From Anti-SARS-CoV-2 Immune Response to the Cytokine Storm via Molecular Mimicry
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Description of the Peptide Sharing between SARS-CoV-2 Spike Gp and Anti-Inflammatory Human Proteins
3.1.1. Adenosine Receptor A2b (AA2BR)
- is expressed in all tested organs, including spleen, lung, colon, and kidney. Importantly, in all of these organs, the primary site of expression is the vasculature [27];
- dampens inflammation particularly during tissue hypoxia [32];
- protects the colonic epithelial barrier during acute colitis [33];
- mediates different types of cardioprotection [34];
- when activated in the pre-adipocyte, inhibits adipogenesis [35];
- enhances the abundance of T regulatory cells (Tregs), a cell type critical in constraining inflammation [36,37]. Tregs constrain inflammation via multiple mechanisms depending on the tissue and nature of injury/inflammation (i.e., production of the anti-inflammatory cytokines IL-10, IL-35, and transforming growth factor β) [38,39].
3.1.2. Adiponectin
3.1.3. C163A Protein
3.1.4. ACs, CREB1, IL-10, IL27B, MY18A, and NLRC
- ACs 4, 7, and 9, the alterations of which lead to cAMP decrease and consequent high levels of the proinflammatory TNF-α, IL-17, and IFN-γ [26];
- CREB1, a key transcription factor that, by inhibiting NF-κB activation, induces macrophage survival, and promotes the proliferation, survival, and regulation of T and B lymphocytes [70];
- IL-10, a major immune regulatory cytokine with profound anti-inflammatory functions [71];
- IL27B (aka EBI), which forms a heterodimer with IL12A known as IL-35 and a heterodimer with IL-27A known as IL-27 [72]. IL-35 and IL-27 are anti-inflammatory ILs. IL-35 promotes the proliferation and activation of Tregs and suppresses the function of T helper 17 cells and other inflammatory cells to inhibit immune responses [73], while IL-27 regulates innate immunity and controls microbial growth [74];
- MY18A, which is predominantly expressed in alveolar macrophages and plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses [75];
- NLRC3 protein, which inhibits inflammation by disrupting NALP3 inflammasome assembly [76].
3.2. Immunogenic Potential and Immunologic Imprinting
3.2.1. Immunogenic Potential of the Peptide Sharing
3.2.2. Immunologic Imprinting
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Signore, A. About inflammation and infection. EJNMMI Res. 2013, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Gustine, J.N.; Jones, D. Immunopathology of hyperinflammation in COVID-19. Am. J. Pathol. 2021, 191, 4–17. [Google Scholar] [CrossRef]
- Vabret, N.; Britton, G.J.; Gruber, C.; Hegde, S.; Kim, J.; Kuksin, M.; Levantovsky, R.; Malle, L.; Moreira, A.; Park, M.D.; et al. Immunology of COVID-19: Current State of the Science. Immunity 2020, 52, 910–941. [Google Scholar] [CrossRef]
- García, L.F. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front. Immunol. 2020, 11, 1441. [Google Scholar] [CrossRef] [PubMed]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.H.; de Wit, K.; Levy, J.H.; Weitz, J.I.; Vaezzadeh, N.; Liaw, P.C.; Fox-Robichaud, A.; Soliman, K.; Kim, P.Y. Hypercoagulability and COVID-19 associated hypoxemic respiratory failure: Mechanisms and emerging management paradigms. J. Trauma Acute Care Surg. 2020, 89, e177–e181. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.C. COVID-19-associated vasculitis and vasculopathy. J. Thromb. Thrombolysis 2020, 50, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Willers, J.; Lucchese, A.; Kanduc, D.; Ferrone, S. Molecular mimicry of phage displayed peptides mimicking GD3 ganglioside. Peptides 1999, 20, 1021–1026. [Google Scholar] [CrossRef]
