Design, Production, Characterization, and Use of Peptide Antibodies
Conflicts of Interest
References
- Kohler, G.; Howe, S.C.; Milstein, C. Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines. Eur. J. Immunol. 1976, 6, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Trier, N.H.; Hansen, P.R.; Houen, G. Production and characterization of peptide antibodies. Methods 2012, 56, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Trier, N.H.; Mortensen, A.; Schiolborg, A.; Friis, T. Production and screening of monoclonal peptide antibodies. Methods Mol. Biol. 2015, 1348, 109–126. [Google Scholar] [PubMed]
- Houen, G. Peptide Antibodies: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2016. [Google Scholar]
- Mughal, F.P.; Bergmann, A.C.; Huynh, H.U.B.; Jørgensen, S.H.; Mansha, I.; Kesmez, M.; Schürch, P.M.; Theocharides, A.P.A.; Hansen, P.R.; Friis, T.; et al. Production and Characterization of Peptide Antibodies to the C-Terminal of Frameshifted Calreticulin Associated with Myeloproliferative Diseases. Int. J. Mol. Sci. 2022, 23, 6803. [Google Scholar] [CrossRef] [PubMed]
- Prieto, I.; Hervás-Stubbs, S.; García-Granero, M.; Berasain, C.; Riezu-Boj, J.I.; Lasarte, J.J.; Sarobe, P.; Prieto, J.; Borrás-Cuesta, F. Simple strategy to induce antibodies of distinct specificity: Application to the mapping of gp120 and inhibition of HIV-1 infectivity. Eur. J. Immunol. 1995, 25, 877–883. [Google Scholar] [CrossRef]
- Park, B.K.; Lee, S.I.; Bae, J.Y.; Park, M.S.; Lee, Y.; Kwon, H.J. Production of a monoclonal antibody targeting the M protein of MERS-CoV for detection of MERS-CoV using a synthetic peptide epitope formulated with a CpG-DNA-liposome complex. Int. J. Pept. Res. Ther. 2019, 25, 819–826. [Google Scholar] [CrossRef] [Green Version]
- Bhullar, S.S.; Chandak, N.H.; Baheti, N.N.; Purohit, H.J.; Taori, G.M.; Daginawala, H.F.; Kashyap, R.S. Diagnosis of herpes simplex encephalitis by elisa using antipeptide antibodies against type-common epitopes of glycoprotein b of herpes simplex viruses. J. Immunoass. Immunochem. 2016, 37, 217–227. [Google Scholar] [CrossRef]
- Chen, Q.; Xia, C.; Deng, Y.; Wang, M.; Luo, P.; Wu, C.; Yue, J.; Fang, N.; Wang, M.; Wei, S. Immunohistochemistry as a quick screening method for clinical detection of braf(v600e) mutation in melanoma patients. Tumor Biol. 2014, 35, 5727–5733. [Google Scholar] [CrossRef]
- Field, S.; Uyttenhove, C.; Stroobant, V.; Cheou, P.; Donckers, D.; Coutelier, J.P.; Simpson, P.T.; Cummings, M.C.; Saunus, J.M.; Reid, L.E.; et al. Novel highly specific anti-periostin antibodies uncover the functional importance of the fascilin 1-1 domain and highlight preferential expression of periostin in aggressive breast cancer. Int. J. Cancer 2016, 138, 1959–1970. [Google Scholar] [CrossRef] [Green Version]
- Trier, N.H.; Houen, G. Peptide Antibodies in Clinical Laboratory Diagnostics. Adv. Clin. Chem. 2017, 81, 43–96. [Google Scholar]
- Schlatter, S.; Stansfield, S.H.; Dinnis, D.M.; Racher, A.J.; Birch, J.R.; James, D.C. On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol. Prog. 2005, 21, 122–133. [Google Scholar] [CrossRef]
- Ramasubramanian, A.; Tennyson, R.; Magnay, M.; Kathuria, S.; Travaline, T.; Jain, A.; Lord, D.M.; Salemi, M.; Sullican, C.; Magnay, T.; et al. Bringing the heavy Chain to Light: Creating a symmetric, bivalent IgG-like bispecific. Antibodies 2020, 9, 62. [Google Scholar] [CrossRef]
- Carrara, S.C.; Fiebig, D.; Bogen, J.P.; Grzeschik, J.; Hock, B.; Kolmar, H. Recombinant antibody production using a dual-promoter single plasmid system. Antibodies 2021, 10, 18. [Google Scholar] [CrossRef]
- van Beijnum, J.R.; Moerkerk, P.T.M.; Gerbers, A.J.; de Bruïne, A.P.; Arends, J.-W.; Hoogenboom, H.R.; Hufton, S.E. Target validation for genomics using peptide-specific phage antibodies: A study of five gene products overexpressed in colorectal cancer. Int. J. Cancer 2002, 101, 118–127. [Google Scholar] [CrossRef]
