Alternative Routes of Administration for Therapeutic Antibodies—State of the Art
Abstract
:1. Introduction
2. Routes of Administration for Therapeutic Antibodies
2.1. The Subcutaneous Route: The Most Popular after IV Injection
2.1.1. Fundamentals Related to the SC Route
2.1.2. Abs Approved for Subcutaneous Delivery
2.1.3. Abs in Clinical Development for the SC Route
2.1.4. Conclusion and Perspectives Regarding the Subcutaneous Route
2.2. The Intramuscular Route: The Favorite Choice for Infectious Diseases?
2.2.1. Basics of the Intramuscular Route
2.2.2. Ab Approved for Delivery by the IM Route
2.2.3. Abs in Clinical Development Delivered by the IM Route
2.2.4. Conclusions and Perspectives on the Intramuscular Route
2.3. The Intraocular Route: An Invasive Route for Ophthalmic Disorders
2.3.1. Principles Related to the Intraocular Delivery of Abs
2.3.2. Approved Abs by Intravitreal Administration
2.3.3. Abs in Clinical Development for Intravitreal/Intraocular Delivery
2.3.4. Conclusion and Perspectives on the Intravitreal Route
2.4. Inhalation: An Alternative Route for Respiratory Diseases
2.4.1. Rationale of Delivering Abs through the Airways
2.4.2. Challenges Associated with the Clinical Development of Inhaled Abs
- −
- −
- Relevant target antigen, which must operate within the respiratory tract and be critical in the pathophysiology of the respiratory disease
- −
- Selection of the appropriate population, which may benefit from inhaled Abs.
- −
- Biological barriers, which may impair Abs PK and activity [94].
2.4.3. Conclusion and Perspectives on the Inhalation Route
2.5. Intra-Tumoral Administration: Overcoming the Tumor Stromal Barrier for Anti-Cancerous Abs
2.5.1. Overview of the Barriers Associated with Tumor
- −
- Densified tumor-associated ECM with the overexpression of collagens, and fibronectin, preventing the diffusion of Abs [101].
- −
- Abnormal growth of blood vessels in the vicinity of the tumor resulting in non-vascularized, inaccessible areas for Abs coming from the blood circulation [102].
- −
- Disorganized vessel structure associated with blood flow resistance, impeding the transport of the drug [103].
2.5.2. Abs in Clinical Development by Intra-Tumoral Injection
2.5.3. Conclusion and Perspectives on the Intra-Tumoral Route
2.6. Intra-Articular Administration: A New Hope for the Relief of Joint Pain
2.6.1. Overview of Joint Physiology
2.6.2. Abs in Clinical Development for IA Administration
2.6.3. Conclusion and Perspectives Regarding the Intra-Articular Route
2.7. Delivery within the Central Nervous System: A Method to Bypass the Blood–Brain Barrier
2.7.1. The Blood–Brain Barrier (BBB), a Barrier for Abs
2.7.2. Abs in Clinical Development for Direct Delivery to the CNS
2.7.3. Conclusion and Perspectives on CNS Delivery
3. Future Perspectives
3.1. Oral Delivery: Protects Abs from the Harsh Environment of the Intestinal Tract
3.2. Skin Administration: A Topical Delivery of Ab in Wounds
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Mullard, A. FDA approves 100th monoclonal antibody product. Nat. Rev. Drug Discov. 2021, 20, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Antibody Society. Antibody Therapeutics Approved or in Regulatory Review in the EU or US. Available online: https://www.antibodysociety.org/resources/approved-antibodies/ (accessed on 1 April 2022).
- Zahavi, D.; Weiner, L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Steinman, L. The use of monoclonal antibodies for treatment of autoimmune disease. J. Clin. Immunol. 1990, 10, 30S–39S. [Google Scholar] [CrossRef] [PubMed]
- Ryman, J.T.; Meibohm, B. Pharmacokinetics of Monoclonal Antibodies. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 576–588. [Google Scholar] [CrossRef]
- Ning, L.; Abagna, H.B.; Jiang, Q.; Liu, S.; Huang, J. Development and application of therapeutic antibodies against COVID-19. Int. J. Biol. Sci. 2021, 17, 1486–1496. [Google Scholar] [CrossRef]
- Elshiaty, M.; Schindler, H.; Christopoulos, P. Principles and Current Clinical Landscape of Multispecific Antibodies against Cancer. Int. J. Mol. Sci. 2021, 22, 5632. [Google Scholar] [CrossRef]
- Alagga, A.A.; Gupta, V. Drug Absorption. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557405/ (accessed on 1 April 2022). [PubMed]
- Matucci, A.; Vultaggio, A.; Danesi, R. The use of intravenous versus subcutaneous monoclonal antibodies in the treatment of severe asthma: A review. Respir. Res. 2018, 19, 154. [Google Scholar] [CrossRef]
- Bodier-Montagutelli, E.; Respaud, R.; Watier, H.; Guillon-Munos, A. MAbDelivery: Administration routes for antibody therapy Third LabEx MAbImprove industrial workshop, 2 July 2015 Tours, France. MAbs 2017, 9, 579–585. [Google Scholar] [CrossRef]
- Champiat, S.; Tselikas, L.; Farhane, S.; Raoult, T.; Texier, M.; Lanoy, E.; Massard, C.; Robert, C.; Ammari, S.; De Baère, T.; et al. Intratumoral Immunotherapy: From Trial Design to Clinical Practice. Clin. Cancer Res. 2021, 27, 665–679. [Google Scholar] [CrossRef]
- Kaplon, H.; Chenoweth, A.; Crescioli, S.; Reichert, J.M. Antibodies to watch in 2022. MAbs 2022, 14, 2014296. [Google Scholar] [CrossRef]
- Shire, S.J. Challenges in the intravenous (IV) administration of monoclonal antibodies (mAbs). In Monoclonal Antibodies Meeting the Challenges in Manufacturing, Formulation, Delivery and Stability of Final Drug Product; Elsevier—Woodhead Publishing: Oxford, UK, 2015; pp. 121–129. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en (accessed on 1 April 2022).
- Antibody Society, Antibodies in Late-Stage Clinical Studies. Available online: https://www.antibodysociety.org/antibodies-in-late-stage-clinical-studies/ (accessed on 1 April 2022).
- FDA Purple Book. Available online: https://purplebooksearch.fda.gov/ (accessed on 1 April 2022).
- Home-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 1 April 2022).