- Kanduc, D. Peptide cross-reactivity: The original sin of vaccines. Front. Biosci. 2012, 4, 1393–1401. [Google Scholar] [CrossRef] [Green Version]
- Adiguzel, Y. Molecular mimicry between SARS-CoV-2 and human proteins. Autoimmun. Rev. 2021, 20, 102791. [Google Scholar] [CrossRef]
- Angileri, F.; Legare, S.; Gammazza, A.M.; de Macario, E.C.; Macario, A.J.; Cappello, F. Molecular mimicry may explain multi-organ damage in COVID-19. Autoimmun. Rev. 2020, 19, 102591. [Google Scholar] [CrossRef]
- Kanduc, D.; Shoenfeld, Y. On the molecular determinants of the SARS-CoV-2 attack. Clin. Immunol. 2020, 215, 108426. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.S.; Tao, X.; Algaissi, A.; Garron, T.; Narayanan, K.; Peng, B.H.; Couch, R.B.; Tseng, C.T. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum. Vaccin. Immunother. 2016, 12, 2351–2356. [Google Scholar] [CrossRef]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef] [PubMed]
- Fujinami, R.S.; von Herrath, M.G.; Christen, U.; Whitton, J.L. Molecular mimicry, bystander activation, or viral persistence: Infections and autoimmune disease. Clin. Microbiol. Rev. 2006, 19, 80–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappello, F. Is COVID-19 a proteiform disease inducing also molecular mimicry phenomena? Cell Stress Chaperones 2020, 25, 381–382. [Google Scholar] [CrossRef] [PubMed]
- Kanduc, D. Pentapeptides as minimal functional units in cell biology and immunology. Curr. Protein Pept. Sci. 2013, 14, 111–120. [Google Scholar] [CrossRef] [PubMed]
- UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. Available online: http://www.uniprot.org (accessed on 1 June 2021). [CrossRef] [PubMed] [Green Version]
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019, 47, D339–D343. Available online: www.iedb.org (accessed on 1 June 2021). [CrossRef] [PubMed] [Green Version]
- Petersen, E.; Koopmans, M.; Go, U.; Hamer, D.H.; Petrosillo, N.; Castelli, F.; Storgaard, M.; Al Khalili, S.; Simonsen, L. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. 2020, 20, e238–e244. [Google Scholar] [CrossRef]
- Choudhry, H.; Bakhrebah, M.A.; Abdulaal, W.H.; Zamzami, M.A.; Baothman, O.A.; Hassan, M.A.; Zeyadi, M.; Helmi, N.; Alzahrani, F.; Ali, A.; et al. Middle East respiratory syndrome: Pathogenesis and therapeutic developments. Future Virol. 2019, 14, 237–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016, 24, 490–502. [Google Scholar] [CrossRef] [Green Version]
- Antonioli, L.; Fornai, M.; Blandizzi, C.; Haskó, G. Adenosine Regulation of the Immune System. In The Adenosine Receptors; Borea, P.A., Varani, K., Gessi, S., Merighi, S., Vincenzi, F., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2018; pp. 499–514. ISBN 978-3-319-90807-6. [Google Scholar]
- Krauss, G. Biochemistry of Signal Transduction and Regulation; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; ISBN 9783527333660. [Google Scholar]
- Serezani, C.H.; Ballinger, M.N.; Aronoff, D.M.; Peters-Golden, M. Cyclic AMP: Master regulator of innate immune cell function. Am. J. Respir. Cell. Mol. Biol. 2008, 39, 127–132. [Google Scholar] [CrossRef]
