).
2. Methods
2.1. Prediction of Human Clearance
2.1.1. Allometric Exponent-Based Method
2.1.2. Minimal PBPK Method (mPBPK)
2.1.3. Lymph Flow Rate
2.1.4. Liver Blood Flow Rate
3. Prediction of Human Dose
3.1. First-in-Human Dose Estimation from Predicted Human Clearance
3.1.1. Method I: Linear Method
3.1.2. Method II: Exponential Method
3.1.3. Method III: Human-Equivalent Dose (HED) Based on Body Weight
3.1.4. Method IV: Human-Equivalent Dose (HED) Based on Predicted Human Clearance
3.1.5. Method V: Human-Equivalent Dose (HED) Based on Predicted Human Clearance
4. Statistical Analysis
5. Results
5.1. Prediction of Clearance of Mabs from One Species to Humans
5.2. Mouse
5.3. Rat
5.4. Monkey
5.5. Prediction of First-in-Human Dose from One Species
6. Discussion
7. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, R.; Iyer, S.; Theil, F.P.; Mortensen, D.L.; Fielder, P.J.; Prabhu, S. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: What have we learned? MAbs 2011, 3, 61–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, J.; Zhou, H.; Jiao, Q.; Davis, H.M. Interspecies scaling of therapeutic monoclonal antibodies: Initial look. J. Clin. Pharmacol. 2009, 49, 1382–1402. [Google Scholar] [CrossRef]
- Oitate, M.; Masubuchi, N.; Ito, T.; Yabe, Y.; Karibe, T.; Aoki, T.; Murayama, N.; Kurihara, A.; Okudaira, N.; Izumi, T. Prediction of human pharmacokinetics of therapeutic monoclonal antibodies from simple allometry of monkey data. Drug Metab. Pharmacokinet. 2011, 26, 423–430. [Google Scholar] [CrossRef]
- Hussein, M.; Bernson, J.R.; Niesvizky, R.; Munshi, N.; Matous, J.; Sobecks, R.; Harrop, K.; Drachman, J.G.; Whiting, N. A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Hematologica 2010, 95, 845–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vos, S.; Forwro-Torres, A.; Ansell, S.M.; Kahl, B.; Cheson, B.D. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J. Hematol Oncol. 2014, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.B.; Hepburn, T.W.; Urbanski, J.J.; Kwok, D.C.; Hart, T.K.; Herzyk, D.J.; Demuth, S.G.; Leland, M.; Rhodes, G.R. Preclinical pharmacokinetic evaluation of the respiratory syncytial virus-specific reshaped human monoclonal antibody RSHZ19. Drug Metab. Dispos. 1995, 23, 1028–1036. [Google Scholar] [PubMed]
- Everitt, D.E.; Davis, C.B.; Thompson, K.; DiCicco, R.; Ilson, B.; Demuth, S.G.; Herzyk, D.J.; Jorkasky, D.K. The pharmacokinetics, antigenicity, and fusion-inhibition activity of RSHZ19, a humanized monoclonal antibody to respiratory syncytial virus, in healthy volunteers. J. Infect. Dis. 1996, 174, 463–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, W.F.; Gallati, H.; Schiller, C.D. Animal pharmacokinetics of the tumor necrosis factor receptor-immunoglobulin fusion protein lenercept and their extrapolation to humans. Drug Metab. Dispos. 1999, 27, 21–25. [Google Scholar]
- Che, J.; Wang, H.; Chen, Z.; Li, X.; Hou, Y.; Shan, C.; Cheng, Y. A new approach for pharmacokinetics of single-dose cetuximab in rhesus monkeys by surface plasmon resonance biosensor. J. Pharm. Biomed. Anal. 2009, 50, 183–188. [Google Scholar] [CrossRef]
- Luo, F.R.; Yang, Z.; Dong, H.; Camuso, A.; McGlinchey, K.; Fager, K.; Flefleh, C.; Kan, D.; Inigo, I.; Castaneda, S.; et al. Correlation of pharmacokinetics with the antitumor activity of cetuximab in nude mice bearing the GEO human colon carcinoma xenograft. J. Clin. Oncol. 2000, 18, 904–914. [Google Scholar] [CrossRef]
- Fracasso, P.M.; Burris, H., III; Arquette, M.A.; Govindan, R.; Gao, F.; Wright, L.P.; Goodner, S.A.; Greco, F.A.; Jones, S.F.; Willcut, N.; et al. A phase 1 escalating single-dose and weekly fixed-dose study of cetuximab: Pharmacokinetic and pharmacodynamic rationale for dosing. Clin. Cancer Res. 2007, 13, 986–993. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, N.R.; Weiner, R.S.; Shyu, W.C.; Calore, J.D.; Tritschler, D.; Tay, L.K.; Lee, J.S.; Greene, D.S.; Barbhaiya, R.H. A pharmacokinetic study of intravenous CTLA4Ig, a novel immunosuppressive agent, in mice. J. Pharm. Sci. 1996, 85, 296–298. [Google Scholar] [CrossRef]