- Anderson, G.P.; Liu, J.L.; Shriver-Lake, L.C.; Goldman, E.R. Selection and characterization of single-domain antibodies for detection of lassa nucleoprotein. Antibodies 2020, 9, 71. [Google Scholar] [CrossRef]
- Mieczkowski, C.; Bahmanjah, S.; Yu, Y.; Baker, J.; Raghunathan, G.; Tomazela, D.; Hsieh, M.; McCoy, M.; Strickland, C.; Fayadat-Dilman, L. Crystal structure and characterization of human heavy-chain only antibodies reveals a novel, stable dimeric structure similar to monoclonal antibodies. Antibodies 2020, 9, 66. [Google Scholar] [CrossRef]
- Mieczkowski, C.; Chenh, A.; Fischmann, T.; Hsieh, M.; Baker, J.; Uchida, M.; Raghunathan, G.; Strickland, C.; Fayadat-Dilman, L. Characterization and modeling of reversible antibody self-association provide insights into behavior, prediction and correction. Antibodies 2021, 10, 8. [Google Scholar] [CrossRef]
- Holm, B.E.; Bergmann, A.C.; Hansen, P.R.; Koch, C.; Houen, G.; Trier, N.H. Antibodies with specificity for native and denatured forms of ovalbumin differ in reactivity between enzyme-linked immunosorbent assays. APMIS 2015, 123, 136–145. [Google Scholar] [CrossRef]
- Nelson, P.N.; Fletcher, S.M.; MacDonald, D.; Goodall, D.M.; Jefferis, R. Assay restriction profiles of three monoclonal antibodies recognizing G3m(u)allotype. Development of an allotype specific assay. J. Immunol. Methods 1991, 138, 57–64. [Google Scholar] [CrossRef]
- Bergmann, A.C.; Kyllesbech, C.; Slibinskas, R.; Ciplys, E.; Højrup, P.; Trier, N.H.; Houen, P. Epitope mapping of monoclonal antibodies to calreticulin reveals that charged amino acids are essential for antibody binding. Antibodies 2021, 10, 31. [Google Scholar] [CrossRef]
- Fanelli, I.; Rovero, P.; Hansen, P.R.; Frederiksen, J.; Houen, G.; Trier, N.H. Specificity of anti-citrullinated protein antibodies to citrullinated α-enolase peptides as a function of epitope structure and composition. Antibodies 2021, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Trier, N.H. Characterization of peptide antibodies by epitope mapping using resin-bound and soluble peptides. Methods Mol. Biol. 2015, 1348, 229–239. [Google Scholar] [PubMed]
- Huber-Lang, M.S.; Sarma, J.V.; McGuire, S.R.; Lu, K.T.; Guo, R.F.; Padgaonkar, V.A.; Younkin, E.M.; Laudes, I.J.; Riedemann, N.C.; Younger, J.G.; et al. Protective effects of anti-C5a peptide antibodies in experimental sepsis. FASEB J. 2001, 15, 568–570. [Google Scholar] [CrossRef] [PubMed]
- Stock, N.K.; Escadafal, C.; Achazi, K.; Cissé, M.; Niedrig, M. Development and characterization of polyclonal peptide antibodies for the detection of Yellow fever virus proteins. Methods 2015, 222, 110–116. [Google Scholar] [CrossRef]
- Vetvicka, V.; Vetvickova, J.; Fusek, M. Anti-human procathepsin D activation peptide antibodies inhibit breast cancer development. Breast Cancer Res. Treatment 1999, 57, 261–269. [Google Scholar] [CrossRef]
- Gonçalves, I.; Nitulescu, M.; Ares, M.P.S.; Fredrikson, G.N.; Jansson, B.; Li, Z.-C.; Nilsson, J. Identification of the target for therapeutic recombinant anti-apoB-100 peptide antibodies in human atherosclerotic lesions. Atherosclerosis 2009, 205, 96–100. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trier, N.H.; Houen, G. Design, Production, Characterization, and Use of Peptide Antibodies. Antibodies 2023, 12, 6. https://doi.org/10.3390/antib12010006
Trier NH, Houen G. Design, Production, Characterization, and Use of Peptide Antibodies. Antibodies. 2023; 12(1):6. https://doi.org/10.3390/antib12010006
Chicago/Turabian StyleTrier, Nicole H., and Gunnar Houen. 2023. "Design, Production, Characterization, and Use of Peptide Antibodies" Antibodies 12, no. 1: 6. https://doi.org/10.3390/antib12010006
APA StyleTrier, N. H., & Houen, G. (2023). Design, Production, Characterization, and Use of Peptide Antibodies. Antibodies, 12(1), 6. https://doi.org/10.3390/antib12010006