Immunological Separation of Bioactive Natural Compounds from Crude Drug Extract and Its Application for Cell-Based Studies
Abstract
:1. Introduction
2. Preparation of the Immunoaffinity Column with MAbs against Bioactive Natural Compounds and One-Step Separation of Natural Compounds from Crude Extract Using the Column
3. Cell-Based Studies Using the GC-KO Licorice Extract
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Traditional Medicine Strategy 2014–2023; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Morinaga, O.; Tanaka, H.; Shoyama, Y. A quantitative ELISA using monoclonal antibody to survey paeoniflorin and albiflorin in crude drugs and traditional Chinese herbal medicines. Biol. Pharm. Bull. 2003, 26, 862–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morinaga, O.; Lu, Z.; Lin, L.; Uto, T.; Sangmalee, S.; Putalun, W.; Tanaka, H.; Shoyama, Y. Detection of paeoniflorin and albiflorin by immunostaining technique using anti-paeoniflorin monoclonal antibody. Phytochem. Anal. 2013, 24, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Putalun, W.; De-Eknamkul, W.; Matangkasombut, O.; Shoyama, Y. Preparation of a novel monoclonal antibody against the antimalarial drugs, artemisinin and artesunate. Planta Med. 2007, 73, 1127–1132. [Google Scholar] [CrossRef]
- Chao, Z.; Tan, M.; Paudel, M.K.; Sakamoto, S.; Ma, L.; Sasaki-Tabata, K.; Tanaka, H.; Shoyama, Y.; Xuan, L.; Morimoto, S. Development of an indirect competitive enzyme-linked immunosorbent assay (icELISA) using highly specific monoclonal antibody against paclitaxel. J. Nat. Med. 2013, 67, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Yusakul, G.; Sakamoto, S.; Tanaka, H.; Morimoto, S. Improvement of heavy and light chain assembly by modification of heavy chain constant region 1 (CH1): Application for the construction of an anti-paclitaxel fragment antigen-binding (Fab) antibody. J. Biotechnol. 2018, 288, 41–47. [Google Scholar] [CrossRef]
- Cui, Q.; Tanaka, H.; Shoyama, Y.; Ye, H.T.; Li, F.; Tian, E.W.; Wu, Y.S.; Chao, Z. Development of a competitive time-resolved fluoroimmunoassay for paclitaxel. Phytochem. Anal. 2018, 29, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Sakata, R.; Shoyama, Y.; Murakami, H. Production of monoclonal antibodies and enzyme immunoassay for typical adenylate cyclase activator, Forskolin. Cytotechnology 1994, 16, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Yanagihara, H.; Sakata, R.; Shoyama, Y.; Murakami, H. Rapid analysis of small samples containing forskolin using monoclonal antibodies. Planta Med. 1996, 62, 169–172. [Google Scholar] [CrossRef]
- Tanaka, H.; Shoyama, Y. Formation of a monoclonal antibody against glycyrrhizin and development of an ELISA. Biol. Pharm. Bull. 1998, 21, 1391–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, S.; Morinaga, O.; Uto, T.; Nomura, S.; Shoyama, Y. Simultaneous determination of glycyrrhizin and liquiritin in licorice roots and Kampo medicines by combination enzyme-linked immunosorbent assay using anti-glycyrrhizin and anti-liquiritin monoclonal antibodies. J. Immunoass. Immunochem. 2017, 38, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Tanaka, H.; Shoyama, Y. Enzyme-linked immunosorbent assay for glycyrrhizin using anti-glycyrrhizin monoclonal antibody and an eastern blotting technique for glucuronides of glycyrrhetic acid. Anal. Chem. 2001, 73, 5784–5790. [Google Scholar] [CrossRef]
- Fujii, S.; Morinaga, O.; Uto, T.; Nomura, S.; Shoyama, Y. Development of double eastern blotting for major licorice components, glycyrrhizin and liquiritin for chemical quality control of licorice using anti-glycyrrhizin and anti-liquiritin monoclonal antibodies. J. Agric. Food Chem. 2016, 64, 1087–1093. [Google Scholar] [CrossRef]
- Xu, J.; Tanaka, H.; Shoyama, Y. One-step immunochromatographic separation and ELISA quantification of glycyrrhizin from traditional Chinese medicines. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 850, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Tuvshintogtokh, I.; Mandakh, B.; Munkhjargal, B.; Uto, T.; Morinaga, O.; Shoyama, Y. Screening of Glycyrrhiza uralensis Fisch. ex DC. containing high concentrations of glycyrrhizin by Eastern blotting and enzyme-linked immunosorbent assay using anti-glycyrrhizin monoclonal antibody for selective breeding of licorice. J. Nat. Med. 2014, 68, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, O.; Ishiuchi, K.; Ohkita, T.; Tian, C.; Hirasawa, A.; Mitamura, M.; Maki, Y.; Yasujima, T.; Yuasa, H.; Makino, T. Isolation of a novel glycyrrhizin metabolite as a causal candidate compound for pseudoaldosteronism. Sci. Rep. 2018, 8, 15568. [Google Scholar] [CrossRef] [PubMed]