- Raker, V.K.; Becker, C.; Steinbrink, K. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases. Front. Immunol. 2016, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Haskó, G.; Csóka, B.; Németh, Z.H.; Vizi, E.S.; Pacher, P. A(2B) adenosine receptors in immunity and inflammation. Trends Immunol. 2009, 30, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Cagnina, R.E.; Ramos, S.I.; Marshall, M.A.; Wang, G.; Frazier, C.R.; Linden, J. Adenosine A2B receptors are highly expressed on murine type II alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2009, 297, L467–L474. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gil, J. Structure of pulmonary surfactant membranes and films: The role of proteins and lipid-protein interactions. Biochim. Biophys. Acta 2008, 1778, 1676–1695. [Google Scholar] [CrossRef] [Green Version]
- Karmouty-Quintana, H.; Xia, Y.; Blackburn, M.R. Adenosine signaling during acute and chronic disease states. J. Mol. Med. 2013, 91, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoegl, S.; Brodsky, K.S.; Blackburn, M.R.; Karmouty-Quintana, H.; Zwissler, B.; Eltzschig, H.K. Alveolar Epithelial A2B Adenosine Receptors in Pulmonary Protection during Acute Lung Injury. J. Immunol. 2015, 195, 1815–1824. [Google Scholar] [CrossRef] [Green Version]
- Aherne, C.M.; Kewley, E.M.; Eltzschig, H.K. The resurgence of A2B adenosine receptor signaling. Biochim. Biophys. Acta 2011, 1808, 1329–1339. [Google Scholar] [CrossRef] [Green Version]
- Aherne, C.M.; Saeedi, B.; Collins, C.B.; Masterson, J.C.; McNamee, E.N.; Perrenoud, L.; Rapp, C.R.; Curtis, V.F.; Bayless, A.; Fletcher, A.; et al. Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis. Mucosal Immunol. 2015, 8, 1324–1338. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.W.; Koeppen, M.; Bonney, S.; Gobel, M.; Thayer, M.; Harter, P.N.; Ravid, K.; Eltzschig, H.K.; Mittelbronn, M.; Walker, L.; et al. Differential Tissue-Specific Function of Adora2b in Cardioprotection. J. Immunol. 2015, 195, 1732–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharibi, B.; Abraham, A.A.; Ham, J.; Evans, B.A.J. Contrasting effects of A1 and A2b adenosine receptors on adipogenesis. Int. J. Obes. 2012, 36, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Ehrentraut, H.; Westrich, J.A.; Eltzschig, H.K.; Clambey, E.T. Adora2b adenosine receptor engagement enhances regulatory T cell abundance during endotoxin-induced pulmonary inflammation. PLoS ONE 2012, 7, e32416. [Google Scholar]
- Schingnitz, U.; Hartmann, K.; Macmanus, C.F.; Eckle, T.; Zug, S.; Colgan, S.P.; Eltzschig, H.K. Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury. J. Immunol. 2010, 184, 5271–5279. [Google Scholar] [CrossRef] [Green Version]
- Rubtsov, Y.P.; Rasmussen, J.P.; Chi, E.Y.; Fontenot, J.; Castelli, L.; Ye, X.; Treuting, P.; Siewe, L.; Roers, A.; Henderson, W.R., Jr.; et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 2008, 28, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Vignali, D.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol. 2008, 8, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Liu, M. Adiponectin: A versatile player of innate immunity. J. Mol. Cell. Biol. 2016, 8, 120–128. [Google Scholar] [CrossRef]
- Ouchi, N.; Kihara, S.; Arita, Y.; Okamoto, Y.; Maeda, K.; Kuriyama, H.; Hotta, K.; Nishida, M.; Takahashi, M.; Muraguchi, M.; et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000, 102, 1296–1301. [Google Scholar] [CrossRef]
- Ouchi, N.; Kihara, S.; Arita, Y.; Maeda, K.; Kuriyama, H.; Okamoto, Y.; Hotta, K.; Nishida, M.; Takahashi, M.; Nakamura, T.; et al. Novel modulator for endothelial adhesion molecules: Adipocyte-derived plasma protein, adiponectin. Circulation 1999, 100, 2473–2476. [Google Scholar] [CrossRef] [Green Version]
- Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993, 362, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Read, M.A.; Neish, A.S.; Whitley, M.Z.; Thanos, D.; Maniatis, T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kB and cytokine-inducible enhancers. FASEB J. 1995, 9, 899–909. [Google Scholar] [CrossRef] [Green Version]
