A Brief Chronicle of Antibody Research and Technological Advances
Abstract
:1. Introduction
2. The Antibody Research and Related Technologies
2.1. Early Beginnings: Inoculation and Vaccination (18th–19th Century)
2.2. The Birth of Serum Therapy (Late 19th Century)
2.3. Foundations of Modern Immunology (19th–20th Century)
2.4. Pioneering Immunology of the Mid-20th Century
2.5. The Clonal Selection Theory (1950s–1960s)
- Each lymphocyte is specific for a single antigen;
- Upon encountering its specific antigen, a lymphocyte is stimulated to proliferate and differentiate into effector cells;
- Self-reactive lymphocytes are eliminated during development, ensuring tolerance to self-antigens;
- Antibody diversity is generated before antigen exposure, not due to antigen exposure.
2.6. Unraveling Antibody Structure (1950s–1970s)
2.7. The Discovery of Antibody Classes and Subclasses (1960s)
2.8. The Genetic Basis of Antibody Diversity (1970s)
2.9. Monoclonal Antibodies: From Bench to Bedside (1970s)
2.10. Antibody Humanization and Clinical Advances (1980s)
2.11. Immune Checkpoint Inhibitors (1990s)
2.12. Cytokines Inhibitors (1990s)
3. Future Directions
- Innovations such as nanobodies, cattle-derived knob domains, intrabodies, and multispecific antibodies are expanding the therapeutic potential of antibody-based drugs [259,260,261]. These formats offer unique properties, including improved tissue penetration and the ability to target multiple antigens simultaneously.
- Advances in genomics, proteomics, and metabolomics are enabling the development of personalized antibody therapies customized to individual patients’ genetic and acquired profiles, including specific disease characteristics and body microbiome, to enhance treatment effectiveness and minimize side effects [262,263].
- The integration of AI and machine learning into antibody design accelerates the discovery and optimization of new therapeutics [264]. These technologies facilitate the prediction of antibody properties and the design of new antibodies from scratch [265]. In 2024, the Nobel Prize in Chemistry was awarded to David Baker for computational protein design, and to Demis Hassabis and John Jumper for protein structure prediction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rees, A.R. The Antibody Molecule: From Antitoxins to Therapeutic Antibodies; Oxford Medical Histories; Oxford University Press: London, UK, 2014; ISBN 9780199646579. [Google Scholar]
- Marks, L.V. The Lock and Key of Medicine: Monoclonal Antibodies and the Transformation of Healthcare; Yale University Press: New Haven, CT, USA, 2015; ISBN 9780300213522. [Google Scholar]
- Chiu, M.L.; Goulet, D.R.; Teplyakov, A.; Gilliland, G.L. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies 2019, 8, 55. [Google Scholar] [CrossRef]
- Liu, J.K.H. The History of Monoclonal Antibody Development-Progress, Remaining Challenges and Future Innovations. Ann. Med. Surg. 2014, 3, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Edelman, G.M.; Cunningham, B.A.; Gall, W.E.; Gottlieb, P.D.; Rutishauser, U.; Waxdal, M.J. The Covalent Structure of an Entire GammaG Immunoglobulin Molecule. Proc. Natl. Acad. Sci. USA 1969, 63, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Fagraeus, A. Plasma Cellular Reaction and Its Relation to the Formation of Antibodies in Vitro. Nature 1947, 159, 499. [Google Scholar] [CrossRef] [PubMed]