- Srinivas, N.R.; Weiner, R.S.; Warner, G.; Shyu, W.C.; Davidson, T.; Fadrowski, C.G.; Tay, L.K.; Lee, J.S.; Greene, D.S.; Barbhaiya, R.H. Pharmacokinetics and pharmacodynamics of CTLA4lg (BMS-188667), a novel immunosuppressive agent, in monkeys following multiple doses. J. Pharm. Sci. 1996, 85, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.R.; Shyu, W.C.; Weiner, R.S.; Warner, G.; Comereski, C.; Tay, L.K.; Greene, D.S.; Barbhaiya, R.H. Assessment of dose proportionality, absolute bioavailability, and immunogenicity response of CTLA4Ig (BMS-188667), a novel immunosuppressive agent, following subcutaneous and intravenous administration to rats. Pharm. Res. 1997, 14, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Lin, B.R.; Lin, B.; Hou, S.; Qian, W.Z.; Li, J.; Tan, M.; Ma, J.; Li, B.H.; Wang, H.; et al. Pharmacokinetics of CTLA4Ig fusion protein in healthy volunteers and patients with rheumatoid arthritis. Acta. Pharmacol. Sin. 2009, 30, 364–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mordenti, J.; Chen, S.A.; Moore, J.A.; Ferraiolo, B.L.; Green, J.D. Interspecies scaling of clearance and volume of distribution data for five therapeutic proteins. Pharm. Res. 1991, 8, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Hodges, T.L.; Kahn, J.O.; Kaplan, L.D.; Groopman, J.E.; Volberding, P.A.; Amman, A.J.; Arri, C.J.; Bouvier, L.M.; Mordenti, J.; Izu, A.E.; et al. Phase 1 study of recombinant human CD4-immunoglobulin G therapy of patients with AIDS and AIDS-related complex. Antimicrob. Agents Chemother. 1991, 35, 2580–2586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, Y.; Bai, S.; Damico-Beyer, L.A.; Jin, D.; Liang, W.C.; Wu, Y.; Theil, F.P.; Joshi, A.; Lu, Y.; Lowe, J.; et al. Anti-neuropilin-1 (MNRP1685A): Unexpected pharmacokinetic differences across species, from preclinical models to humans. Pharm. Res. 2012, 29, 2512–2521. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Tannenbaum, S.; Rordorf, C.; Lowe, P.J.; Floch, D.; Gram, H.; Roy, S. Pharmacokinetic and pharmacodynamic properties of canakinumab, a human anti-interleukin-1β monoclonal antibody. Clin. Pharmacokinet. 2012, 51, e1–e18. [Google Scholar] [CrossRef] [Green Version]
- Xiang, H.; Bender, B.C.; Reyes, A.E.; Merchant, M.; Jumbe, N.L.; Romero, M.; Davancaze, T.; Nijem, I.; Mai, E.; Young, J.; et al. Onartuzumab (MetMAb): Using nonclinical pharmacokinetic and concentration-effect data to support clinical development. Clin. Cancer Res. 2013, 19, 5068–5078. [Google Scholar] [CrossRef] [Green Version]
- Salgia, R.; Patel, P.; Bothos, J.; Yu, W.; Eppler, S.; Hegde, P.; Bai, S.; Kaur, S.; Nijem, I.; Catenacci, D.V.; et al. Phase I dose-escalation study of onartuzumab as a single agent and in combination with bevacizumab in patients with advanced solid malignancies. Clin. Cancer Res. 2014, 20, 1666–1675. [Google Scholar] [CrossRef] [Green Version]
- Duconge, J.; Fernandez-Sanchez, E.; Alvarez, D. Interspecies scaling of the monoclonal anti-EGFreceptor ior EGF/r3 antibody disposition using allometric paradigm: Is it really suitable? Biopharm. Drug. Dispos. 2004, 25, 177–186. [Google Scholar] [CrossRef]
- Nnane, I.P.; Xu, Z.; Zhou, H.; Davis, H.M. Non-Clinical Pharmacokinetics, Prediction of Human Pharmacokinetics and First-in-Human Dose Selection for CNTO 5825, an Anti-Interleukin-13 Monoclonal Antibody. Basic. Clin. Pharmacol. Toxicol. 2015, 117, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Lindauer, A.; Valiathan, C.R.; Mehta, K.; Sriram, V.; de Greef, R.; Elassaiss-Schaap, J.; de Alwis, D.P. Translational Pharmacokinetic/Pharmacodynamic Modeling of Tumor Growth Inhibition Supports Dose-Range Selection of the Anti-PD-1 Antibody Pembrolizumab. CPT Pharmacometrics Syst. Pharmacol. 2017, 6, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Pembrolizumab: FDA Pharmacology Review, CENTER FOR DRUG EVALUATION AND RESEARCH. BLA 125514; 2014. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125514orig1s000pharmr.pdf (accessed on 30 August 2021).