- Ishiuchi, K.; Morinaga, O.; Ohkita, T.; Tian, C.; Hirasawa, A.; Mitamura, M.; Maki, Y.; Kondo, T.; Yasujima, T.; Yuasa, H.; et al. 18β-glycyrrhetyl-3-O-sulfate would be a causative agent of licorice-induced pseudoaldosteronism. Sci. Rep. 2019, 9, 1587. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Fukuda, N.; Shoyama, Y. Formation of monoclonal antibody against a major ginseng component, ginsenoside Rb1 and its characterization. Cytotechnology 1999, 29, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Sritularak, B.; Morinaga, O.; Yuan, C.S.; Shoyama, Y.; Tanaka, H. Quantitative analysis of ginsenosides Rb1, Rg1, and Re in American ginseng berry and flower samples by ELISA using monoclonal antibodies. J. Nat. Med. 2009, 63, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.; Shoyama, Y.; Tanaka, H. Pharmacokinetic study of ginsenosides Rb1 and Rg1 in rat by ELISA using anti-ginsenosides Rb1 and Rg1 monoclonal antibodies. Am. J. Chin. Med. 2006, 34, 1069–1081. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.L.; Chao, Z.; Tanaka, H.; Shoyama, Y. Immunodetection of ginsenoside Rb1 in rat serum. Nan Fang Yi Ke Da Xue Xue Bao 2007, 27, 1915–1917. [Google Scholar] [PubMed]
- Tanaka, H.; Fukuda, N.; Yahara, S.; Isoda, S.; Yuan, C.S.; Shoyama, Y. Isolation of ginsenoside Rb1 from Kalopanax pictus by eastern blotting using anti-ginsenoside Rb1 monoclonal antibody. Phytother. Res. 2005, 19, 255–258. [Google Scholar] [CrossRef]
- Tung, N.H.; Shoyama, Y. Eastern blotting analysis and isolation of two new dammarane-type saponins from American ginseng. Chem. Pharm. Bull. 2012, 60, 1329–1333. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, N.; Tanaka, H.; Shoyama, Y. Double staining of ginsenosides by Western blotting using anti-ginsenoside Rb1 and Rg1 monoclonal antibodies. Biol. Pharm. Bull. 2001, 24, 1157–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Fukuda, N.; Shoyama, Y. Eastern blotting and immunoaffinity concentration using monoclonal antibody for ginseng saponins in the field of traditional Chinese medicines. J. Agric. Food Chem. 2007, 55, 3783–3787. [Google Scholar] [CrossRef] [PubMed]
- Yokota, S.; Onohara, Y.; Shoyama, Y. Immunofluorescence and immunoelectron microscopic localization of medicinal substance, Rb1, in several plant parts of Panax ginseng. Curr. Drug Discov. Technol. 2011, 8, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, N.; Tanaka, H.; Shoyama, Y. Formation of monoclonal antibody against a major ginseng component, ginsenoside Rg1 and its characterization. Monoclonal antibody for a ginseng saponin. Cytotechnology 2000, 34, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, O.; Tanaka, H.; Shoyama, Y. Detection and quantification of ginsenoside Re in ginseng samples by a chromatographic immunostaining method using monoclonal antibody against ginsenoside Re. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 830, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, O.; Uto, T.; Yuan, C.S.; Tanaka, H.; Shoyama, Y. Evaluation of a new eastern blotting technique for the analysis of ginsenoside Re in American ginseng berry pulp extracts. Fitoterapia 2010, 81, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, N.; Tanaka, H.; Shoyama, Y. Isolation of the pharmacologically active saponin ginsenoside Rb1 from ginseng by immunoaffinity column chromatography. J. Nat. Prod. 2000, 63, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Limsuwanchote, S.; Wungsintaweekul, J.; Yusakul, G.; Han, J.Y.; Sasaki-Tabata, K.; Tanaka, H.; Shoyama, Y.; Morimoto, S. Preparation of a monoclonal antibody against notoginsenoside R1, a distinctive saponin from Panax notoginseng, and its application to indirect competitive ELISA. Planta Med. 2014, 80, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.H.; Shimokawa, S.; Tanaka, H.; Shoyama, Y. Development