- Park, P.H.; Huang, H.; McMullen, M.R.; Bryan, K.; Nagy, L.E. Activation of cyclic-AMP response element binding protein contributes to adiponectin-stimulated interleukin-10 expression in RAW 264.7 macrophages. J. Leukoc. Biol. 2008, 83, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Kobashi, C.; Urakaze, M.; Kishida, M.; Kibayashi, E.; Kobayashi, H.; Kihara, S.; Funahashi, T.; Takata, M.; Temaru, R.; Sato, A.; et al. Adiponectin inhibits endothelial synthesis of interleukin-8. Circ. Res. 2005, 97, 1245–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asfaha, S.; Dubeykovskiy, A.N.; Tomita, H.; Yang, X.; Stokes, S.; Shibata, W.; Friedman, R.A.; Ariyama, H.; Dubeykovskaya, Z.A.; Muthupalani, S.; et al. Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis. Gastroenterology 2013, 144, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Liu, Y.; Yang, W.; Yuan, J.; Mo, Z. Adiponectin inhibits NLRP3 inflammasome by modulating the AMPK-ROS pathway. Int. J. Clin. Exp. Pathol. 2018, 11, 3338–3347. [Google Scholar]
- Kim, M.J.; Kim, E.H.; Pun, N.T.; Chang, J.H.; Kim, J.A.; Jeong, J.H.; Choi, D.Y.; Kim, S.H.; Park, P.H. Globular Adiponectin Inhibits Lipopolysaccharide-Primed Inflammasomes Activation in Macrophages via Autophagy Induction: The Critical Role of AMPK Signaling. Int. J. Mol. Sci. 2017, 18, 1275. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xia, L.; Zhang, F.; Zhu, D.; Xin, C.; Wang, H.; Zhang, F.; Guo, X.; Lee, Y.; Zhang, L.; et al. A novel mechanism of diabetic vascular endothelial dysfunction: Hypoadiponectinemia-induced NLRP3 inflammasome activation. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1556–1567. [Google Scholar] [CrossRef]
- Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.; Hotta, K.; Shimomura, I.; Nakamura, T.; Miyaoka, K.; et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 1999, 425, 560–564. [Google Scholar] [CrossRef]
- Han, S.H.; Sakuma, I.; Shin, E.K.; Koh, K.K. Antiatherosclerotic and anti-insulin resistance effects of adiponectin: Basic and clinical studies. Prog. Cardiovasc. Dis. 2009, 52, 126–140. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Levine, Y.A.; Gunasekaran, M.K.; Wang, Y.; Addorisio, M.; Zhu, S.; Li, W.; Li, J.; de Kleijn, D.P.; et al. Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight 2016, 1, e85375. [Google Scholar] [CrossRef] [Green Version]
- Bratosin, D.; Mazurier, J.; Tissier, J.P.; Estaquier, J.; Huart, J.J.; Ameisen, J.C.; Aminoff, D.; Montreuil, J. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie 1998, 80, 173–195. [Google Scholar] [CrossRef]
- Thomsen, J.H.; Etzerodt, A.; Svendsen, P.; Moestrup, S.K. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxid. Med. Cell. Longev. 2013, 2013, 523652. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Hua, Y.; Keep, R.F.; Nakamura, T.; Hoff, J.T.; Xi, G. Iron and iron handling proteins in the brain after intracerebral hemorrhage. Stroke 2003, 34, 2964–2969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronowski, J.; Zhao, X. Molecular pathophysiology of cerebral hemorrhage: Secondary brain injury. Stroke 2011, 42, 1781–1786. [Google Scholar] [CrossRef] [PubMed]
- Maras, J.S.; Das, S.; Sharma, S.; Sukriti, S.; Kumar, J.; Vyas, A.K.; Kumar, D.; Bhat, A.; Yadav, G.; Choudhary, M.C.; et al. Iron-Overload triggers ADAM-17 mediated inflammation in Severe Alcoholic Hepatitis. Sci. Rep. 2018, 8, 10264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.K.; Shin, J.H.; Gwag, B.J.; Choi, E.J. Iron accumulation promotes TACE-mediated TNF-alpha secretion and neurodegeneration in a mouse model of ALS. Neurobiol. Dis. 2015, 80, 63–69. [Google Scholar] [CrossRef]