- FDA Package Insert. KEYTRUDA (Pembrolizumab) for Intravenous Use. 2014. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125514lbl.pdf (accessed on 30 August 2021).
- Infliximab: FDA Pharmacology Review, CENTER FOR DRUG EVALUATION AND RESEARCH. BLA 761054; 2016. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/761054Orig1s000PharmR.pdf (accessed on 30 August 2021).
- S25. FDA Package Insert. REMICADE (Infliximab). 1998. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/1998/inflcen082498lb.pdf (accessed on 30 August 2021).
- Avelumab. Assessment Report. Committee for Medicinal Products for Human Use (CHMP). European Medicinal Agency (EMA), 2017. Available online: https://www.ema.europa.eu/en/documents/other/chmp-rules-procedure_en.pdf (accessed on 30 August 2021).
- Deng, R.; Loyet, K.M.; Lien, S.; Iyer, S.; De Forge, L.E.; Theil, F.P.; Lowman, H.B.; Fielder, P.J.; Prabhu, S. Pharmacokinetics of humanized monoclonal anti-tumor necrosis factor-{alpha} antibody and its neonatal Fc receptor variants in mice and cynomolgus monkeys. Drug Metab. Dispos. 2010, 38, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Kim, N.; Choi, J.; Park, M.-H.; Lee, B.I.; Shin, S.-H.; Byeon, J.-J.; Shin, Y.G. Qualification and Application of a Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometric Method for the Determination of Adalimumab in Rat Plasma. Pharmaceutics 2018, 61, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA Package Insert. HUM IRA (Adalimumab) Injection, Solution for Subcutaneous Use. 2002. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/125057s0276lbl.pdf (accessed on 30 August 2021).
- HUMIRA® (Adalimumab) Injection, for Subcutaneous Use Initial U.S. Approval: 2002. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125057s410lbl.pdf (accessed on 2 September 2021).