of an assay system for saikosaponin a using anti-saikosaponin a monoclonal antibodies. Biol. Pharm. Bull. 2004, 27, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.; Shimokawa, S.; Shoyama, Y.; Tanaka, H. A novel analytical ELISA-based methodology for pharmacologically active saikosaponins. Fitoterapia 2006, 77, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.; Cui, Q.; Tian, E.; Zeng, W.; Cai, X.; Li, X.; Tanaka, H.; Shoyama, Y.; Wu, Y. Ultrasensitive time-resolved fluoroimmunoassay for saikosaponin a in Chaihu (Bupleuri Radix). PLoS ONE 2016, 11, e0151032. [Google Scholar] [CrossRef] [Green Version]
- Xuan, L.; Tanaka, H.; Xu, Y.; Shoyama, Y. Preparation of monoclonal antibody against crocin and its characterization. Cytotechnology 1999, 29, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Goto, Y.; Shoyama, Y. Monoclonal antibody based enzyme immunoassay for Marihuana (cannabinoid) compounds. J. Immunoass. 1996, 17, 321–342. [Google Scholar] [CrossRef]
- Morinaga, O.; Uto, T.; Sakamoto, S.; Tanaka, H.; Shoyama, Y. Enzyme-linked immunosorbent assay for total sennosides using anti-sennside A and anti-sennoside B monoclonal antibodies. Fitoterapia 2009, 80, 28–31. [Google Scholar] [CrossRef]
- Morinaga, O.; Uto, T.; Sakamoto, S.; Putalun, W.; Lhieochaiphant, S.; Tanaka, H.; Shoyama, Y. Development of eastern blotting technique for sennoside A and sennoside B using anti-sennoside A and anti-sennoside B monoclonal antibodies. Phytochem. Anal. 2009, 20, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Putalun, W.; Tsuchihashi, R.; Morimoto, S.; Kinjo, J.; Tanaka, H. Development of an enzyme-linked immunosorbent assay (ELISA) using highly-specific monoclonal antibodies against plumbagin. Anal. Chim. Acta 2008, 607, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Taura, F.; Putalun, W.; Pongkitwitoon, B.; Tsuchihashi, R.; Morimoto, S.; Kinjo, J.; Shoyama, Y.; Tanaka, H. Construction and expression of specificity-improved single-chain variable fragments against the bioactive naphthoquinone, plumbagin. Biol. Pharm. Bull. 2009, 32, 434–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, S.; Putalun, W.; Pongkitwitoon, B.; Juengwatanatrakul, T.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Modulation of plumbagin production in Plumbago zeylanica using a single-chain variable fragment antibody against plumbagin. Plant Cell Rep. 2012, 31, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Tanaka, H.; Shoyama, Y. Immunoquantitative analysis for berberine and its related compounds using monoclonal antibodies in herbal medicines. Analyst 2004, 129, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Masaki, T.; Sirikantaramas, S.; Shoyama, Y.; Tanaka, H. Activation of a refolded, berberine-specific, single-chain Fv fragment by addition of free berberine. Biotechnol. Lett. 2006, 28, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, M.; Shoyama, Y.; Murakami, H.; Shinohara, H. Production of monoclonal antibodies and development of an ELISA for solamargine. Cytotechnology 1995, 18, 153–158. [Google Scholar] [CrossRef]
- Putalun, W.; Tanaka, H.; Yahara, S.; Lhieochaiphan, S.; Shoyama, Y. Survey of solasodine-type glycoalkaloids by western blotting and ELISA using anti-solamargine monoclonal antibody. Biol. Pharm. Bull. 2000, 23, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Putalun, W.; Tanaka, H.; Shoyama, Y. Rapid separation of solasodine glycosides by an immunoaffinity column using anti-solamargine monoclonal antibody. Cytotechnology 1999, 31, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Putalun, W.; Taura, F.; Qing, W.; Matsushita, H.; Tanaka, H.; Shoyama, Y. Anti-solasodine glycoside single-chain Fv antibody stimulates biosynthesis of solasodine glycoside in plants. Plant Cell Rep. 2003, 22, 344–349. [Google Scholar] [CrossRef]