- Kim, H.; Park, H.; Lee, S.J. Effective method for drug injection into subcutaneous tissue. Sci. Rep. 2017, 7, 9613. [Google Scholar] [CrossRef] [PubMed]
- Furst, D.E.; Schiff, M.H.; Fleischmann, R.M.; Strand, V.; Birbara, C.A.; Compagnone, D.; Fischkoff, S.A.; Chartash, E.K. Adalimumab, a fully human anti tumor necrosis factor-alpha monoclonal antibody, and concomitant standard antirheumatic therapy for the treatment of rheumatoid arthritis: Results of STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis). J. Rheumatol. 2003, 30, 2563–2571. [Google Scholar] [PubMed]
- Gupta, A.K.; Versteeg, S.V.; Abramovits, W.; Vincent, K.D. Brodalumab (Siliq®): A Treatment for Plaque Psoriasis. SKINmed 2017, 15, 281–285. [Google Scholar] [PubMed]
- Arda, O.; Göksügür, N.; Tüzün, Y. Basic histological structure and functions of facial skin. Clin. Dermatol. 2014, 32, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Viola, M.; Sequeira, J.; Seiça, R.; Veiga, F.; Serra, J.; Santos, A.C.; Ribeiro, A.J. Subcutaneous delivery of monoclonal antibodies: How do we get there? J. Control. Release 2018, 286, 301–314. [Google Scholar] [CrossRef]
- Braverman, I.M.; Keh-Yen, A. Ultrastructure of the Human Dermal Microcirculation. III. The Vessels in the Mid- and Lower Dermis and Subcutaneous Fat. J. Investig. Dermatol. 1981, 77, 297–304. [Google Scholar] [CrossRef]
- Sánchez-Félix, M.; Burke, M.; Chen, H.H.; Patterson, C.; Mittal, S. Predicting bioavailability of monoclonal antibodies after subcutaneous administration: Open innovation challenge. Adv. Drug Deliv. Rev. 2020, 167, 66–77. [Google Scholar] [CrossRef]
- Kohli, N.; Jain, N.; Geddie, M.L.; Razlog, M.; Xu, L.; Lugovskoy, A.A. A novel screening method to assess developability of antibody-like molecules. MAbs 2015, 7, 752–758. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Singh, S.; Zeng, D.L.; King, K.; Nema, S. Antibody Structure, Instability, and Formulation. J. Pharm. Sci. 2007, 96, 1–26. [Google Scholar] [CrossRef]
- Burgess, B.E. Optimizing Drug Delivery for Modern Biologics. Pharm. Technol. 2012, 36, 82–84. [Google Scholar]
- Mullard, A. 2020 FDA drug approvals. Nat. Rev. Drug Discov. 2021, 20, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. 2021 FDA approvals. Nat. Rev. Drug Discov. 2022, 21, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.B.; Sharma, V.K.; Boswell, C.A.; Hotzel, I.; Tesar, D.; Shang, Y.; Ying, Y.; Fischer, S.K.; Grogan, J.L.; Chiang, E.Y.; et al. Evaluating the Use of Antibody Variable Region (Fv) Charge as a Risk Assessment Tool for Predicting Typical Cynomolgus Monkey Pharmacokinetics. J. Biol. Chem. 2015, 290, 29732–29741. [Google Scholar] [CrossRef] [PubMed]
- Mach, H.; Gregory, S.M.; Mackiewicz, A.; Mittal, S.; Lalloo, A.; Kirchmeier, M.; Shameem, M. Electrostatic interactions of monoclonal antibodies with subcutaneous tissue. Ther. Deliv. 2011, 2, 727–736. [Google Scholar] [CrossRef]
- Jackisch, C.; Müller, V.; Maintz, C.; Hell, S.; Ataseven, B. Subcutaneous Administration of Monoclonal Antibodies in Oncology. Geburtshilfe Frauenheilkd. 2014, 74, 343–349. [Google Scholar] [CrossRef]
- Styles, I.K.; Feeney, O.M.; Nguyen, T.-H.; Brundel, D.H.; Kang, D.W.; Clift, R.; McIntosh, M.P.; Porter, C.J. Removal of interstitial hyaluronan with recombinant human hyaluronidase improves the systemic and lymphatic uptake of cetuximab in rats. J. Control. Release 2019, 315, 85–96. [Google Scholar] [CrossRef]
- Locke, K.W.; Maneval, D.C.; LaBarre, M.J. ENHANZE® drug delivery technology: A novel approach to subcutaneous administration using recombinant human hyaluronidase PH20. Drug Deliv. 2019, 26, 98–106. [Google Scholar] [CrossRef]
- Printz, M.A.; Dychter, S.S.; DeNoia, E.P.; Harrigan, R.; Sugarman, B.J.; Zepeda, M.; Souratha, J.; Kang, D.W.; Maneval, D.C. A Phase I Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Recombinant Human Hyaluronidase PH20 Administered Intravenously in Healthy Volunteers. Curr. Ther. Res. 2020, 93, 100604. [Google Scholar] [CrossRef]
- Shpilberg, O.; Jackisch, C. Subcutaneous administration of rituximab (MabThera) and trastuzumab (Herceptin) using hyaluronidase. Br. J. Cancer 2013, 109, 1556–1561. [Google Scholar] [CrossRef] [Green Version]
- Wynne, C.; Harvey, V.; Schwabe, C.; Waaka, D.; McIntyre, C.; Bittner, B. Comparison of Subcutaneous and Intravenous Administration of Trastuzumab: A Phase I/Ib Trial in Healthy Male Volunteers and Patients with HER2-Positive Breast Cancer. J. Clin. Pharmacol. 2013, 53, 192–201. [Google Scholar] [CrossRef]
- Ogata, A.; Kato, Y.; Higa, S.; Maeda, K. Subcutaneous tocilizumab: Recent advances for the treatment of rheumatoid arthritis. Expert Opin. Drug Deliv. 2019, 16, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Dakin, P.; DiMartino, S.J.; Gao, H.; Maloney, J.; Kivitz, A.J.; Schnitzer, T.J.; Stahl, N.; Yancopoulos, G.D.; Geba, G.P. The Efficacy, Tolerability, and Joint Safety of Fasinumab in Osteoarthritis Pain: A Phase IIb/III Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Arthritis Rheumatol. 2019, 71, 1824–1834. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.H.; Alvarez, E.; Foley, J.; Henry, R.G.; Brown, J.; Camacho, E.; Meng, X.; Ziehn, M.; Brown, B.; Greenberg, B.M. OLIKOS Study Design: Exploring Maintained Ofatumumab Efficacy in Relapsing MS Patients who Transition from Intravenous Anti-CD20 Therapy (4567). Neurology 2021, 96, 4567. Available online: http://n.neurology.org/content/96/15_Supplement/4567.abstract (accessed on 1 April 2022).
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Musser, B.J.; Soo, Y.; Rofail, D.; Im, J.; et al. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 238–251. [Google Scholar] [CrossRef]
- Kinnunen, H.M.; Sharma, V.; Contreras-Rojas, L.R.; Yu, Y.; Alleman, C.; Sreedhara, A.; Fischer, S.; Khawli, L.; Yohe, S.T.; Bumbaca, D.; et al. A novel in vitro method to model the fate of subcutaneously administered biopharmaceuticals and associated formulation components. J. Control. Release 2015, 214, 94–102. [Google Scholar] [CrossRef]
- Bown, H.K.; Bonn, C.; Yohe, S.; Yadav, D.B.; Patapoff, T.W.; Daugherty, A.; Mrsny, R.J. In vitro model for predicting bioavailability of subcutaneously injected monoclonal antibodies. J. Control. Release 2018, 273, 13–20. [Google Scholar] [CrossRef]
- Polania Gutierrez, J.J.; Munakomi, S. Intramuscular Injection. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/pubmed/32310581 (accessed on 1 April 2022). [PubMed]
- Glezen, W.P. Risk of Primary Infection and Reinfection with Respiratory Syncytial Virus. Arch. Pediatr. Adolesc. Med. 1986, 140, 543–546. [Google Scholar] [CrossRef]
- Turner, T.L.; Kopp, B.T.; Paul, G.; Landgrave, L.C.; Hayes, N.; Thompson, R. Respiratory syncytial virus: Current and emerging treatment options. Clin. Outcomes Res. 2014, 6, 217–225. [Google Scholar] [CrossRef]
- Hall, C.B.; Weinberg, G.A.; Iwane, M.K.; Blumkin, A.K.; Edwards, K.M.; Staat, M.A.; Auinger, P.; Griffin, M.R.; Poehling, K.A.; Erdman, D.; et al. The Burden of Respiratory Syncytial Virus Infection in Young Children. N. Engl. J. Med. 2009, 360, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Kua, K.P.; Lee, S.W.H. Systematic Review of the Safety and Efficacy of Palivizumab among Infants and Young Children with Cystic Fibrosis. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 755–769. [Google Scholar] [CrossRef]
- Anderson, E.J.; Carosone-Link, P.; Yogev, R.; Yi, J.; Simões, E.A.F. Effectiveness of Palivizumab in High-risk Infants and Children. Pediatr. Infect. Dis. J. 2017, 36, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Igde, M.; Kabasakal, H.; Ozturk, O.; Karatekin, G.; Aygun, C. Palivizumab prophylaxis, respiratory syncytial virus and subsequent development of asthma. Minerva Pediatr. 2018, 70, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Obando-Pacheco, P.; Justicia-Grande, A.J.; Rivero-Calle, I.; Rodríguez-Tenreiro, C.; Sly, P.; Ramilo, O.; Mejías, A.; Baraldi, E.; Papadopoulos, N.G.; Nair, H.; et al. Respiratory Syncytial Virus Seasonality: A Global Overview. J. Infect. Dis. 2018, 217, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Helmink, B.J.; Ragsdale, C.E.; Peterson, E.J.; Merkel, K.G. Comparison of Intravenous Palivizumab and Standard of Care for Treatment of Respiratory Syncytial Virus Infection in Mechanically Ventilated Pediatric Patients. J. Pediatr. Pharmacol. Ther. 2016, 21, 146–154. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. FDA Updates Sotrovimab Emergency Use Authorization. 2022. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-sotrovimab-emergency-use-authorization (accessed on 5 August 2022).