- Burnet, F.M. The Clonal Selection Theory of Acquired Immunity; Vanderbilt University Press: Nashville, TN, USA, 1959. [Google Scholar]
- Cooper, M.D.; Peterson, R.D.; Good, R.A. Delineation of the Thymic and Bursal Lymphoid Systems in the Chicken. Nature 1965, 205, 143–146. [Google Scholar] [CrossRef]
- Köhler, G.; Milstein, C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Tonegawa, S. Somatic Generation of Antibody Diversity. Nature 1983, 302, 575–581. [Google Scholar] [CrossRef]
- Jones, P.T.; Dear, P.H.; Foote, J.; Neuberger, M.S.; Winter, G. Replacing the Complementarity-Determining Regions in a Human Antibody with Those from a Mouse. Nature 1986, 321, 522–525. [Google Scholar] [CrossRef]
- Harris, L.J.; Skaletsky, E.; McPherson, A. Crystallographic Structure of an Intact IgG1 Monoclonal Antibody. J. Mol. Biol. 1998, 275, 861–872. [Google Scholar] [CrossRef]
- Needham, J. Science and Civilisation in China, Part 6, Medicine; Cambridge University Press: Cambridge, UK, 2000; Volume 6. [Google Scholar]
- Timonius, E.; Woodward, J.V. An Account, or History, of the Procuring the Smallpox by Incision, or Inoculation; as It Has for Some Time Been Practised at Constantinople. Philos. Trans. R. Soc. Lond. 1714, 29, 72–82. [Google Scholar] [CrossRef]
- Pylarini, G., II. Nova & Tuta Vaiolas Excitandi per Transplantationem Methodus, Nuper Inventa & in Usum Tracta. Philos. Trans. R. Soc. Lond. 1714, 29, 393–399. [Google Scholar] [CrossRef]
- Jenner, E. An Inquiry into the Causes and Effects of the Variolæ Vaccinæ; J. Murray and S. Highley: London, UK, 1798. [Google Scholar]
- Jones, H.B., III. On a New Substance Occurring in the Urine of a Patient with Mollities Ossium. Philos. Trans. R. Soc. Lond. 1848, 138, 55–62. [Google Scholar] [CrossRef]
- Haeckel, E. “Die” Radiolarien (Rhizopoda Radiaria): Eine Monographie; Reimer: Berlin, Germany, 1862. [Google Scholar]
- Metchnikoff, E. Uber Eine Sprosspilzkrakenheit Der Daphnei: Betrag Zur Libre Uber DenKapmf Der Phagocyten Gegen Darmkrankeheitserrreger. Vischows Arch. 1884, 96, 177–185. [Google Scholar] [CrossRef]
- Behring, E.v. Untersuchungen Ueber Das Zustandekommen Der Diphtherie-Immunität Bei Thieren. Deutsche Medicinische Wochenschrift 1890, 16, 1145–1148. [Google Scholar] [CrossRef]
- Ehrlich, P. Experimentelle Untersuchungen Über Immunität. II. Ueber Abrin. Dtsch. Med. Wochenschr. 1891, 17, 1218–1219. [Google Scholar] [CrossRef]
- Ehrlich, P. Zur Kenntnis Der Antitoxinwirkung. Fortschritte Der Med. 1897, 15, 41–43. [Google Scholar]
- Deutsch, L. Contribution a l’etude de l’origine Des Anticorps Typhiques. Ann. Inst. Pasteur 1899, 13, 689–727. [Google Scholar]
- Landsteiner, K. Zur Kenntnis Der Antifermentativen, Lytischen Und Agglutinierenden Wirkungen Des Blutseruns Und Der Lymphe. Z. Bakteriol. 1900, 27, 357–362. [Google Scholar]
- Portier, P. De l’action Anaphylactique de Certains Venins. CR Soc. Biol. 1902, 54, 170. [Google Scholar]
- Von, P.C. Allergie. Munch. Med. Wchnschr 1906, 53, 1457–1458. [Google Scholar]
- Eriksen, A. Smallpox Inoculation: Translation, Transference and Transformation. Palgrave Commun. 2020, 6, 52. [Google Scholar] [CrossRef]
- Stanwell-Smith, R. Immunization: Celebrating the Past and Injecting the Future. J. R. Soc. Med. 1996, 89, 509–513. [Google Scholar] [CrossRef]
- Riedel, S. Edward Jenner and the History of Smallpox and Vaccination. In Baylor University Medical Center Proceedings; Taylor & Francis: Abingdon, UK, 2005; Volume 18, pp. 21–25. [Google Scholar] [CrossRef]