- Menghini, R.; Fiorentino, L.; Casagrande, V.; Lauro, R.; Federici, M. The role of ADAM17 in metabolic inflammation. Atherosclerosis 2013, 228, 12–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etzerodt, A.; Moestrup, S.K. CD163 and inflammation: Biological, diagnostic, and therapeutic aspects. Antioxid. Redox. Signal. 2013, 18, 2352–2363. [Google Scholar] [CrossRef] [Green Version]
- Møller, H.J.; Peterslund, N.A.; Graversen, J.H.; Moestrup, S.K. Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma. Blood 2002, 99, 378–380. [Google Scholar] [CrossRef]
- Møller, H.J.; Nielsen, M.J.; Maniecki, M.B.; Madsen, M.; Moestrup, S.K. Soluble macrophage-derived CD163: A homogenous ectodomain protein with a dissociable haptoglobin-hemoglobin binding. Immunobiology 2010, 215, 406–412. [Google Scholar] [CrossRef]
- Moreira, A.C.; Mesquita, G.; Gomes, M.S. Ferritin: An inflammatory player keeping iron at the core of pathogen-host interactions. Microorganisms 2020, 8, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parameswaran, N.; Patial, S. Tumor necrosis factor-α signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 2010, 20, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, W.S.; Vaisar, T.; Tang, J.; Wilson, C.L.; Raines, E.W. Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype. Circ. Res. 2013, 113, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Wang, Y.; Wang, J.; Zhang, J.; Wang, Z. Soluble ST2 and CD163 as Potential Biomarkers to Differentiate Primary Hemophagocytic Lymphohistiocytosis from Macrophage Activation Syndrome. Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019008. [Google Scholar] [CrossRef] [Green Version]
- Lerkvaleekul, B.; Vilaiyuk, S. Macrophage activation syndrome: Early diagnosis is key. Open Access Rheumatol. 2018, 10, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Karakike, E.; Giamarellos-Bourboulis, E.J. Macrophage Activation-Like Syndrome: A distinct entity leading to early death in sepsis. Front. Immunol. 2019, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Wen, A.Y.; Sakamoto, K.M.; Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol. 2010, 185, 6413–6419. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef] [Green Version]
- Vignali, D.A.; Kuchroo, V.K. IL-12 family cytokines: Immunological playmakers. Nat. Immunol. 2012, 13, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Lei, L. Interleukin-35 regulates the balance of Th17 and Treg responses during the pathogenesis of connective tissue diseases. Int. J. Rheum. Dis. 2020, 24, 21–27. [Google Scholar] [CrossRef]
- Povroznik, J.M.; Robinson, C.M. IL-27 regulation of innate immunity and control of microbial growth. Future Sci. 2020, 6, FSO588. [Google Scholar] [CrossRef]
- Yang, L.; Carrillo, M.; Wu, Y.M.; DiAngelo, S.L.; Silveyra, P.; Umstead, T.M.; Halstead, E.S.; Davies, M.L.; Hu, S.; Floros, J.; et al. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS ONE 2015, 10, e0126576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eren, E.; Berber, M.; Özören, N. NLRC3 protein inhibits inflammation by disrupting NALP3 inflammasome assembly via competition with the adaptor protein ASC for pro-caspase-1 binding. J. Biol. Chem. 2017, 292, 12691–12701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchese, G.; Kanduc, D. The Guillain–Barrè peptide signatures: From Zika virus to Campylobacter, and beyond. Virus Adapt. Treat. 2017, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lucchese, G.; Kanduc, D. Minimal immune determinants connect Zika virus, Human Cytomegalovirus, and Toxoplasma gondii to microcephaly-related human proteins. Am. J. Reprod. Immunol. 2017, 77, e12608. [Google Scholar] [CrossRef] [Green Version]