- Bharti, O.K.; Madhusudana, S.N.; Wilde, H. Injecting rabies immunoglobulin (RIG) into wounds only: A significant saving of lives and costly RIG. Hum. Vaccines Immunother. 2017, 13, 762–765. [Google Scholar] [CrossRef] [PubMed]
- McClain, J.B.; Chuang, A.; Reid, C.; Moore, S.M.; Tsao, E. Rabies virus neutralizing activity, pharmacokinetics, and safety of the monoclonal antibody mixture SYN023 in combination with rabies vaccination: Results of a phase 2, randomized, blinded, controlled trial. Vaccine 2021, 39, 5822–5830. [Google Scholar] [CrossRef]
- Altamura, A.C.; Sassella, F.; Santini, A.; Montresor, C.; Fumagalli, S.; Mundo, E. Intramuscular Preparations of Antipsychotics. Drugs 2003, 63, 493–512. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Ahmed, I. The Noncorneal Route in Ocular Drug Delivery. In Ophthalmic Drug Delivery Systems, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 335–363. [Google Scholar] [CrossRef]
- Varela-Fernández, R.; Díaz-Tomé, V.; Luaces-Rodríguez, A.; Conde-Penedo, A.; García-Otero, X.; Luzardo-Álvarez, A.; Fernández-Ferreiro, A.; Otero-Espinar, F.J. Drug Delivery to the Posterior Segment of the Eye: Biopharmaceutic and Pharmacokinetic Considerations. Pharmaceutics 2020, 12, 269. [Google Scholar] [CrossRef]
- Thareja, A.; Hughes, H.; Alvarez-Lorenzo, C.; Hakkarainen, J.; Ahmed, Z. Penetration Enhancers for Topical Drug Delivery to the Ocular Posterior Segment—A Systematic Review. Pharmaceutics 2021, 13, 276. [Google Scholar] [CrossRef]
- Kim, Y.C.; Chiang, B.; Wu, X.; Prausnitz, M.R. Ocular delivery of macromolecules. J. Control. Release 2014, 190, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Del Amo, E.M.; Rimpelä, A.-K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.; Richardson, D.; et al. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res. 2017, 57, 134–185. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.H.; Krohne, T.U.; Issa, P.C.; Liu, Z.; Holz, F.G. Routes for Drug Delivery to the Eye and Retina: Intravitreal Injections. Retinal Pharmacother. 2015, 55, 63–70. [Google Scholar] [CrossRef]
- Pieramici, D.J.; Avery, R.L. Ranibizumab: Treatment in patients with neovascular age-related macular degeneration. Expert Opin. Biol. Ther. 2006, 6, 1237–1245. [Google Scholar] [CrossRef]
- Markham, A. Brolucizumab: First Approval. Drugs 2019, 79, 1997–2000. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, N.; Kuppermann, B.D.; Bandello, F.; Loewenstein, A. Faricimab: Expanding horizon beyond VEGF. Eye 2020, 34, 802–804. [Google Scholar] [CrossRef]
- Campochiaro, P.A. Ocular neovascularization. J. Mole. Med. 2013, 91, 311–321. [Google Scholar] [CrossRef]
- Bro, T.; Derebecka, M.; Jørstad, Ø.K.; Grzybowski, A. Off-label use of bevacizumab for wet age-related macular degeneration in Europe. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Jose, V.; Radhakrishna, S.; Pipalava, P.; Singh, I. Bevacizumab for eye diseases—Legal, regulatory, and ethical overview. Indian J. Pharmacol. 2019, 51, 377–383. [Google Scholar] [CrossRef]
- Krohne, T.U.; Eter, N.; Holz, F.G.; Meyer, C.H. Intraocular Pharmacokinetics of Bevacizumab After a Single Intravitreal Injection in Humans. Am. J. Ophthalmol. 2008, 146, 508–512. [Google Scholar] [CrossRef]
- Krohne, T.U.; Liu, Z.; Holz, F.G.; Meyer, C.H. Intraocular Pharmacokinetics of Ranibizumab Following a Single Intravitreal Injection in Humans. Am. J. Ophthalmol. 2012, 154, 682–686.e2. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Khanani, A.M.; Ruiz, C.Q.; Basu, K.; Ferrone, P.J.; Brittain, C.; Figueroa, M.S.; Lin, H.; Holz, F.G.; Patel, V.; et al. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): Two randomised, double-masked, phase 3, non-inferiority trials. Lancet 2022, 399, 729–740. [Google Scholar] [CrossRef]
- Hutton-Smith, L.A.; Gaffney, E.; Byrne, H.M.; Maini, P.K.; Schwab, D.; Mazer, N.A. A Mechanistic Model of the Intravitreal Pharmacokinetics of Large Molecules and the Pharmacodynamic Suppression of Ocular Vascular Endothelial Growth Factor Levels by Ranibizumab in Patients with Neovascular Age-Related Macular Degeneration. Mol. Pharm. 2016, 13, 2941–2950. [Google Scholar] [CrossRef] [PubMed]
- Hallinan, J.T.P.D.; Pillay, P.; Koh, L.H.L.; Goh, K.Y.; Yu, W.-Y. Eye Globe Abnormalities on MR and CT in Adults: An Anatomical Approach. Korean J. Radiol. 2016, 17, 664–673. [Google Scholar] [CrossRef]
- Chandrasekaran, P.R.; Madanagopalan, V. KSI-301: Antibody biopolymer conjugate in retinal disorders. Ther. Adv. Ophthalmol. 2021, 13, 251584142110277. [Google Scholar] [CrossRef] [PubMed]
- Stern, H.D.; Hussain, R.M. KSI-301: An investigational anti-VEGF biopolymer conjugate for retinal diseases. Expert Opin. Investig. Drugs 2022, 31, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Li, J.; Bai, Y.; Shu, Y.; Li, W.; Yin, X.; Cheng, Y.; Sun, G.; Deng, Y.; Zhong, H.; et al. Efficacy, Safety, and Immunogenicity of HLX04 Versus Reference Bevacizumab in Combination with XELOX or mFOLFOX6 as First-Line Treatment for Metastatic Colorectal Cancer: Results of a Randomized, Double-Blind Phase III Study. BioDrugs 2021, 35, 445–458. [Google Scholar] [CrossRef]
- Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.; Chung, C.Y.; Kim, R.Y. Ranibizumab for Neovascular Age-Related Macular Degeneration. N. Engl. J. Med. 2006, 355, 1419–1431. [Google Scholar] [CrossRef] [Green Version]
- Strickley, R.G.; Lambert, W.J. A review of Formulations of Commercially Available Antibodies. J. Pharm. Sci. 2021, 110, 2590–2608.e56. [Google Scholar] [CrossRef]
- Novel Excipient Review Pilot Program (FDA.gov). Available online: https://www.fda.gov/drugs/development-approval-process-drugs/novel-excipient-review-pilot-program (accessed on 1 April 2022).