- Breman, J.G.; Arita, I. The Confirmation and Maintenance of Smallpox Eradication. N. Engl. J. Med. 1980, 303, 1263–1273. [Google Scholar] [CrossRef]
- Rathore, R.; Coward, R.A.; Woywodt, A. What’s in a Name? Bence Jones Protein. Clin. Kidney J. 2012, 5, 478–483. [Google Scholar] [CrossRef]
- Graham-Smith, G.S. George Henry Falkiner Nuttall: (5 July 1862–16 December 1937). Epidemiol. Infect. 1938, 38, 129–140. [Google Scholar] [CrossRef]
- Behring, E.v.; Shibasaburo, K. Ueber Das Zustandekommen Der Diphtherie-Immunität Und Der Tetanus-Immunität Bei Thieren. Dtsch. Med. Wochenschr. 1890, 16, 1113–1114. [Google Scholar] [CrossRef]
- Raju, T.N.K. Emil Adolf von Behring and Serum Therapy for Diphtheria. Acta Paediatr. 2006, 95, 258–259. [Google Scholar] [CrossRef]
- Tizzoni, G.; Cattani, G. Fernere Untersuchungen Liber Das Tetanusantitoxin. Zentralbl Bakteriol Mikrobiol Hyg [A] 1891, 10, 33. [Google Scholar]
- Esparza, J.; Lederman, S.; Nitsche, A.; Damaso, C.R. Early Smallpox Vaccine Manufacturing in the United States: Introduction of the “Animal Vaccine” in 1870, Establishment of “Vaccine Farms”, and the Beginnings of the Vaccine Industry. Vaccine 2020, 38, 4773–4779. [Google Scholar] [CrossRef] [PubMed]
- Metchnikoff, É. L’immunité Dans Les Maladies Infectieuses; V. Masson: Paris, French, 1901. [Google Scholar]
- Bordet, J. Les Leucocytes et Les Propriétés Actives Du Sérum Chez Les Vaccinés. Ann. De. L’institut Pasteur 1895, 9, 462. [Google Scholar]
- Ehrlich, P. Beiträge zur Kenntniss der Anilinfärbungen und ihrer Verwendung in der mikroskopischen Technik. Arch. Mikrosk. Anat. (1865) 1877, 13, 263–277. [Google Scholar] [CrossRef]
- Lindenmann, J. Origin of the Terms “antibody” and “Antigen”. Scand. J. Immunol. 1984, 19, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P. Die Seitenkettentheorie Und Ihre Gegner. Münchner Med. Wochenschr. 1901, 52, 2123–2124. [Google Scholar]
- Ehrlich, P. Die Schutzstoffe des Blutes. Dtsch. Med. Wochenschr. 1901, 27, 913–916. [Google Scholar] [CrossRef]
- Ehrlich, P. Ueber Immunität durch Vererbung und Säugung. Med. Microbiol. Immunol. 1892, 12, 183–203. [Google Scholar] [CrossRef]
- Avery, O.T.; Heidelberger, M. Immunological Relationships of Cell Constituents of Pneumococcus. J. Exp. Med. 1923, 38, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Svedberg, T. Zentrifugierung, Diffusion und Sedimentationsgleichgewicht von Kolloiden und hochmolekularen Stoffen. Colloid. Polym. Sci. 1925, 36, 53–64. [Google Scholar] [CrossRef]
- Heidelberger, M.; Kendall, F.E. The Precipitin Reaction between Type Iii Pneumococcus Polysaccharide and Homologous Antibody: Iii. A Quantitative Study and a Theory of the Reaction Mechanism. J. Exp. Med. 1935, 61, 563–591. [Google Scholar] [CrossRef]
- Heidelberger, M.; Pedersen, K.O. The Molecular Weight of Antibodies. J. Exp. Med. 1937, 65, 393–414. [Google Scholar] [CrossRef]
- Tiselius, A. A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures. Trans. Faraday Soc. 1937, 33, 524–531. [Google Scholar] [CrossRef]
- Coons, A.H.; Creech, H.J.; Jones, R.N. Immunological Properties of an Antibody Containing a Fluorescent Group. Proc. Soc. Exp. Biol. Med. 1941, 47, 200–202. [Google Scholar] [CrossRef]
- Bjørneboe, M.; Gormsen, H. Experimental Studies on the Rôle of Plasma Cells as Antibody Producers. Acta Pathol. Microbiol. Scand. 1943, 20, 649–692. [Google Scholar] [CrossRef]