- Kanduc, D.; Shoenfeld, Y. Inter-Pathogen Peptide Sharing and the Original Antigenic Sin: Solving a Paradox. Open Immunol. J. 2018, 8, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Kanduc, D. Anti-SARS-CoV-2 Immune Response and Sudden Death: Titin as a Link. Adv. Stud. Biol. 2021, 13, 37–44. [Google Scholar] [CrossRef]
- Kanduc, D. Thromboses and Haemostasis Disorders Associated with Coronavirus Disease 2019 (COVID 19): The Possible Causal Role of Cross-Reactivity and Immunological Imprinting. Glob. Med. Genet. 2021. [Google Scholar] [CrossRef]
- Francis, T.; Salk, J.E.; Quilligan, J.J. Experience with vaccination against influenza in the spring of 1947: A preliminary report. Am. J. Public Health Nations Health 1947, 37, 1013–1016. [Google Scholar] [CrossRef] [Green Version]
- Davenport, F.M.; Hennessy, A.V.; Francis, T., Jr. Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J. Exp. Med. 1953, 98, 641–656. [Google Scholar] [CrossRef]
- Kanduc, D.; Stufano, A.; Lucchese, G.; Kusalik, A. Massive peptide sharing between viral and human proteomes. Peptides 2008, 29, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.; Lucchese, G.; Stufano, A.; Bickis, M.; Kusalik, A.; Kanduc, D. No human protein is exempt from bacterial motifs, not even one. Self Nonself 2010, 1, 328–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanduc, D. The comparative biochemistry of viruses and humans: An evolutionary path towards autoimmunity. Biol. Chem. 2019, 400, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Li, B.R.; Ning, B.T. The Comparative Immunological Characteristics of SARS-CoV, MERS-CoV, and SARS-CoV-2 Coronavirus Infections. Front. Immunol. 2020, 11, 2033. [Google Scholar] [CrossRef] [PubMed]
- Theron, M.; Huang, K.J.; Chen, Y.W.; Liu, C.C.; Lei, H.Y. A probable role for IFN-gamma in the development of a lung immunopathology in SARS. Cytokine 2005, 32, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Ioi, H.; Kawashima, H.; Nishimata, S.; Watanabe, Y.; Yamanaka, G.; Kashiwagi, Y.; Yamada, N.; Tsuyuki, K.; Takekuma, K.; Hoshika, A.; et al. A case of Reye syndrome with rotavirus infection accompanied with high cytokines. J. Infect. 2006, 52, e124–e128. [Google Scholar] [CrossRef]
- Satarker, S.; Tom, A.A.; Shaji, R.A.; Alosious, A.; Luvis, M.; Nampoothiri, M. JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgrad. Med. 2021, 133, 489–507. [Google Scholar] [CrossRef]
- Torabi-Rahvar, M.; Rezaei, N. Storm at the Time of Corona: A Glimpse at the Current Understanding and Therapeutic Opportunities of the SARS-CoV-2 Cytokine Storm. Curr. Pharm. Des. 2021, 27, 1549–1552. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, D.; Hou, J.; Li, H.; Cao, D.; Guo, M.; Ling, Y.; Gao, M.; Zhou, Y.; Wan, Y.; et al. An inter-correlated cytokine network identified at the center of cytokine storm predicted COVID-19 prognosis. Cytokine 2020, 138, 155365. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Meng, Z. Immunomodulation for Severe COVID-19 Pneumonia: The State of the Art. Front. Immunol. 2020, 11, 577442. [Google Scholar] [CrossRef] [PubMed]
- Kanduc, D. The role of proteomics in defining autoimmunity. Expert Rev. Proteom. 2021, 18, 177–184. [Google Scholar] [CrossRef] [PubMed]
Spike Gp from | Number of Shared Pentapeptides | Pentapeptide aa Sequence |
---|---|---|