- Käsdorf, B.T.; Arends, F.; Lieleg, O. Diffusion Regulation in the Vitreous Humor. Biophys. J. 2015, 109, 2171–2181. [Google Scholar] [CrossRef]
- Mandell, B.A.; Meredith, T.A.; Aguilar, E.; El-Massry, A.; Sawant, A.; Gardner, S. Effects of Inflammation and Surgery on Amikacin Levels in the Vitreous Cavity. Am. J. Ophthalmol. 1993, 115, 770–774. [Google Scholar] [CrossRef]
- Olchanski, N.; Hansen, R.N.; Pope, E.; D’Cruz, B.; Fergie, J.; Goldstein, M.; Krilov, L.R.; McLaurin, K.K.; Nabrit-Stephens, B.; Oster, G.; et al. Palivizumab Prophylaxis for Respiratory Syncytial Virus: Examining the Evidence Around Value. Open Forum Infect. Dis. 2018, 5, ofy031. [Google Scholar] [CrossRef] [PubMed]
- Guilleminault, L.; Azzopardi, N.; Arnoult, C.; Sobilo, J.; Hervé, V.; Montharu, J.; Guillon, A.; Andres, C.; Herault, O.; Le Pape, A.; et al. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. J. Control. Release 2014, 196, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Pan, H.W.; Vllasaliu, D.; Lam, J.K.W. Pulmonary Delivery of Biological Drugs. Pharmaceutics 2020, 12, 1025. [Google Scholar] [CrossRef] [PubMed]
- Respaud, R.; Vecellio, L.; Diot, P.; Heuzé-Vourc’H, N. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin. Drug Deliv. 2015, 12, 1027–1039. [Google Scholar] [CrossRef]
- Borghardt, J.M.; Kloft, C.; Sharma, A. Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes. Can. Respir. J. 2018, 2018, 2732017. [Google Scholar] [CrossRef]
- Rau, J.L. The inhalation of drugs: Advantages and problems. Respir. Care 2005, 50, 367–382. [Google Scholar]
- Moroni-Zentgraf, P.; Usmani, O.S.; Halpin, D.M.G. Inhalation Devices. Can. Respir. J. 2018, 2018, 5642074. [Google Scholar] [CrossRef]
- Desoubeaux, G.; Reichert, J.; Sleeman, M.; Reckamp, K.; Ryffel, B.; Adamczewski, J.P.; Sweeney, T.D.; Vanbever, R.; Diot, P.; Owen, C.A.; et al. Therapeutic monoclonal antibodies for respiratory diseases: Current challenges and perspectives, March 31–April 1, 2016, Tours, France. MAbs 2016, 8, 999–1009. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, S.; Piedra, P.A.; Martinon-Torres, F.; Szymanski, H.; Brackeva, B.; Dombrecht, E.; Detalle, L.; Fleurinck, C.; Verhulst, S.; Matthijs, I.; et al. Nebulised ALX-0171 for respiratory syncytial virus lower respiratory tract infection in hospitalised children: A double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir. Med. 2021, 9, 21–32. [Google Scholar] [CrossRef]
- Sécher, T.; Bodier-Montagutelli, E.; Parent, C.; Bouvart, L.; Cortes, M.; Ferreira, M.; MacLoughlin, R.; Ilango, G.; Schmid, O.; Respaud, R.; et al. Aggregates Associated with Instability of Antibodies during Aerosolization Induce Adverse Immunological Effects. Pharmaceutics 2022, 14, 671. [Google Scholar] [CrossRef] [PubMed]
- Bodier-Montagutelli, E.; Respaud, R.; Perret, G.; Baptista, L.; Duquenne, P.; Heuzé-Vourc’H, N.; Vecellio, L. Protein stability during nebulization: Mind the collection step! Eur. J. Pharm. Biopharm. 2020, 152, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Al Ojaimi, Y.; Blin, T.; Lamamy, J.; Gracia, M.; Pitiot, A.; Denevault-Sabourin, C.; Joubert, N.; Pouget, J.-P.; Gouilleux-Gruart, V.; Heuzé-Vourc’H, N.; et al. Therapeutic antibodies—Natural and pathological barriers and strategies to overcome them. Pharmacol. Ther. 2021, 233, 108022. [Google Scholar] [CrossRef] [PubMed]
- Hacha, J.; Tomlinson, K.; Maertens, L.; Paulissen, G.; Rocks, N.; Foidart, J.-M.; Noel, A.; Palframan, R.; Gueders, M.; Cataldo, D.D. Nebulized Anti–IL-13 Monoclonal Antibody Fab′ Fragment Reduces Allergen-Induced Asthma. Am. J. Respir. Cell Mol. Biol. 2012, 47, 709–717. [Google Scholar] [CrossRef]
- Gauvreau, G.; Hohlfeld, J.; Boulet, L.-P.; Cockcroft, D.; Davis, B.; Fitzgerald, J.M.; Korn, S.; Kornmann, O.; Leigh, R.; Mayers, I.; et al. Late Breaking Abstract—Efficacy of CSJ117 on allergen-induced asthmatic responses in mild atopic asthma patients. Eur. Respir. Soc. 2020, 56, 3690. [Google Scholar] [CrossRef]
- Celltrion. “Celltrion Submits Investigational New Drug (IND) Application to Initiate a Global Phase III Clinical Trial Evaluating an Inhaled COVID-19 Antibody Cocktail Therapy,” Biospace. 2022. Available online: https://www.biospace.com/article/releases/celltrion-submits-investigational-new-drug-ind-application-to-initiate-a-global-phase-iii-clinical-trial-evaluating-an-inhaled-covid-19-antibody-cocktail-therapy/ (accessed on 1 April 2022).
- Cruz-Teran, C.; Tiruthani, K.; McSweeney, M.; Ma, A.; Pickles, R.; Lai, S.K. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv. Drug Deliv. Rev. 2021, 169, 100–117. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Del Vecchio, M.; Mackiewicz, A.; Robert, C.; Chiarion-Sileni, V.; Arance, A.; Lebbé, C.; Svane, I.M.; McNeil, C.; Rutkowski, P.; et al. Overall survival at 5 years of follow-up in a phase III trial comparing ipilimumab 10 mg/kg with 3 mg/kg in patients with advanced melanoma. J. Immunother. Cancer 2020, 8, e000391. [Google Scholar] [CrossRef]
- Netti, P.A.; Berk, D.A.; Swartz, M.A.; Grodzinsky, A.J.; Jain, R.K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000, 60, 2497–2503. [Google Scholar]
- Durand, C.A.-P.R.E. Clinical Relevance of Intermittent Tumour Blood Flow. Acta Oncol. 2001, 40, 929–936. [Google Scholar] [CrossRef]
- Jain, R.K. Determinants of tumor blood flow: A review. Cancer Res. 1988, 48, 2641–2658. Available online: https://aacrjournals.org/cancerres/article/48/10/2641/492519/Determinants-of-Tumor-Blood-Flow-A-Review1 (accessed on 1 April 2022). [PubMed]
- Mazzolini, G.; Alfaro, C.; Sangro, B.; Feijoó, E.; Ruiz, J.; Benito, A.; Tirapu, I.; Arina, A.; Sola, J.; Herraiz, M.; et al. Intratumoral Injection of Dendritic Cells Engineered to Secrete Interleukin-12 by Recombinant Adenovirus in Patients with Metastatic Gastrointestinal Carcinomas. J. Clin. Oncol. 2005, 23, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Kohrt, H.; Levy, R. Intratumoral Anti-CTLA-4 Therapy: Enhancing Efficacy While Avoiding Toxicity. Clin. Cancer Res. 2013, 19, 5261–5263. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.X.; Haebe, S.; Lee, A.S.; Westphalen, C.B.; Norton, J.A.; Jiang, W.; Levy, R. Intratumoral Immunotherapy for Early-stage Solid Tumors. Clin. Cancer Res. 2020, 26, 3091–3099. [Google Scholar] [CrossRef] [PubMed]
- Irenaeus, S.M.M.; Nielsen, D.; Ellmark, P.; Yachnin, J.; Deronic, A.; Nilsson, A.; Norlén, P.; Veitonmäki, N.; Wennersten, C.S.; Ullenhag, G.J. First-in-human study with intratumoral administration of a CD40 agonistic antibody, ADC-1013, in advanced solid malignancies. Int. J. Cancer 2019, 145, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Williams, M.A.; Meek, S.M.; Bowen, R.C.; Grossmann, K.F.; Andtbacka, R.H.I.; Bowles, T.L.; Hyngstrom, J.R.; Leachman, S.A.; Grossman, D.; et al. A phase I study of intratumoral ipilimumab and interleukin-2 in patients with advanced melanoma. Oncotarget 2016, 7, 64390–64399. [Google Scholar] [CrossRef]
- Senders, Z.J.; Martin, R.C.G. Intratumoral Immunotherapy and Tumor Ablation: A Local Approach with Broad Potential. Cancers 2022, 14, 1754. [Google Scholar] [CrossRef]
- Shi, G.; Ambrus, J.L.; Ye, S.; Shen, L. Inflammatory Joint Diseases. BioMed Res. Int. 2015, 2015, 973510. [Google Scholar] [CrossRef]
- Rheumatoid Arthritis Treatment Options—Johns Hopkins Arthritis Center. Available online: https://www.hopkinsarthritis.org/arthritis-info/rheumatoid-arthritis/ra-treatment/ (accessed on 1 April 2022).