- Coombs, R.R.A.; Mourant, A.E.; Race, R.R. A New Test for the Detection of Weak and Incomplete Rh Agglutinins. Br. J. Exp. Pathol. 1945, 26, 255–266. [Google Scholar] [PubMed]
- Billingham, R.E.; Brent, L.; Medawar, P.B. Actively Acquired Tolerance of Foreign Cells. Nature 1953, 172, 603–606. [Google Scholar] [CrossRef]
- Jerne, N.K. The Natural-Selection Theory of Antibody Formation. Proc. Natl. Acad. Sci. USA 1955, 41, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Puck, T.T.; Marcus, P.I.; Cieciura, S.J. Clonal Growth of Mammalian Cells in Vitro; Growth Characteristics of Colonies from Single HeLa Cells with and without a Feeder Layer. J. Exp. Med. 1956, 103, 273–283. [Google Scholar] [CrossRef]
- Nossal, G.J.; Lederberg, J. Antibody Production by Single Cells. Nature 1958, 181, 1419–1420. [Google Scholar] [CrossRef]
- Edelman, G.M. Dissociation of γ-Globulin. J. Am. Chem. Soc. 1959, 81, 3155–3156. [Google Scholar] [CrossRef]
- Heremans, J.F.; Heremans, M.T.; Schultze, H.E. Isolation and Description of a Few Properties of the Beta 2A-Globulin of Human Serum. Clin. Chim. Acta 1959, 4, 96–102. [Google Scholar] [CrossRef]
- Yalow, R.S.; Berson, S.A. Immunoassay of Endogenous Plasma Insulin in Man. J. Clin. Investig. 1960, 39, 1157–1175. [Google Scholar] [CrossRef]
- Silverstein, A.M. The Dynamics of Conceptual Change in Twentieth Century Immunology. Cell. Immunol. 1991, 132, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Arthus, M. Infections Repetees de Serum de Cheval Chez Le Lapin. C. R. Séances Soc. Biol. Fil. Paris 1903, 55, 817–820. [Google Scholar]
- von Cesanatico, F.C.P.P.; Schick, B. Die Serumkrankheit; Deuticke: Leipzig, Germany; Vienna, Austria, 1905. [Google Scholar]
- Tiselius, A. Electrophoresis of Serum Globulin: Electrophoretic Analysis of Normal and Immune Sera. Biochem. J. 1937, 31, 1464–1477. [Google Scholar] [CrossRef] [PubMed]
- Svedberg, T.; Sjögren, B. The Molecular Weight of Bence-Jones Protein. J. Am. Chem. Soc. 1929, 51, 3594–3605. [Google Scholar] [CrossRef]
- Svedberg, T. The Ultra-Centrifuge and the Study of High-Molecular Compounds. Nature 1937, 139, 1051–1062. [Google Scholar] [CrossRef]
- Cohn, E.J. The Properties and Functions of the Plasma Proteins, with a Consideration of the Methods for Their Separation and Purification. Chem. Rev. 1941, 28, 395–417. [Google Scholar] [CrossRef]
- Cohn, E.J.; Oncley, J.L.; Strong, L.E.; Hughes, W.L.; Armstrong, S.H. Chemical, Clinical, and Immunological Studies on the Products of Human Plasma Fractionation. I. The Characterization of the Protein Fractions of Human Plasma. J. Clin. Investig. 1944, 23, 417–432. [Google Scholar] [CrossRef]
- Deutsch, H.F.; Alberty, R.A.; Gosting, L.J. Biophysical Studies of Blood Plasma Proteins. J. Biol. Chem. 1946, 165, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Alberty, R.A. A Study of the Variation of the Average Isoelectric Points of Several Plasma Proteins with Ionic Strength. J. Phys. Chem. 1949, 53, 114–126. [Google Scholar] [CrossRef]
- Muller-Eberhard, H.J.; Kunkel, H.G. The Carbohydrate of Gamma-Globulin and Myeloma Proteins. J. Exp. Med. 1956, 104, 253–269. [Google Scholar] [CrossRef]
- Heidelberger, M.; Avery, O.T. The Soluble Specific Substance of Pneumococcus. J. Exp. Med. 1923, 38, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Heidelberger, M.; Avery, O.T. The Soluble Specific Substance of Pneumococcus: Second Paper. J. Exp. Med. 1924, 40, 301–317. [Google Scholar] [CrossRef]