SARS-CoV-2 | 59 | AAAYY, AEIRA, AGAAA, AISSV, ALLAG, ASFST, AVRDP, CGDST, EKGIY, FLVLL, FNGLT, FSALE, FSQIL, GIAVE, GICAS, GTITS, GVLTE, IRAAE, IYQTS, KLQDV, KNLRE, KQLSS, KVEAE, LEILD, LGFIA, LIRAA, LLPLV, LPPLL, LVLLP, LVRDL, NATRF, NDPFL, NIIRG, NNTVY, NTFVS, PDKVF, PFFSN, PIGAG, QDSLS, QLSSN, QQFGR, QSIIA, RAAEI, SKVGG, SSNFG, SSVLH, TFVSG, TGIAV, TLADA, TLEIL, TLLAL, TMSLG, TNGVG, TSPDV, VAVLY, VFLHV, VFLVL, VLPPL, YSVLY |
SARS-CoV | 30 | AEIRA, AISSV, CGDST, FNGLT, FSQIL, GICAS, IRAAE, IYQTS, KLQDV, KQLSS, KVEAE, LGFIA, LIRAA, LPPLL, NNTVY, NTFVS, PIGAG, QLSSN, QQFGR, RAAEI, SSNFG, TFVSG, TGIAV, TLADA, TMSLG, TSPDV, VAVLY, VFLHV, VLPPL, YSVLY |
MERS-CoV | − | − |
hCoV-229E | − | − |
hCoV-NL63 | − | − |
Peptides a | Anti-Inflammatory Human Proteins b |
---|---|
VLPPLL | AA2BR. Adenosine receptor A2b. |
ASFST, ALLAG | ADCY4. Adenylate cyclase type 4 |
LGFIA | ADCY7. Adenylate cyclase type 7 |
KQLSSN | ADCY9. Adenylate cyclase type 9 |
VLLPL | ADIPO. Adiponectin |
SSNFG | C163A. Scavenger receptor cysteine-rich type 1 protein M130 |
FLVLLP | CALRL. Calcitonin gene-related peptide type 1 receptor |
IYQTS | CREB1. Cyclic AMP-responsive element-binding protein 1 |
LVLLPL | CRFR1. Corticotropin-releasing factor receptor 1 |
IYQTS | DRD5. D(1B) dopamine receptor |
VFLVL, TNGVG | FURIN. Furin |
CGDST, TFVSG | GBB2. Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit β-2 |
TFVSG | GBB4. Guanine nucleotide-binding protein subunit β-4 |
NDPFL | GBGT2. Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit γ-T2 |
VFLHV | GLHA. Glycoprotein hormones α chain |
QDSLS | GLP1R. Glucagon-like peptide 1 receptor |
QSIIA | GNAI1. Guanine nucleotide-binding protein G(i) subunit α-1 |
KNLRE | GNAI2. Guanine nucleotide-binding protein G(i) subunit α-2 |
QSIIA | GNAI3. Guanine nucleotide-binding protein G(i) subunit α |
NTFVSG | GNB5. Guanine nucleotide-binding protein subunit β-5 |
YSVLY, GICAS | GP176. G-protein coupled receptor 176 |
ALLAG | GPR25. Probable G-protein coupled receptor 25 |
LLPLV | GPR83. Probable G-protein coupled receptor 83 |
TLLAL | GPR84. G-protein coupled receptor 84 |
EKGIY | IL10. Interleukin-10 |
TMSLG | IL27B. Interleukin-27 subunit β (EBI) |
VLLPL, KVEAE | ISK5. Serine protease inhibitor Kazal-type 5 |
QLSSN | KS6A5. Ribosomal protein S6 kinase α-5 |
VLPPL | LSHB. Lutropin subunit β |
PFFSN | MC3R. Melanocortin receptor 3 |
GIAVE | MC5R. Melanocortin receptor 5 |
FNGLT | MXRA5. Matrix-remodeling-associated protein 5 |
SSVLH, NATRF, FSQIL, LIRAAEI | MY18A. Unconventional myosin-XVIIIa |
FSALE | MYH9. Myosin-9 |
LVRDL | NFKB1. Nuclear factor NF-kappa-B p105 subunit |
TLEILD, NIIRG, SKVGG, AAAYY, ALLAG | NLRC3. NLR family CARD domain-containing protein 3 |
LPPLL | NR1H2. Oxysterol receptor LXR-β |
GVLTE | NR1H4. Bile acid receptor |
PIGAG | NR5A2. Nuclear receptor subfamily 5 group A member 2 |
VAVLY | PACR. Pituitary adenylate cyclase-activating polypeptide type I receptor |
YSVLY | PD2R. Prostaglandin D2 receptor |
AISSV | PE2R2. Prostaglandin E2 receptor EP2 subtype |
TLADA | PTH2R. Parathyroid hormone 2 receptor |
AEIRA | PTHR. Parathyroid hormone-related protein |
KLQDV | PTHY. Parathyroid hormone |
AVRDP | RAMP1. Receptor activity-modifying protein 1 |
NNTVY | RORA. Nuclear receptor ROR-α |
GTITS | RXFP1. Relaxin receptor 1 |
PDKVF | RXFP2. Relaxin receptor 2 |
QQFGR, TGIAV | SBNO2. Protein strawberry notch homolog 2 |
VAVLY | SCTR. Secretin receptor |
AGAAA | SECR. Secretin |
VAVLY, TSPDV | VIPR2. Vasoactive intestinal polypeptide receptor 2 |
IEDB ID 1 | Epitope Sequence 2 | IEDB ID 1 | Epitope Sequence 2 |
---|---|---|---|