- Zhao, J.; Cao, Y.; Jusko, W.J. Across-Species Scaling of Monoclonal Antibody Pharmacokinetics Using a Minimal PBPK Model. Pharm. Res. 2015, 32, 3269–3281. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.W.; Smith, B.R. A comprehensive quantitative and qualitative evaluation of extrapolation of intravenous pharmacokinetic parameters from rat, dog, and monkey to humans. I. Clearance. Drug Metab. Dispos. 2004, 32, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Davies, B.; Morris, T. Physiological parameters in laboratory animals and humans. Pharm. Res. 1993, 10, 1093–1095. [Google Scholar] [CrossRef]
- Mahmood, I.; Green, M.D.; Fisher, J.E. Selection of the first-time dose in humans: Comparison of different approaches based on interspecies scaling of clearance. J. Clin. Pharmacol. 2003, 43, 692–697. [Google Scholar] [CrossRef]
- Mahmood, I. Interspecies scaling of protein drugs: Prediction of clearance from animals to humans. J. Pharm. Sci. 2004, 93, 177–185. [Google Scholar] [CrossRef]
- Mahmood, I. Pharmacokinetic allometric scaling of antibodies: Application to the first-in-human dose estimation. J. Pharm. Sci. 2009, 98, 3850–3861. [Google Scholar] [CrossRef] [PubMed]
- Valente, D.; Mauriac, C.; Schmidt, T.; Focken, I.; Beninga, J.; Mackness, B.; Qiu, H.; Vicat, P.; Kandira, A.; Radošević, K.; et al. Pharmacokinetics of novel Fc-engineered monoclonal and multispecific antibodies in cynomolgus monkeys and humanized FcRn transgenic mouse models. MAbs 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Roopenian, D.C.; Christianson, G.J.; Sproule, T.J. Human FcRn transgenic mice for pharmacokinetic evaluation of therapeutic antibodies. In Mouse Models for Drug Discovery; Humana Press: Totowa, NJ, USA, 2010; Volume 602, pp. 93–104. [Google Scholar]
- Abdiche, Y.N.; Yeung, Y.A.; Chaparro-Riggers, J.; Barman, I.; Strop, P. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs 2015, 7, 331–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boxenbaum, H.; Dilea, C. First-time-in-human dose selection: Allometric thoughts and perspectives. J. Clin. Pharmacol. 1995, 35, 957–966. [Google Scholar] [CrossRef]
- Reigner, B.G.; Blesch, K.S. Estimating the starting dose for entry into humans: Principles and practice. Eur. J. Clin. Pharmacol. 2002, 57, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Buoen, C.; Bjerrum, O.J.; Thomsen, M.S. How First-Time-in-Human Studies Are Being Performed: 17. A Survey of Phase I Dose-Escalation Trials in Healthy Volunteers Published Between 1995 and 2004. J. Clin. Pharmacol. 2005, 45, 1123–1136. [Google Scholar] [CrossRef]
- Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers; U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER): Silver Spring, MD, USA, 2005.
- Eigenmann, M.J.; Fronton, L.; Grimm, H.P.; Otteneder, M.B.; Krippendorff, B.F. Quantification of IgG monoclonal antibody clearance in tissues. mAbs 2017, 9, 1007–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mabs | Type | Target | Mouse | Rat | Monkey | References |
---|---|---|---|---|---|---|