- Burnet, F.M. The Production of Antibodies: A Review and a Theoretical Discussion; Macmillan: London, UK, 1941. [Google Scholar]
- Chodirker, W.B.; Tomasi, T.B., Jr. Gamma-Globulins: Quantitative Relationships in Human Serum and Nonvascular Fluids. Science 1963, 142, 1080–1081. [Google Scholar] [CrossRef] [PubMed]
- Ceppellini, R.; Dray, S.; Edelman, G.; Fahey, J.; Franěk, F.; Franklin, E.; Goodman, H.C.; Grabar, P.; Gurvich, A.E.; Heremans, J.F.; et al. Nomenclature for Human Immunoglobulins. Immunochemistry 1964, 1, 145–149. [Google Scholar] [CrossRef]
- Möller, E. Contact-Induced Cytotoxicity by Lymphoid Cells Containing Foreign Isoantigens. Science 1965, 147, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, K.; Ishizaka, T.; Hornbrook, M.M. Physicochemical Properties of Reaginic Antibody: V. Correlation of Reaginic Activity with ΓE-Globulin Antibody. J. Immunol. 1966, 97, 840–853. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.C.; Wilson, K.S.; Hopper, J.E.; Fudenberg, H.H.; Nisonoff, A. Evidence for Control of Synthesis of the Varible Regions of the Heavy Chains of Immunoglobulins G and M by the Same Gene. Proc. Natl. Acad. Sci. USA 1970, 66, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.T.; Kabat, E.A. An Analysis of the Sequences of the Variable Regions of Bence Jones Proteins and Myeloma Light Chains and Their Implications for Antibody Complementarity. J. Exp. Med. 1970, 132, 211–250. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Engvall, E.; Perlmann, P. Enzyme-Linked Immunosorbent Assay (ELISA). Quantitative Assay of Immunoglobulin G. Immunochemistry 1971, 8, 871–874. [Google Scholar] [CrossRef]
- Van Weemen, B.K.; Schuurs, A.H.W.M. Immunoassay Using Antigen-Enzyme Conjugates. FEBS Lett. 1971, 15, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Aviv, H.; Leder, P. Purification of Biologically Active Globin Messenger RNA by Chromatography on Oligothymidylic Acid-Cellulose. Proc. Natl. Acad. Sci. USA 1972, 69, 1408–1412. [Google Scholar] [CrossRef] [PubMed]
- Julius, M.H.; Masuda, T.; Herzenberg, L.A. Demonstration That Antigen-Binding Cells Are Precursors of Antibody-Producing Cells after Purification with a Fluorescence-Activated Cell Sorter. Proc. Natl. Acad. Sci. USA 1972, 69, 1934–1938. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.A.; Symons, R.H.; Berg, P. Biochemical Method for Inserting New Genetic Information into DNA of Simian Virus 40: Circular SV40 DNA Molecules Containing Lambda Phage Genes and the Galactose Operon of Escherichia Coli. Proc. Natl. Acad. Sci. USA 1972, 69, 2904–2909. [Google Scholar] [CrossRef]
- Cohen, S.N.; Chang, A.C.; Boyer, H.W.; Helling, R.B. Construction of Biologically Functional Bacterial Plasmids in Vitro. Proc. Natl. Acad. Sci. USA 1973, 70, 3240–3244. [Google Scholar] [CrossRef]
- Tonegawa, S.; Steinberg, C.; Dube, S.; Bernardini, A. Evidence for Somatic Generation of Antibody Diversity. Proc. Natl. Acad. Sci. USA 1974, 71, 4027–4031. [Google Scholar] [CrossRef]
- Hozumi, N.; Tonegawa, S. Evidence for Somatic Rearrangement of Immunoglobulin Genes Coding for Variable and Constant Regions. Proc. Natl. Acad. Sci. USA 1976, 73, 3628–3632. [Google Scholar] [CrossRef]
- Maxam, A.M.; Gilbert, W. A New Method for Sequencing DNA. Proc. Natl. Acad. Sci. USA 1977, 74, 560–564. [Google Scholar] [CrossRef]