- Tian, M.; Tanaka, H.; Shang, M.Y.; Karashima, S.; Chao, Z.; Wang, X.; Cai, S.Q.; Shoyama, Y. Production, characterization of a monoclonal antibody against aristolochic acid-II and development of its assay system. Am. J. Chin. Med. 2008, 36, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Morinaga, O.; Tian, M.; Uto, T.; Yu, J.; Shang, M.Y.; Wang, X.; Cai, S.Q.; Shoyama, Y. Development of an Eastern blotting technique for the visual detection of aristolochic acids in Aristolochia and Asarum species by using a monoclonal antibody against aristolochic acids I and II. Phytochem. Anal. 2013, 24, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Yokota, S.; Wang, D.; Wang, X.; Shoyama, Y.; Cai, S.Q. Localization of aristolochic acid in mouse kidney tissues by immunohistochemistry using an anti-AA-I and AA-II monoclonal antibody. Am. J. Chin. Med. 2014, 42, 1453–1469. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, X.W.; Wang, X.; Tan, H.R.; Jia, Y.; Yang, L.; Li, X.M.; Shang, M.Y.; Xu, F.; Yang, X.X.; et al. Alpha-actinin-4 is a possible target protein for aristolochic acid I in human kidney cells in vitro. Am. J. Chin. Med. 2016, 44, 291–304. [Google Scholar] [CrossRef]
- Pongkitwitoon, B.; Sakamoto, S.; Nagamitsu, R.; Putalun, W.; Tanaka, H.; Morimoto, S. A monoclonal antibody-based enzyme-linked immunosorbent assay for determination of homoharringtonine. Planta Med. 2018, 84, 1038–1044. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, S.; Yusakul, G.; Nuntawong, P.; Kitisripanya, T.; Putalun, W.; Miyamoto, T.; Tanaka, H.; Morimoto, S. Development of an indirect competitive immunochromatographic strip test for rapid detection and determination of anticancer drug, harringtonine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1048, 150–154. [Google Scholar] [CrossRef]
- Sakamoto, S.; Miyamoto, T.; Usui, K.; Tanaka, H.; Morimoto, S. Sodium-periodate-mediated harringtonine derivatives and their antiproliferative activity against HL-60 acute leukemia cells. J. Nat. Prod. 2018, 81, 34–40. [Google Scholar] [CrossRef]
- Fujii, S.; Morinaga, O.; Uto, T.; Nomura, S.; Shoyama, Y. Development of a monoclonal antibody-based immunochemical assay for liquiritin and its application to the quality control of licorice products. J. Agric. Food Chem. 2014, 62, 3377–3383. [Google Scholar] [CrossRef] [PubMed]
- Kido, K.; Morinaga, O.; Shoyama, Y.; Tanaka, H. Quick analysis of baicalin in Scutellariae radix by enzyme-linked immunosorbent assay using a monoclonal antibody. Talanta 2008, 77, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Yusakul, G.; Togita, R.; Minami, K.; Chanpokapaiboon, K.; Juengwatanatrakul, T.; Putalun, W.; Tanaka, H.; Sakamoto, S.; Morimoto, S. An indirect competitive enzyme-linked immunosorbent assay toward the standardization of Pueraria candollei based on its unique isoflavonoid, kwakhurin. Fitoterapia 2019, 133, 23–28. [Google Scholar] [CrossRef]
- Chanpokapaiboon, K.; Khoonrit, P.; Yusakul, G.; Juengwatanatrakul, T.; Putalun, W.; Tanaka, H.; Sakamoto, S.; Morimoto, S. A recombinant Fab antibody against kwakhurin as a tool for sensitive indirect competitive ELISA. Curr. Pharm. Biotechnol. 2018, 19, 1170–1176. [Google Scholar] [CrossRef]
- Qu, H.; Zhang, G.; Li, Y.; Sun, H.; Sun, Y.; Zhao, Y.; Wang, Q. Development of an enzyme-linked immunosorbent assay based on anti-puerarin monoclonal antibody and its applications. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 120–125. [Google Scholar] [CrossRef]
- Qu, H.; Qu, B.; Wang, X.; Zhang, Y.; Cheng, J.; Zeng, W.; Liu, S.; Wang, Q.; Zhao, Y. Rapid, sensitive separation of the three main isoflavones in soybean using immunoaffinity chromatography. J. Sep. Sci. 2016, 39, 1195–1201. [Google Scholar] [CrossRef]
- Qu, H.; Zhang, Y.; Qu, B.; Cheng, J.; Liu, S.; Feng, S.; Wang, Q.; Zhao, Y. Novel immunoassay and rapid immunoaffinity chromatography method for the detection and selective extraction of naringin in Citrus aurantium. J. Sep. Sci. 2016, 39, 1389–1398. [Google Scholar] [CrossRef]
- Ma, W.; Wang, C.; Liu, R.; Wang, N.; Lv, Y.; Dai, B.; He, L. Advances in cell membrane chromatography. J. Chromatogr. A 2021, 1639, 461916. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Haidere, M.F.; Hong, Y.H.; Park, S.H.; Lee, J.O.; Lee, J.; Cho, J.Y. Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res. 2021, 45, 199–210. [Google Scholar] [CrossRef]
- Christensen, L.P. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 2009, 55, 1–99. [Google Scholar]
- United States Pharmacopeial Convention. United States Pharmacopeia 43–National Formulary 38; United States Pharmacopeial Convention: North Bethesda, ML, USA, 2020.