- Antoni, C.; Braun, J. Side effects of anti-TNF therapy: Current knowledge. Clin. Exp. Rheumatol. 2002, 20, S152–S157. Available online: https://www.clinexprheumatol.org/article.asp?a=1482 (accessed on 1 April 2022).
- Evans, C.H.; Kraus, V.B.; Setton, L.A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 2014, 10, 11–22. [Google Scholar] [CrossRef]
- Juneja, P.; Munjal, A.; Hubbard, J.B. Anatomy, Joints. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/pubmed/29939670 (accessed on 1 April 2022). [PubMed]
- Kushner, I.; Bs, J.A.S. Permeability of human synovial membrane to plasma proteins. Relationship to molecular size and inflammation. Arthritis Care Res. 1971, 14, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, A.; Simkin, P.A. Plasma proteins in synovial fluids of normal human joints. Semin. Arthritis Rheum. 1989, 19, 66–76. [Google Scholar] [CrossRef]
- Schatteman, L.; Gyselbrecht, L.; De Clercq, L.; Mielants, H. Treatment of refractory inflammatory monoarthritis in ankylosing spondylitis by intraarticular injection of infliximab. J. Rheumatol. 2006, 33, 82–85. [Google Scholar] [PubMed]
- Bokarewa, M. Local infusion of infliximab for the treatment of acute joint inflammation. Ann. Rheum. Dis. 2003, 62, 783–784. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Wang, Z.; Gao, H.; Ding, J.; He, Z. Intraarticular Injection of Infliximab-Loaded Thermosensitive Hydrogel Alleviates Pain and Protects Cartilage in Rheumatoid Arthritis. J. Pain Res. 2020, 13, 3315–3329. [Google Scholar] [CrossRef]
- Eswaramoorthy, R.; Chang, C.-C.; Wu, S.-C.; Wang, G.-J.; Chang, J.-K.; Ho, M.-L. Sustained release of PTH(1–34) from PLGA microspheres suppresses osteoarthritis progression in rats. Acta Biomater. 2012, 8, 2254–2262. [Google Scholar] [CrossRef]
- Lambert, W.J.; Peck, K.D. Development of an in situ forming biodegradable poly-lactide-coglycolide system for the controlled release of proteins. J. Control. Release 1995, 33, 189–195. [Google Scholar] [CrossRef]
- De Maudave, A.F.; Leconet, W.; Toupet, K.; Constantinides, M.; Bossis, G.; de Toledo, M.; Vialaret, J.; Hirtz, C.; Lopez-Noriega, A.; Jorgensen, C.; et al. Intra-articular delivery of full-length antibodies through the use of an in situ forming depot. J. Control. Release 2022, 341, 578–590. [Google Scholar] [CrossRef]
- Kang, M.L.; Im, G.-I. Drug delivery systems for intra-articular treatment of osteoarthritis. Expert Opin. Drug Deliv. 2014, 11, 269–282. [Google Scholar] [CrossRef]
- Thau, L.; Reddy, V.; Singh, P. Anatomy, Central Nervous System. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/pubmed/31194336 (accessed on 1 April 2022). [PubMed]
- Zlokovic, B.V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron 2008, 57, 178–201. [Google Scholar] [CrossRef]
- Salameh, T.S.; Banks, W.A. Delivery of Therapeutic Peptides and Proteins to the CNS. Adv. Pharmacol. 2014, 71, 277–299. [Google Scholar] [CrossRef] [PubMed]
- Poduslo, J.F.; Curran, G.L.; Berg, C.T. Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc. Natl. Acad. Sci. USA 1994, 91, 5705–5709. [Google Scholar] [CrossRef] [PubMed]
- Grossi, P.M.; Ochiai, H.; Archer, G.E.; McLendon, R.E.; Zalutsky, M.R.; Friedman, A.H.; Friedman, H.S.; Bigner, D.D.; Sampson, J.H. Efficacy of intracerebral microinfusion of trastuzumab in an athymic rat model of intracerebral metastatic breast cancer. Clin. Cancer Res. 2003, 9, 5514–5520. [Google Scholar] [PubMed]
- Cheng, L.; Zhang, J.; Li, X.-Y.; Yuan, L.; Pan, Y.-F.; Chen, X.-R.; Gao, T.-M.; Qiao, J.-T.; Qi, J.-S. A novel antibody targeting sequence 31-35 in amyloid β protein attenuates Alzheimer’s disease-related neuronal damage. Hippocampus 2017, 27, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S. Correction to: Aducanumab: First Approval. Drugs 2021, 81, 1701. [Google Scholar] [CrossRef]
- Du, B.; Liang, M.; Zheng, H.; Fan, C.; Zhang, H.; Lu, X.; Du, Z.; Lian, Y.; Zhang, Y.; Bi, X. Anti-mouse CX3CR1 Antibody Alleviates Cognitive Impairment, Neuronal Loss and Myelin Deficits in an Animal Model of Brain Ischemia. Neuroscience 2020, 438, 169–181. [Google Scholar] [CrossRef]
- Souweidane, M.M.; Kramer, K.; Pandit-Taskar, N.; Zhou, Z.; Haque, S.; Zanzonico, P.; Carrasquillo, J.A.; Lyashchenko, S.K.; Thakur, S.B.; Donzelli, M.; et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: A single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018, 19, 1040–1050. [Google Scholar] [CrossRef]
- Soleimanizadeh, A.; Dinter, H.; Schindowski, K. Central Nervous System Delivery of Antibodies and Their Single-Domain Antibodies and Variable Fragment Derivatives with Focus on Intranasal Nose to Brain Administration. Antibodies 2021, 10, 47. [Google Scholar] [CrossRef]
- Lopez, E.; Scott, N.E.; Wines, B.D.; Hogarth, P.M.; Wheatley, A.K.; Kent, S.; Chung, A. Low pH Exposure During Immunoglobulin G Purification Methods Results in Aggregates That Avidly Bind Fcγ Receptors: Implications for Measuring Fc Dependent Antibody Functions. Front. Immunol. 2019, 10, 2415. [Google Scholar] [CrossRef] [Green Version]
- Jasion, V.S.; Burnett, B.P. Survival and digestibility of orally-administered immunoglobulin preparations containing IgG through the gastrointestinal tract in humans. Nutr. J. 2015, 14, 22. [Google Scholar] [CrossRef]
- Harris, M.S.; Hartman, D.; Lemos, B.R.; Erlich, E.C.; Spence, S.; Kennedy, S.; Ptak, T.; Pruitt, R.; Vermeire, S.; Fox, B.S. AVX-470, an Orally Delivered Anti-Tumour Necrosis Factor Antibody for Treatment of Active Ulcerative Colitis: Results of a First-in-Human Trial. J. Crohn’s Colitis 2016, 10, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y.; Shailubhai, K.; Sanyal, A. Immunotherapy with oral administration of humanized anti-CD3 monoclonal antibody: A novel gut-immune system-based therapy for metaflammation and NASH. Clin. Exp. Immunol. 2018, 193, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Boden, E.K.; Canavan, J.B.; Moran, C.J.; McCann, K.; Dunn, W.A.; Farraye, F.A.; Ananthakrishnan, A.N.; Yajnik, V.; Gandhi, R.; Nguyen, D.D.; et al. Immunologic Alterations Associated with Oral Delivery of Anti-CD3 (OKT3) Monoclonal Antibodies in Patients with Moderate-to-Severe Ulcerative Colitis. Crohn’s Colitis 360 2019, 1, otz009. [Google Scholar] [CrossRef] [PubMed]