- Silverton, E.W.; Navia, M.A.; Davies, D.R. Three-Dimensional Structure of an Intact Human Immunoglobulin. Proc. Natl. Acad. Sci. USA 1977, 74, 5140–5144. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Itakura, K.; Hirose, T.; Crea, R.; Riggs, A.D.; Heyneker, H.L.; Bolivar, F.; Boyer, H.W. Expression in Escherichia Coli of a Chemically Synthesized Gene for the Hormone Somatostatin. Science 1977, 198, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, C.A., 3rd; Phillips, S.; Edgell, M.H.; Gillam, S.; Jahnke, P.; Smith, M. Mutagenesis at a Specific Position in a DNA Sequence. J. Biol. Chem. 1978, 253, 6551–6560. [Google Scholar] [CrossRef] [PubMed]
- Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications. Proc. Natl. Acad. Sci. USA 1979, 76, 4350–4354. [Google Scholar] [CrossRef] [PubMed]
- Renart, J.; Reiser, J.; Stark, G.R. Transfer of Proteins from Gels to Diazobenzyloxymethyl-Paper and Detection with Antisera: A Method for Studying Antibody Specificity and Antigen Structure. Proc. Natl. Acad. Sci. USA 1979, 76, 3116–3120. [Google Scholar] [CrossRef]
- McKenzie, J.M. Delayed Thyroid Response to Serum from Thyrotoxic Patients. Endocrinology 1958, 62, 865–868. [Google Scholar] [CrossRef]
- Kriss, J.P.; Pleshakov, V.; Chien, J.R. Isolation and Identification of the Long-Acting Thyroid Stimulator and Its Relation to Hyperthyroidism and Circumscribed Pretibial Myxedema. J. Clin. Endocrinol. Metab. 1964, 24, 1005–1028. [Google Scholar] [CrossRef]
- Gowans, J.L. The Recirculation of Lymphocytes from Blood to Lymph in the Rat. J. Physiol. 1959, 146, 54–69. [Google Scholar] [CrossRef]
- Gowans, J.L.; McGregor, D.D.; Cowen, D.M. Initiation of Immune Responses by Small Lymphocytes. Nature 1962, 196, 651–655. [Google Scholar] [CrossRef]
- Brambell, F.W.; Hemmings, W.A.; Henderson, M.; Kekwick, R.A. Electrophoretic Studies of Serum Proteins of Foetal Rabbits. Proc. R. Soc. Lond. B Biol. Sci. 1953, 141, 300–314. [Google Scholar] [CrossRef]
- Brambell, F.W.; Hemmings, W.A.; Morris, I.G. A Theoretical Model of Gamma-Globulin Catabolism. Nature 1964, 203, 1352–1354. [Google Scholar] [CrossRef]
- Bennett, B.; Old, L.J.; Boyse, E.A. Opsonization of Cells by Isoantibody in Vitro. Nature 1963, 198, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.; Old, L.; Boyse, E.A. The Phagocytosis of Tumor Cells: In Vitro. Transplantation 1964, 2, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Berken, A.; Benacerraf, B. Properties of Antibodies Cytophilic for Macrophages. J. Exp. Med. 1966, 123, 119–144. [Google Scholar] [CrossRef] [PubMed]
- Munn, D.H.; Cheung, N.K. Phagocytosis of Tumor Cells by Human Monocytes Cultured in Recombinant Macrophage Colony-Stimulating Factor. J. Exp. Med. 1990, 172, 231–237. [Google Scholar] [CrossRef]
- Watanabe, M.; Wallace, P.K.; Keler, T.; Deo, Y.M.; Akewanlop, C.; Hayes, D.F. Antibody Dependent Cellular Phagocytosis (ADCP) and Antibody Dependent Cellular Cytotoxicity (ADCC) of Breast Cancer Cells Mediated by Bispecific Antibody, MDX-210. Breast Cancer Res. Treat. 1999, 53, 199–207. [Google Scholar] [CrossRef]
- MacLennan, I.C.; Loewi, G.; Harding, B. The Role of Immunoglobulins in Lymphocyte-Mediated Cell Damage, in Vitro. I. Comparison of the Effects of Target Cell Specific Antibody and Normal Serum Factors on Cellular Damage by Immune and Non-Immune Lymphocytes. Immunology 1970, 18, 397–404. [Google Scholar]
- Greenberg, A.H.; Hudson, L.; Shen, L.; Roitt, I.M. Antibody-Dependent Cell-Mediated Cytotoxicity Due to a “Null” Lymphoid Cell. Nat. New Biol. 1973, 242, 111–113. [Google Scholar] [CrossRef]