- Pharmaceutical and Medical Device Regulatory Science Society of Japan. Japanese Pharmacopoeia, 17th ed.; (JP XVII); Jiho: Tokyo, Japan, 2016. [Google Scholar]
- Goda, Y.; Hakamazuka, T. Kampo Medicines Manufacturers’ Association under the super vision of National Institute of Health Sciences, the affiliated institutions of the Ministry of Health, Labour and Welfare of Japan. In Handbook on OTC Medicinal Products in Kampo; Jiho: Tokyo, Japan, 2013. [Google Scholar]
- Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res. 2008, 22, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.F.; Moreira, V.M.; Kalso, E.A.; Yli-Kauhaluoma, J. Liquorice for pain? Ther. Adv. Psychopharmacol. 2021, 11, 20451253211024873. [Google Scholar] [CrossRef] [PubMed]
- Petramfar, P.; Hajari, F.; Yousefi, G.; Azadi, S.; Hamedi, A. Efficacy of oral administration of licorice as an adjunct therapy on improving the symptoms of patients with Parkinson’s disease, a randomized double blinded clinical trial. J. Ethnopharmacol. 2020, 247, 112226. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Nixon, D.W. Licorice and cancer. Nutr. Cancer 2001, 39, 1–11. [Google Scholar] [CrossRef]
- Han, Y.X.; Jia, Q.J.; Yang, D.F.; Chai, W.G.; Zhang, X.M.; He, Q.L.; Liang, Z.S. Current advances in environmental stimuli regulating the glycyrrhizic acid biosynthesis pathway. Fitoterapia 2021, 151, 104860. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J. Chromatogr. A 2009, 1216, 1954–1969. [Google Scholar] [CrossRef]
- Baker, Z.K.; Sardari, S. Molecularly imprinted polymer (MIP) applications in natural product studies based on medicinal plant and secondary metabolite analysis. Iran Biomed. J. 2021, 25, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Mora-Granados, M.; González-Gómez, D.; Jeong, J.; Gallego-Picó, A. A molecularly imprinted polymer for delective extraction of phenolic acids from human urine. Appl. Sci. 2021, 11, 1577. [Google Scholar] [CrossRef]
- Uto, T.; Morinaga, O.; Tanaka, H.; Shoyama, Y. Analysis of the synergistic effect of glycyrrhizin and other constituents in licorice extract on lipopolysaccharide-induced nitric oxide production using knock-out extract. Biochem. Biophys. Res. Commun. 2012, 417, 473–478. [Google Scholar] [CrossRef]
- Uto, T.; Tung, N.H.; Morinaga, O.; Shoyama, Y. Interaction analysis of glycyrrhizin on licorice extract-induced apoptosis of human leukemia cells by knockout extract. Nat. Prod. Chem. Res. 2013, 1, 105. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Chang, P.J.; Tung, C.W.; Shih, Y.H.; Ni, W.C.; Li, Y.C.; Uto, T.; Shoyama, Y.; Ho, C.; Lin, C.L. De-glycyrrhizinated licorice extract attenuates high glucose-stimulated renal tubular epithelial-mesenchymal transition via suppressing the Notch2 signaling pathway. Cells 2020, 9, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target Compound | Plant Resource | Applications | References |
---|---|---|---|
Monoterpene | |||
Paeoniflorin, Albiflorin | Paeonia lactiflora | ELISA | [3] |
Immunostaining of plant section | [4] | ||
Sesquiterpenes | |||
Artemisinin, Artesunate | Artemisia annua | ELISA | [5] |
Diterpene | |||
Paclitaxel | Taxus sp. | ELISA | [6,7] |
Time-resolved fluoroimmunoassay | [8] | ||
Forskolin | Coleus forskohlii | ELISA | [9] |
Immunoaffinity column | [10] | ||