Pertuzumab | Human IgG1 | HER-2 | Yes | Yes | Yes | [1] |
Bevacizumab | Human IgG1 | VEGF | Yes | Yes | Yes | [1] |
Trastazumab | Human IgG1 | HER2 | Yes | NA | Yes | [1] |
Omalizumab | Human IgG1 | IgE | Yes | Yes | Yes | [1] |
GNE mAB S | NA | NA | Yes | Yes | Yes | [1] |
GNE mAB T | NA | NA | NA | Yes | Yes | [1] |
GNE mAB X | NA | NA | Yes | Yes | Yes | [1] |
GNE mAB Y | NA | NA | Yes | Yes | Yes | [1] |
GNE mAB Z | NA | NA | Yes | Yes | Yes | [1] |
GNE mAB V | NA | NA | Yes | NA | Yes | [1] |
Dacetuzumab | Human IgG1 | CD40 | Yes | Yes | Yes | [1] |
RSHZ19 | Human IgG1 | RSV | Yes | Yes | Yes | [6,7] |
Lenercept | Human IgG1 | TNF | NA | Yes | Yes | [8] |
Cetuximab | Chimeric IgG1 | EGF | Yes | NA | Yes | [9,10,11] |
CTLA-4Ig | Human IgG1 | TNFα | Yes | Yes | Yes | [12,13,14,15] |
CD4-IgG | Human IgG1 | CD4 | NA | Yes | Yes | [16,17] |
MNRP1685A | Human IgG1 | neuropilin-1 | Yes | Yes | Yes | [18] |
Canakinumab | Human IgG1 | IL-1β | Yes | NA | Yes | [19] |
Onartuzumab | Human IgG1 | MET | Yes | NA | Yes | [20,21] |
EGF/r3 | IgG2a | EGF | Yes | Yes | NA | [22] |
CNT05825 | human anti-interleukin-13 | IL-13 | NA | Yes | Yes | [23] |
Pembrolizumab | Human IgG4 | PD-1 | Yes | NA | Yes | [24,25,26] |
Infliximab | Chimeric IgG1 | TNFα | Yes | Yes | NA | [27,28] |
Avelumab | Human IgG1 | PD-1 | Yes | NA | Yes | [29] |
Adalimumab | Human IgG1 | TNFα | Yes | Yes | Yes | [30,31,32] |
Dupilumab | Human IgG4 | IL-4 | NA | Yes | Yes | [33] |
Erlizumab | Human IgG1 | VEGF | Yes | Yes | Yes | [34] |
Rituximab | Chimeric IgG1 | CD20 | Yes | Yes | NA | [34] |
Fold Error | Exponents | mPBPK | Lymph Flow | LBF | |||
---|---|---|---|---|---|---|---|
0.90 | 0.85 | 0.80 | 0.75 | ||||
Mouse (n = 23) | |||||||
0.5–2 fold | 14 (61%) | 18 (78%) | 11 (48%) | 8 (35%) | 17(74%) | 17 (74%) | 16 (70%) |
0.5–1.5 fold | 12 (52%) | 15 (65%) | 11 (48%) | 8 (35%) | 15 (65%) | 14 (61%) | 14 (61%) |
>2 fold | 8 (35%) | 1 (4%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (4%) | 0 (0%) |
<0.5 fold | 1 (4%) | 4 (17%) | 12 (52%) | 15 (65%) | 6 (26%) | 5 (22%) | 7 (30%) |
AFE | 1.23 | 0.82 | 0.54 | 0.36 | 0.74 | 0.80 | 0.71 |
Rat (n = 21) | |||||||
0.5–2 fold | 19 (90%) | 20 (95%) | 18 (86%) | 13 (62%) | 19 (90%) | 19 (90%) | 20 (95%) |
0.5–1.5 fold | 13 (62%) | 18 (86%) | 12 (57%) | 12 (57%) | 17 (81%) | 18 (86%) | 19 (90%) |
>2 fold | 2 (10%) | 1 (5%) | 1 (5%) | 1 (5%) | 2(10%) | 1 (5%) | 1 (5%) |
<0.5 fold | 0 (0%) | 0 (0%) | 2 (10%) | 7 (33%) | 0 (0%) | 1 (5%) | 0 (0%) |
AFE | 1.46 | 1.10 | 0.83 | 0.63 | 1.19 | 0.86 | 1.06 |
Monkey (n = 25) | |||||||
0.5–2 fold | 23 (92%) | 23 (92%) | 23 (92%) | 23 (92%) | 23 (92%) | 23 (92%) | 23 (92%) |
0.5–1.5 fold | 17 (68%) | 23 (92%) | 23 (92%) | 23 (92%) | 23 (92%) | 23 (92%) | 23 (92%) |
>2 fold | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (%) | 0 (%) | 0 (%) |
<0.5 fold | 2 (8%) | 2 (8%) | 2 (8%) | 2 (8%) | 2 (8%) | 2 (8%) | 2 (8%) |
AFE | 1.03 | 0.89 | 0.76 | 0.66 | 0.70 | 0.70 | 0.70 |
Mabs | Human Observed Dose (mg/kg) | Predicted Human Dose (mg/kg) | ||||