- Cooper, P.R.; Kliwinski, C.M.; Perkinson, R.A.; Ragwan, E.; Mabus, J.R.; Powers, G.D.; Dorai, H.; Giles-Komar, J.; Hornby, P.J. The contribution of cell surface FcRn in monoclonal antibody serum uptake from the intestine in suckling rat pups. Front. Pharmacol. 2014, 5, 225. [Google Scholar] [CrossRef]
- Stevens, N.E.; Cowin, A.J. Overcoming the challenges of topical antibody administration for improving healing outcomes: A review of recent laboratory and clinical approaches. Wound Pract. Res. J. Aust. Wound Manag. Assoc. 2017, 25, 188–194. [Google Scholar]
- Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 2013, 4, 1443–1467. [Google Scholar] [CrossRef] [Green Version]
International Non-Proprietary Name | Trade Name | Target | Indication | Format | Sponsoring Company | Year of Approval (FDA) | Year of Approval (EMA) |
---|---|---|---|---|---|---|---|
Adalimumab | Humira | TNF-α | Rheumatoid Arthritis, Psoriatic Arthritis, and Ankylosing Spondylitis, Crohn disease | Human full-length IgG1 | AbbVie Inc. | 2002 | 2003 |
Efalizumab | Raptiva | CD11a | Psoriasis | Humanized full-length IgG1 | Merck Biopharma/Serono Europe | 2003 1 | 2004 1 |
Omalizumab | Xolair | IgE | Severe Asthma | Humanized full-length IgG1 | Genentech/Novartis | 2003 | 2005 |
Certolizumab Pegol | Cimzia | TNF-α | Crohn Disease | Humanized PEGylated Fab’ IgG1 fragment | UCB Pharma | 2008 | 2009 |
Canakinumab | Ilaris | IL-1β | Cryopirin-Associated Periodic Syndromes | Human full-length IgG1 | Novartis | 2009 | 2009 |
Golimumab | Simponi | TNF-α | Rheumatoid Arthritis, Psoriatic Arthritis, and Ankylosing Spondylitis | Human full-length IgG1 | Centocor Ortho Biotech/Janssen Biologics | 2009 | 2009 |
Ustekinumab | Stelara | IL-12 and IL-23 | Psoriasis | Human full-length IgG1 | Centocor Ortho Biotech/Janssen Cilag International | 2009 | 2009 |
Denosumab | Prolia | RANK-L | Postmenopausal Osteoporosis | Human full-length IgG2 | Amgen | 2010 | 2010 |
Tocilizumab | Actemra/RoActemra | IL-6R | Rheumatoid Arthritis, Polyarticular Juvenile Idiopathic Arthritis, Systemic Juvenile Idiopathic Arthritis | Humanized full-length IgG1 | Genentech/Roche | 2013 | 2014 |
Alirocumab | Praluent | PCSK9 | LDL-C Lowering | Human full-length IgG1 | Sanofi-Aventis | 2015 | 2015 |
Evolocumab | Repatha | PCSK9 | LDL-C Lowering | Human full-length IgG2 | Amgen | 2015 | 2015 |
Mepolizumab | Nucala | IL-5 | Severe Asthma | Humanized full-length IgG1 | GlaxoSmithKline | 2015 | 2015 |
Secukinumab | Cosentyx | IL-17a | Psoriasis | Human full-length IgG1 | Novartis | 2015 | 2015 |
Daclizumab | Zinbryta | IL-2 receptor-α | Multiple Sclerosis | Humanized full-length IgG1 | Biogen | 2016 2 | 2016 2 |
Ixekizumab | Taltz | IL-17a | Psoriasis | Humanized full-length IgG4 | Eli Lilly | 2016 | 2016 |
Dupilumab | Dupixent | IL4 receptor-α | Atopic Dermatitis | Human full-length IgG4 | Regeneron Pharmaceuticals/Sanofi-Aventis | 2017 | 2017 |
Sarilumab | Kevzara | IL-6 receptor | Rheumatoid Arthritis | Human full-length IgG1 | Regeneron Pharmaceuticals/Sanofi-Aventis | 2017 | 2017 |
Guselkumab | Tremfya | IL-23 p19 | Psoriasis | Human full-length IgG1 | Janssen Biotech/Johnson & Johnson | 2017 | 2017 |
Brodalumab | Siliq/Kyntheum | IL-17 receptor-α | Psoriasis | Human full-length IgG2 | Valeant Pharmaceuticals/Leo Pharma | 2017 | 2017 |
Benralizumab | Fasenra | IL-5 receptor-α | Severe Asthma | Humanized full-length IgG1 | AstraZeneca | 2017 | 2018 |
Emicizumab | Hemlibra | Factor IX and X | Hemophilia A | Humanized full-length bispecific IgG4 | Genentech/Roche | 2017 | 2018 |
Rituximab and hyaluronidase | Rituxan Hycela/MabThera SC | CD20 | Follicular Lymphoma, Diffuse large B cell Lymphoma, and Chronic Lymphocytic Leukemia | Chimeric full-length IgG1 | Genentech/Roche | 2017 | 2014 |
Belimumab | Benlysta | BAFF | Systemic Lupus Erythematosus | Human full-length IgG1 | GlaxoSmithKline | 2017 | 2017 |
Tildrakizumab | Ilumya/Ilumetri | IL-23 p19 | Psoriasis | Humanized full-length IgG1 | Merck Sharp & Dohme Corp/Almirall | 2018 | 2018 |
Burosumab | Crysvita | FGF23 | X-linked Hypophosphatemia | Human full-length IgG1 | Ultragenyx Pharmaceutical/Kyowa Kirin Holdings | 2018 | 2018 |
Erenumab | Aimovig | CGRP | Migraine | Human full-length IgG2 | Amgen/Novartis | 2018 | 2018 |
Lanadelumab | Takhzyro | pKal | Hereditary Angioedema | Human full-length IgG1 | Takeda Pharmaceuticals | 2018 | 2018 |
Galcanezumab | Emgality | CGRP | Migraine | Humanized full-length IgG4 | Eli Lilly | 2019 | 2018 |
Caplacizumab 3 | Cablivi | A1 from factor Willebrand | Acquired Thrombocytopenic Thrombotic Purpura | Humanized bivalent nanobody | Sanofi-Aventis | 2019 | 2018 |
Romosozumab | Evenity | RANK-L | Postmenopausal Osteoporosis | Humanized full-length IgG2 | Amgen/UCB Pharma | 2019 | 2019 |
Trastuzumab and hyaluronidase | Herceptin Hylecta | HER2 | HER2+ Breast Cancer | Humanized full-length IgG1 | Genentech, inc./Roche | 2019 | 2013 |
Risankizumab | Skyrizi | IL-23 p19 | Psoriasis | Humanized full-length IgG1 | AbbVie Inc. | 2019 | 2019 |
Fremanezumab | Ajovy | CGRP | Migraine | Humanized full-length IgG2 | Teva Branded Pharmaceutical Products R&D | 2020 | 2019 |
Daratumumab and hyaluronidase | Darzalex Faspro | CD38 | Light-chain Amyloidosis, Multiple Myeloma | Human full-length IgG1 | Janssen Biotech | 2020 | 2020 |
Satralizumab | Enspryng | IL-6 receptor | Neuromyelitis Optical Spectrum Disorder | Humanized full-length IgG2 | Genentech/Roche | 2020 | 2021 |
Ofatumumab | Kesimpta | CD20 | Multiple Sclerosis | Human full-length IgG1 | Novartis Pharmaceuticals Corporation | 2020 | 2021 |
Pertuzumab, Trastuzumab, and hyaluronidase | Phesgo | HER2 | Early Breast Cancer | Humanized full-length IgG1 | Genentech/Roche | 2020 | 2020 |
Tralokinumab | Adtralza | IL-13 | Eczema | Human full-length IgG4 | Leo Pharma A/S | 2021 | - |
Tezepelumab | Tezspire | TSLP | Asthma | Human full-length IgG2 | AstraZeneca | 2021 | - |
International Non- Proprietary Name or Code Name | Target | Indication | Format | Primary Sponsor | Clinical Study Phase | ClinicalTrials.gov—Identifiers |