Triterpene | |||
Glycyrrhizin | Glycyrrhiza sp. | ELISA | [11,12] |
Eastern blot | [13] | ||
Double eastern blot | [14] | ||
Immunoaffinity column | [15] | ||
Selective breeding | [16] | ||
3-Monoglucuronyl-glycyrrhetinic acid | Glycyrrhiza sp. | ELISA | [17] |
Immunodetection in plasma and urine of patients | [17] | ||
Eastern blot | [18] | ||
Ginsenoside Rb1 | Panax sp. | ELISA | [19,20] |
Immunodetection in rat serum | [21,22] | ||
Eastern blot | [23] | ||
Double eastern blot | [24,25] | ||
Immunoaffinity column | [26] | ||
Cellular localization | [27] | ||
Ginsenoside Rg1 | Panax sp. | ELISA | [20,28] |
Immunodetection in rat serum | [21] | ||
Double eastern blot | [24,25] | ||
Ginsenoside Re | Panax sp. | ELISA | [20,29] |
Eastern blotting | [30] | ||
KO extract | [31] | ||
Notoginsenoside R1 | Panax notoginseng | ELISA | [32] |
Saikosaponin a | Bupleurum falcatum | ELISA | [33,34] |
Time-resolved fluoroimmunoassay | [35] | ||
Tetraterpene | |||
Crocin | Crocus sativus | ELISA | [36] |
Chroman | |||
Tetrahydrocannabinolic acid | Cannavis sativa | ELISA | [37] |
Quinone | |||
Sennoside A, | Rheum sp., | ELISA | [38] |
Sennoside B | Senna sp. | Eastern blotting | [39] |
Plumbagin | Plumbago zeylanica | ELISA | [40,41] |
Molecular breeding | [42] | ||
Alkaloid | |||
Berberine | Phellodendron amurense Coptis japonica | ELISA | [43,44] |
Solamargine | Solanum khasianum | ELISA | [45] |
Eastern blotting | [46] | ||
Immunoaffinity column | [47] | ||
Molecular breeding | [48] | ||
Aristolochic acid-I, -II | Aristolochia species | ELISA | [49] |
Eastern blot | [50] | ||
Cellular localization | [51] | ||
Determination of target molecular | [52] | ||
Harringtonine | genus Cephalotaxus | ELISA | [53] |
Immunochromatographic strip assay | [54] | ||
Cellular uptake | [55] | ||
Flavonoid | |||
Liquiritin | Glycyrrhiza sp. | ELISA | [12,56] |
Double eastern blot | [14] | ||
Quality control | [56] | ||
Baicalin, Baicalein | Scutellaria baicalensis | ELISA | [57] |
Kwakhurin | Pueraria candollei var. mirifica | ELISA | [58,59] |
Puerarin | Pueraria lobata | ELISA | [60] |
Immunoaffinity column | [60] | ||
Daidzin | Glycine max | ELISA | [61] |
Immunoaffinity column | [61] | ||
Naringin | Citrus sp. | ELISA | [62] |
Immunoaffinity column | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uto, T.; Ohta, T.; Fujii, S.; Shoyama, Y. Immunological Separation of Bioactive Natural Compounds from Crude Drug Extract and Its Application for Cell-Based Studies. Antibodies 2021, 10, 48. https://doi.org/10.3390/antib10040048
Uto T, Ohta T, Fujii S, Shoyama Y. Immunological Separation of Bioactive Natural Compounds from Crude Drug Extract and Its Application for Cell-Based Studies. Antibodies. 2021; 10(4):48. https://doi.org/10.3390/antib10040048
Chicago/Turabian StyleUto, Takuhiro, Tomoe Ohta, Shunsuke Fujii, and Yukihiro Shoyama. 2021. "Immunological Separation of Bioactive Natural Compounds from Crude Drug Extract and Its Application for Cell-Based Studies" Antibodies 10, no. 4: 48. https://doi.org/10.3390/antib10040048
APA StyleUto, T., Ohta, T., Fujii, S., & Shoyama, Y. (2021). Immunological Separation of Bioactive Natural Compounds from Crude Drug Extract and Its Application for Cell-Based Studies. Antibodies, 10(4), 48. https://doi.org/10.3390/antib10040048