---|---|---|---|---|---|---|
Exponent 1.0 | Exponent 0.85 | HED (Weight)0.33 | HED (CL)0.33 | HED (CL)0.25 | ||
Mouse (n = 13) | ||||||
CTLA4Ig | 1–20 | 8.4 | 3 | 1.9 | 2.9 | 5 |
MNRP1685A | 2–40 | 2.9 | 1 | 0.7 | 1 | 1.8 |
Cetuximab | 92–920 | 0.3 | 0.1 | 0.1 | 0.1 | 0.2 |
EGF/r3 | 5.7 | 4.7 | 1.7 | 1.1 | 1.6 | 2.8 |
Bevacizumab | 0.1–10 | 2.8 | 1 | 0.6 | 0.9 | 1.6 |
onartuzumab | 4 to 30 | 2.9 | 1 | 0.7 | 1 | 1.8 |
Canakinumab | 0.3–10 | 2.9 | 1 | 0.7 | 1 | 1.8 |
Anti-CD 40 | 0.5–8 | 2.9 | 1 | 0.7 | 1 | 1.8 |
RSHZ19 | 0.025–10 | 0.3 | 0.1 | 0.1 | 0.1 | 0.2 |
Pembrolizumab | 1–10 | 2.9 | 1 | 0.7 | 1 | 1.8 |
Infliximab | 3–20 | 2.9 | 1 | 0.7 | 1 | 1.8 |
Avelumab | 1–20 | 2.9 | 1 | 0.7 | 1 | 1.8 |
Adalimumab | 0.25–10 | 1.5 | 0.5 | 0.3 | 0.5 | 0.9 |
Rat (n = 12) | ||||||
CTLA4Ig | 1–20 | 4.3 | 2.1 | 1.6 | 2.1 | 3 |
MNRP1685A | 2–40 | 4.2 | 2.1 | 1.6 | 2.1 | 3 |
CD4-IgG | 0.03–1.0 | 0.1 | 0.03 | 0.02 | 0.03 | 0.04 |
Lenercept | 0.014–1.43 | 2.1 | 1 | 0.8 | 1 | 1.5 |
CNTO 5285 | 0.1–10 | 4.2 | 2.1 | 1.6 | 2.1 | 3 |
EGF/r3 | 5.7 | 3.4 | 1.7 | 1.2 | 1.6 | 2.4 |
Bevacizumab | 0.1–10 | 4.4 | 2.1 | 1.6 | 2 | 3 |
Anti-CD 40 | 0.5–8 | 4.3 | 2.1 | 1.6 | 2.1 | 3 |
RSHZ19 | 0.025–10 | 0.4 | 0.2 | 0.2 | 0.2 | 0.3 |
Infliximab | 3–20 | 4.3 | 2.1 | 1.6 | 2.1 | 3 |
Adalimumab | 0.25–10 | 0.4 | 0.2 | 0.2 | 0.2 | 0.3 |
Dupilumab | 1–12 | 2.1 | 1 | 0.8 | 1 | 1.5 |
Monkey (n = 15) | ||||||
CTLA4Ig | 1–20 | 5.6 | 3.8 | 3.2 | 3.8 | 4.6 |
MNRP1685A | 2–40 | 9.6 | 6.5 | 5.6 | 6.5 | 7.9 |
CD4-IgG | 0.03–1.0 | 0.1 | 0.1 | 0.05 | 0.1 | 0.1 |
Lenercept | 0.014–1.43 | 3.2 | 2.2 | 1.9 | 2.2 | 2.6 |
CNTO 5285 | 0.1–10 | 6.4 | 4.4 | 3.7 | 4.3 | 5.3 |
Cetuximab | 92–920 | 4.8 | 3.3 | 2.8 | 3.2 | 4 |
Bevacizumab | 0.1–10 | 6.4 | 4.4 | 3.7 | 4.3 | 5.3 |
onartuzumab | 4–30 | 6.4 | 4.4 | 3.7 | 4.3 | 5.3 |
Canakinumab | 0.3–10 | 3.2 | 2.2 | 1.9 | 2.2 | 2.6 |
Anti-CD 40 | 0.5–8 | 6.4 | 4.4 | 3.7 | 4.3 | 5.3 |
RSHZ19 | 0.025–10 | 0.6 | 0.4 | 0.4 | 0.4 | 0.5 |
Pembrolizumab | 1–10 | 1.9 | 1.3 | 1.1 | 1.3 | 1.6 |
Avelumab | 1–20 | 2.6 | 1.7 | 1.5 | 1.7 | 2.1 |
Adalimumab | 0.25–10 | 3.2 | 2.2 | 1.9 | 2.2 | 2.6 |
Dupilumab | 1–12 | 0.6 | 0.4 | 0.4 | 0.4 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, I. A Single Animal Species-Based Prediction of Human Clearance and First-in-Human Dose of Monoclonal Antibodies: Beyond Monkey. Antibodies 2021, 10, 35. https://doi.org/10.3390/antib10030035
Mahmood I. A Single Animal Species-Based Prediction of Human Clearance and First-in-Human Dose of Monoclonal Antibodies: Beyond Monkey. Antibodies. 2021; 10(3):35. https://doi.org/10.3390/antib10030035
Chicago/Turabian StyleMahmood, Iftekhar. 2021. "A Single Animal Species-Based Prediction of Human Clearance and First-in-Human Dose of Monoclonal Antibodies: Beyond Monkey" Antibodies 10, no. 3: 35. https://doi.org/10.3390/antib10030035
APA StyleMahmood, I. (2021). A Single Animal Species-Based Prediction of Human Clearance and First-in-Human Dose of Monoclonal Antibodies: Beyond Monkey. Antibodies, 10(3), 35. https://doi.org/10.3390/antib10030035