---|---|---|---|---|---|---|
Casirivimab + Imdevimab | Spike protein | SARS-CoV2 | Human full-length IgG1 cocktail | Regeneron Pharmaceuticals | URR (EMA + FDA) | NCT05074433 |
Ofatumumab 1 | CD20 | Relapsing multiple sclerosis | Human full-length IgG1 | Novartis Pharmaceuticals | Phase 3 (Recruiting) | NCT04486716 NCT04510220 NCT04353492 |
CSL312 (Garadacimab) | Factor XIIa | Hereditary Angioedema | Human full-length IgG4 | CSL Behring | Phase 3 (Active, not recruiting) | NCT04656418 |
SAR440340 /REGN3500 (Itepekimab) | IL-33 | COPD | Human full-length IgG4 | Sanofi | Phase 3 (Recruiting) | NCT04701983 NCT04751487 |
JS002 (Ongericimab) | PCSK9 | Heterozygous Familial Hypercholesterolemia; Hyperlipidemia | Human full-length IgG4 | Shanghai Junshi Bioscience Co., Ltd. | Phase 3 (Recruiting) | NCT05325203 NCT04781114 |
BCD-085 (Netakimab) | IL-17 | Psioratic Arthritis | Humanized genetically modified IgG1 | Biocad | Phase 3 (Active, not recruiting) | NCT03598751 |
AK002 (Lirentelimab) | Siglec-8 | Eosinophilic Gastritis and/or Eosinophilic Duodenitis | Humanized non fucosylated IgG1 | Allakos, Inc. | Phase 3 (Recruiting) | NCT05152563 |
MW032 | RANK-L | Bone Metastases from solid tumors | Human full-length IgG2 | Abwell (Shanghai) Bioscience Co., Ltd. | Phase 3 (Active, not recruiting) | NCT04812509 |
Tralokinumab 1 | IL-13 | Atopic Dermatitis | Human full-length IgG4 | LEO Pharma | Phase 3 (Recruiting) | NCT05194540 NCT03587805 |
Golimumab 1 | TNF-a | Moderately to Severely Active Ulcerative Colitis | Human full-length IgG1 | Janssen Research & Development, LLC | Phase 3 (Recruiting) | NCT03596645 |
LY01011 | RANK-L | Bone Metastases from solid tumors | Human full-length IgG2 | Luye Pharma Group Ltd. | Phase 3 (Recruiting) | NCT04859569 |
QL1206 | RANK-L | Bone Metastases from solid tumors | Human full-length IgG2 | Qilu Pharmaceutical Co., Ltd. | Phase 3 (Recruiting) | NCT04550949 |
Adalimumab 1 | TNF-a | Ulcerative Colitis | Human full-length IgG1 | AbbVie | Phase 3 (Active, not recruiting) | NCT02632175 |
IBI306 | PCSK9 | Homozygous and Heterozygous Familial Hypercholesterolemia | Human full-length IgG2 | Innovent Biologics (Suzhou) Co., Ltd. | Phase 3 (Recruiting) | NCT04031742 NCT04709536 NCT04179669 |
Alirocumab 1 | PCSK9 | Postprandial Hyperlipemia in Type 2 Diabetes | Human full-length IgG1 | Regeneron Pharmaceuticals | Phase 3 (Recruiting) | NCT03344692 |
SYN023 (CTB-011 and CTB-012) | Proteins of human Rabies | Human Rabies | Humanized full-length IgG cocktail | Synermore Biologics (Suzhou) Co., Ltd. | Phase 3 (Active, not recruiting) | NCT04644484 |
Adalimumab 1 | TNF-a | Uveitis | Human full-length IgG1 | JHSPH Center for Clinical Trials | Phase 3 (Recruiting) | NCT03828019 |
CM310 | IL-4Ra | Atopic Dermatitis | Humanized full-length IgG | Keymed Biosciences Co., Ltd. | Phase 3 (Not yet Recruiting) | NCT05265923 |
Benralizumab 1 | IL-5Ra | Eosinophilic Gastritis and/or Gastroenteritis | Humanized full-length IgG1 | AstraZeneca | Phase 3 (Recruiting) | NCT05251909 |
Elranatamab + Daratumumab | BCMA-CD3 + CD38 | Multiple Myeloma | Humanized) bispecific IgG2 + Human full-length IgG1 | Pfizer | Phase 3 (Recruiting) | NCT05020236 |
Teclistamab | BCMA-CD3+ | Hematological Malignancies | Human bispecific IgG4 | Janssen Research & Development, LLC | Phase 3 (Recruiting) | NCT03145181 |
PRO 140 (Leronlimab) | CCR5 | HIV | Humanized full-length IgG4 | CytoDyn, Inc. | Phase 3 (Active, not recruiting) | NCT03902522 NCT05271370 NCT02859961 NCT02990858 |
Olokizumab | IL-6 | COVID-19 | Humanized full-length IgG4 | R-Pharm | Phase 3 (Recruiting) | NCT05187793 |
Etrolizumab | α4-β7/αE-β7 integrin receptor | Crohn’s disease | Humanized full-length IgG1 | Hoffmann-La Roche | Phase 3 (Recruiting) | NCT02403323 |
Gantenerumab | β-amyloid | Alzheimer’s disease | Human full-length IgG1 | Hoffmann-La Roche | Phase 3 (Recruiting) | NCT03444870 NCT05256134 NCT04374253 NCT01760005 |
Emicizumab 1 | FIX, FX | Hemophilia A Without Inhibitor | Humanized bispecific IgG4 | Margaret Ragni, University of Pittsburgh | Phase 3 (Recruiting) | NCT04303559 |
International Non- Proprietary Name or Code Name | Target | Indication | Format | Primary Sponsor | Clinical Study Phase | ClinicalTrials.gov—Identifiers |
---|---|---|---|---|---|---|
Tixagevimab/Cilgavimab (Mix of AZD8895 and AZD1061) | Spike protein of SARS-CoV2 | COVID-19 | Human full-length IgG1 cocktail | AstraZeneca | URR (EMA + FDA) | NCT04625725 NCT04625972 NCT04723394 |
Nirsevimab (MEDI8897) | Fusion (F) glycoprotein of RSV | Lower Respiratory Tract Infection (RSV) | Human full-length IgG1 | AstraZeneca/MedImmune LLC | URR (EMA) | NCT02878330 NCT05110261 |
SYN023 (Mix of CTB011 and CTB012) | Residues found on RABV | Human Rabies | Humanized full-length IgG cocktail | Synermore Biologics (Suzhou) Co., Ltd. | Phase 3 (Active, not recruiting) | NCT04495569 NCT03961555 NCT04644484 |
MAD0004J08 | SARS-CoV2 | COVID-19 | Human Fc-engineered IgG1 | Toscana Life Sciences Sviluppo s.r.l. | Phase 3 (Active, not recruiting) | NCT04952805 |
VIR-7831 (Sotrovimab) | Spike protein of SARS-CoV2 | COVID-19 | Human full-length IgG1 | Vir Biotechnology, Inc. | Phase 3 (Active, not recruiting) | NCT04913675 |
Ibalizumab-uiyk (Trograzo) | CD4-directed post-attachment inhibitor | HIV-1-infection | Humanized (from mouse) full-length IgG4 | TaiMed Biologics Inc. | Phase 3 (Recruiting) | NCT03913195 |
MK-1654 | Fusion Protein | RSV | Human full-length IgG1 | Merck Sharp & Dohme Corp. | Phase 3 (Recruiting) | NCT04938830 NCT04767373 |
ADM03820 | SARS-CoV2 | COVID-19 | Human Fc-engineered IgG1 cocktail | Ology Bioservices | Phase 2/Phase 3 (Not recruiting) | NCT05142527 |
International Non- Proprietary Name | Trade Name | Target | Indication | Format | Sponsoring Company | Year of Approval (FDA) | Year of Approval (EMA) |
---|---|---|---|---|---|---|---|
Ranibizumab | Lucentis | VEGF-A | AMD, diabetic retinopathy, macular edema, branch, and central retinal vein occlusion | Humanized Fab IgG1 fragment | Genentech/Novartis Europharm | 2006 | 2007 |
Brolucizumab | Beovu | VEGF-A | AMD | Humanized single-chain variable fragment IgG | Novartis | 2019 | 2020 |