1069137 | aqytsALLAGTITSg | 1309574 | rSSVLHstqdlflPFFSNvt |
1069290 | ctlksftvEKGIYqt | 1309578 | sfiedllfnkvTLADAgfik |
1069291 | cvadYSVLYnsasfs | 1309585 | sssgwtAGAAAYYvgylqpr |
1069378 | ecdiPIGAGICASyq | 1309589 | sygfqpTNGVGyqpyrvvvl |
1071585 | nLVRDLpqgFSALEp | 1309600 | tyvtqqLIRAAEIRAsanla |
1072807 | skhtpinLVRDLpqg | 1309603 | vknkcvnfnFNGLTgtgvlt |
1073281 | tesnkkflpfQQFGRdia | 1309604 | vlndilsrldKVEAEvqidr |
1074838 | AEIRAsanlaatk | 1309606 | vTLADAgfikqygdclgdia |
1074847 | aphgvVFLHVtyv | 1309616 | yeqyikwpwyiwLGFIAgli |
1074888 | flPFFSNvtwfhai | 1309621 | yskhtpinLVRDLpqgfsal |
1075041 | rsvasQSIIAytmsl | 1310281 | aphgvVFLHVtyvpa |
1075079 | tpinLVRDL | 1310282 | aqalntlvKQLSSNf |
1075094 | VLPPLLtdemiaqyt | 1310303 | caqkFNGLTVLPPLL |
1075117 | wtAGAAAYYvgy | 1310415 | FNGLTVLPPLLtdem |
1075125 | YSVLYnsASFSTfk | 1310434 | gAISSVlndilsrld |
1087359 | iPIGAGICASy | 1310444 | givNNTVYdplqpel |
1087679 | pikdfggfnFSQILpdps | 1310445 | gIYQTSnfrvqptes |
1087680 | pinLVRDLpqgFSALEpl | 1310448 | gKLQDVvnqnaqaln |
1125063 | gltVLPPLL | 1310487 | iginitrfqTLLALh |
1309123 | khtpinLVRDLpqgf | 1310513 | itrfqTLLALhrsyl |
1309132 | nFSQILpdpskpskr | 1310551 | krisncvadYSVLYn |
1309140 | tdemiaqytsALLAG | 1310593 | llfnkvTLADAgfik |
1309418 | AEIRAsanlaatkmsecvlg | 1310611 | LPPLLtdemiaqyts |
1309444 | dAVRDPqTLEILDitpcsfg | 1310612 | lpqgFSALEplvdlp |
1309447 | dfggfnFSQILpdpskpskr | 1310787 | sASFSTfkcygvspt |
1309450 | dplsetkctlksftvEKGIY | 1310803 | siiayTMSLGaensv |
1309451 | dsfkeeldkyfknhTSPDVd | 1310825 | svasQSIIAyTMSLG |
1309461 | ehvnnsyecdiPIGAGICAS | 1310828 | svlynsASFSTfkcy |
1309464 | esnkkflpfQQFGRdiadtt | 1310850 | TLEILDitpcsfggv |
1309469 | fknhTSPDVdlgdisginas | 1310852 | tlvKQLSSNFGaiss |
1309490 | iawnsnnldSKVGGnynyly | 1310865 | trfqTLLALhrsylt |
1309522 | lppaytnsftrgvyyPDKVF | 1310899 | vLLPLVssqcvnltt |
1309523 | lSSNFGAISSVlndilsrld | 1313244 | nsASFSTfk |
1309531 | ngltgtGVLTEsnkkflpfq | 1313285 | pinLVRDLpqgfsal |
1309532 | ngltVLPPLLtdemiaqyts | 1313286 | pinLVRDLpqgfwal |
1309534 | nitrfqTLLALhrsyltpgd | 1316945 | FSQILpdpskpskrsfie |
1309546 | pflmdlegkqgnfKNLREfv | 1321084 | LPPLLtdem |
1309558 | qfnsaigkiQDSLSstasal | 1325128 | svasQSIIAy |
1309561 | qrnfyepqiittdNTFVSGn | 1326261 | vasQSIIAy |
1309567 | rdlpqgFSALEplvdlpigi | 1328800 | yTMSLGaensvay |
Organism | Shared Pentapeptides |
---|---|
B. pertussis | AEIRA, AGAAA, AISSV, ALLAG, IRAAE, LEILD, LIRAA, LLPLV, LVRDL, SKVGG |
C. diphtheriae | AEIRA, AGAAA, ALLAG, AVRDP, LLPLV, TLADA, VLPPL |
C. tetani | AGAAA, EKGIY, GVLTE, RAAEI, TLADA |
H. influenzae | AEIRA, AGAAA, AISSV, FNGLT, FSALE, GTITS, GVLTE, IRAAE, KNLRE, KQLSS, KVEAE, LEILD, LGFIA, LIRAA, LLPLV, LPPLL, LVRDL, QDSLS, QLSSN, QSIIA, RAAEI, TLADA, TLEIL, TLLAL, TMSLG, TNGVG, TSPDV, VLPPL |
N. meningitidis | AEIRA, AGAAA, ALLAG, ASFST, FNGLT, FSALE, LEILD, LGFIA, LPPLL, LVRDL, QDSLS, SKVGG, TLLAL, TMSLG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanduc, D. From Anti-SARS-CoV-2 Immune Response to the Cytokine Storm via Molecular Mimicry. Antibodies 2021, 10, 36. https://doi.org/10.3390/antib10040036
Kanduc D. From Anti-SARS-CoV-2 Immune Response to the Cytokine Storm via Molecular Mimicry. Antibodies. 2021; 10(4):36. https://doi.org/10.3390/antib10040036
Chicago/Turabian StyleKanduc, Darja. 2021. "From Anti-SARS-CoV-2 Immune Response to the Cytokine Storm via Molecular Mimicry" Antibodies 10, no. 4: 36. https://doi.org/10.3390/antib10040036
APA StyleKanduc, D. (2021). From Anti-SARS-CoV-2 Immune Response to the Cytokine Storm via Molecular Mimicry. Antibodies, 10(4), 36. https://doi.org/10.3390/antib10040036