Faricimab | Vabysmo | VEGF-A and ANG-2 | AMD, Diabetic Macular Edema | Humanized bispecific IgG1 | Roche | 2022 | URR |
International Non- Proprietary Name or Code Name | Target | Indication | Format | Primary Sponsor | Clinical Study Phase | ClinicalTrials.gov—Identifiers |
---|---|---|---|---|---|---|
Faricimab | VEGF-A and ANG-2 | nAMD, Macular edema secondary to BRVO | Humanized bispecific IgG1 | Hoffmann-La Roche | Phase 3 (Recruiting) | NCT04777201 NCT04740905 NCT04740931 NCT04432831 |
Ranibizumab | VEGF-A | nAMD | Humanized IgG1 Fab fragment | Opthea Limited | Phase 3 (Recruiting) | NCT04757610 |
CRVO With Macular Edema | University of Giessen | Phase 3 (Recruiting) | NCT04444492 | |||
Retinopathy of Prematurity Both Eyes | Zagazig University | Phase 3 (Recruiting) | NCT05033106 | |||
Diabetic Retinopathy, nAMD | Hoffmann-La Roche | Phase 3 (Active, not recruiting) | NCT04503551 NCT04657289 NCT05126966 NCT04108156 NCT03683251 | |||
nAMD | King’s College Hospital NHS Trust | Phase 3 (Active, not recruiting) | NCT02243878 | |||
Retinopathy of prematurity | Novartis Pharmaceuticals | Phase 3 (Active, not recruiting) | NCT02640664 | |||
Brolucizumab | VEGF-A | nAMD, Proliferative Diabetic Retinopathy | Humanized single-chain variable fragment IgG | Novartis | Phase 3 (Recruiting) | NCT04264819 NCT04239027 NCT04278417 NCT04058067 NCT04047472 NCT04005352 |
Diabetic Macular Edema | Benha Univeristy | Phase 3 (Recruiting) | NCT04955171 | |||
Bevacizumab | VEGF-A | Diabetic Macular Edema | Humanized full-length IgG1 | Laboratorios Sophia S.A de C.V. | Phase 3 (Recruiting) | NCT05217680 |
Diabetic Macular Edema, Non-proliferative diabetic Retinopathy | Shahid Beheshti University of Medical Sciences | Phase 3 (Active, not recruiting) | NCT05083689 NCT04511715 | |||
Retinopathy of Prematurity | Jaeb Center for Health Research | Phase 3 (Recruiting) | NCT04634604 | |||
wAMD, BRVO, Diabetic Macular Edema | Outlook Therapeutics Inc. | Phase 3 (Active, not recruiting) | NCT05112861 | |||
Retinal Telangiectasis, Coats Disease | Fondation Ophtalmologique Adolphe de Rothschild | Phase 3 (Recuiting) | NCT03940690 | |||
HLX04-O | VEGF-A | AMD | Humanized full-length IgG1 | Shanghai Henlius Biotech | Phase 3 (Recruiting) | NCT05003245 NCT04740671 |
MW02 | VEGF-A | wAMD | Humanized full-length IgG1 | Mabwell (Shanghai) Bioscience Co., Ltd. | Phase 2 & 3 (Recruiting) | NCT05297292 |
KSI-301 | VEGF-A | wAMDNon-Proliferative Diabetic RetinopathyRetinal Vein OcclusionDiabetic Macular Edema | Humanized biopolymer conjugate IgG1 | Kodiak Sciences Inc | Phase 3 (Active, not recruiting) | NCT04049266 NCT05066230 NCT04592419 NCT04611152 NCT04603937 NCT04964089 |
LUBT010 | VEGF-A | wAMD | Humanized IgG1 Fab fragment | Lupin Ltd. | Phase 3 (Recruiting) | NCT04690556 |
International Non- Proprietary Name or Code Name | Target | Indication | Format | Primary Sponsor | Clinical Study Phase | ClinicalTrials.gov—Identifiers |
---|---|---|---|---|---|---|
STI-2099 (COVI-DROPS) | SARS-CoV-2 | COVID-19 | Encoded plasmid DNA expressing IgG1 nAb | Sorrento Therapeutics, Inc. | Phase 2 (Active, not recruiting) | NCT05074394 NCT04906694 NCT04900428 |
CSJ-117 (Ecleralimab) | TSLP | AsthmaCOPD | Humanized IgG1 Fab Fragment | Novartis Pharmaceuticals | Phase 2 (Recruiting) | NCT04946318 NCT04882124 |
CT-P63 and CT-P59 | SARS-CoV-2 | COVID-19 | Human IgG cocktail | Celltrion | Phase 3 (Recruiting) | NCT05224856 |
IBIO123 | SARS-CoV-2 | COVID-19 | Human IgG cocktail | Immune Biosolutions Inc. | Phase 1 & 2 (Recruiting) | NCT05303376 |
International Non- Proprietary Name or Code Name | Target | Indication | Format | Primary Sponsor | Clinical Study Phase | ClinicalTrials.gov—Identifiers |
---|---|---|---|---|---|---|
APX005M (Sotigalimab) | CD40 | Metastatic Melanoma | Humanized full-length IgG1 | M.D. Anderson Cancer Center | Phase 1 & 2 (Recruiting) | NCT02706353 |
INCAGN01949 | OX40 | Locally Advanced Malignant Solid Neoplasm | Human full-length IgG1 | University of Southern California | Phase 1 & 2 (Recruiting) | NCT04387071 |
Ipilimumab | CTLA-4 | Stage III/IV melanoma | Human full-length IgG1 | Gustave Roussy, Cancer Campus, Grand Paris | Phase 1 & 2 (Active, not recruiting) | NCT02857569 |
Checkpoint inhibitor such as Pembrolizumab | PD1/PDL1 and CTLA4 | Solid Tumors | Humanized full-length IgG4 | Second Affiliated Hospital of Guangzhou Medical University | Phase 2 & 3 (Recruiting) | NCT03755739 |
Urelumab | CD137 | Neoplasms | Human full-length IgG4 | Clinica Universidad de Navarra, Universidad de Navarra | Phase 1 & 2 (Recruiting) | NCT03792724 |
International Non- Proprietary Name or Code Name | Target | Indication | Format | Primary Sponsor | Clinical Study Phase | ClinicalTrials.gov—Identifiers |
---|---|---|---|---|---|---|
AMB-05X | c-FMS | Tenosynovial giant cell tumor, pigmented villonodular synovitis | Human full-length IgG2 | AmMax Bio, Inc. | Phase 2 (Active, not recruiting) | NCT04731675 NCT05349643 |
Canakinumab | IL1 β | Knee osteroarthritis | Human full-length IgG1 | Novartis Pharmaceuticals | Phase 2 (Recruiting) | NCT04814368 |
Routes of Administration | Advantages | Limitations |
---|---|---|
Subcutaneous |
|
|
Intramuscular |
|
|
Intravitreal |
|
|
Inhalation |
|
|
Intra-tumoral |
|
|
Intra-articular |
|
|
CNS delivery |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitiot, A.; Heuzé-Vourc’h, N.; Sécher, T. Alternative Routes of Administration for Therapeutic Antibodies—State of the Art. Antibodies 2022, 11, 56. https://doi.org/10.3390/antib11030056
Pitiot A, Heuzé-Vourc’h N, Sécher T. Alternative Routes of Administration for Therapeutic Antibodies—State of the Art. Antibodies. 2022; 11(3):56. https://doi.org/10.3390/antib11030056
Chicago/Turabian StylePitiot, Aubin, Nathalie Heuzé-Vourc’h, and Thomas Sécher. 2022. "Alternative Routes of Administration for Therapeutic Antibodies—State of the Art" Antibodies 11, no. 3: 56. https://doi.org/10.3390/antib11030056
APA StylePitiot, A., Heuzé-Vourc’h, N., & Sécher, T. (2022). Alternative Routes of Administration for Therapeutic Antibodies—State of the Art. Antibodies, 11(3), 56. https://doi.org/10.3390/antib11030056