- LoBuglio, A.F.; Cotran, R.S.; Jandl, J.H. Red Cells Coated with Immunoglobulin G: Binding and Sphering by Mononuclear Cells in Man. Science 1967, 158, 1582–1585. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.G.; Benacerraf, B. Properties of Macrophage Receptors for Cytophilic Antibodies. Br. J. Exp. Pathol. 1966, 47, 193–200. [Google Scholar]
- Huber, H.; Fudenberg, H.H. Receptor Sites of Human Monocytes for IgG. Int. Arch. Allergy Immunol. 1968, 34, 18–31. [Google Scholar] [CrossRef]
- Lay, W.; Nussenzweig, V. Receptors for Complement on Leukocytes. J. Exp. Med. 1968, 128, 991–1009. [Google Scholar] [CrossRef]
- Ishizaka, K.; Tomioka, H.; Ishizaka, T. Mechanisms of Passive Sensitization: I. Presence of IgE and IgG Molecules on Human Leukocytes. J. Immunol. 1970, 105, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Tigelaar, R.E.; Vaz, N.M.; Ovary, Z. Immunoglobulin Receptors on Mouse Mast Cells. J. Immunol. 1971, 106, 661–672. [Google Scholar] [CrossRef]
- Basten, A.; Sprent, J.; Miller, J.F. Receptor for Antibody-Antigen Complexes Used to Separate T Cells from B Cells. Nat. New Biol. 1972, 235, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Basten, A.; Miller, J.F.; Sprent, J.; Pye, J. A Receptor for Antibody on B Lymphocytes. I. Method of Detection and Functional Significance. J. Exp. Med. 1972, 135, 610–626. [Google Scholar] [CrossRef]
- Basten, A.; Warner, N.L.; Mandel, T. A Receptor for Antibody on B Lymphocytes. II. Immunochemical and Electron Microscopy Characteristics. J. Exp. Med. 1972, 135, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Paraskevas, F.; Lee, S.T.; Orr, K.B.; Israels, L.G. A Receptor for Fc on Mouse B-Lymphocytes. J. Immunol. 1972, 108, 1319–1327. [Google Scholar] [CrossRef]
- Paraskevas, F.; Orr, K.B.; Anderson, E.D.; Lee, S.T.; Israels, L.G. The Biologic Significance of Fc Receptor on Mouse B-Lymphocytes. J. Immunol. 1972, 108, 1729–1732. [Google Scholar] [CrossRef]
- Cline, M.J.; Sprent, J.; Warner, N.L.; Harris, A.W. Receptors for Immunoglobulin on B Lymphocytes and Cells of a Cultured Plasma Cell Tumor. J. Immunol. 1972, 108, 1126–1128. [Google Scholar] [CrossRef]
- Dickler, H.B.; Kunkel, H.G. Interaction of Aggregated -Globulin with B Lymphocytes. J. Exp. Med. 1972, 136, 191–196. [Google Scholar] [CrossRef]
- Talmage, D.W. Allergy and Immunology. Annu. Rev. Med. 1957, 8, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Burnet, F.M. A Modification of Jerne’s Theory of Antibody Production Using the Concept of Clonal Selection. CA Cancer J. Clin. 1976, 26, 119–121. [Google Scholar] [CrossRef]
- Cohn, M.; Mitchison, N.A.; Paul, W.E.; Silverstein, A.M.; Talmage, D.W.; Weigert, M. Reflections on the Clonal-Selection Theory. Nat. Rev. Immunol. 2007, 7, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Porter, R.R. Separation and Isolation of Fractions of Rabbit Gamma-Globulin Containing the Antibody and Antigenic Combining Sites. Nature 1958, 182, 670–671. [Google Scholar] [CrossRef] [PubMed]
- Porter, R.R. The Hydrolysis of Rabbit Y-Globulin and Antibodies with Crystalline Papain. Biochem. J. 1959, 73, 119–126. [Google Scholar] [CrossRef]
- Edelman, G.M.; Poulik, M.D. Studies on Structural Units of the Gamma-Globulins. J. Exp. Med. 1961, 113, 861–884. [Google Scholar] [CrossRef]
- Edelman, G.M.; Gally, J.A. The Nature of Bence-Jones Proteins. Chemical Similarities to Polypetide Chains of Myeloma Globulins and Normal Gamma-Globulins. J. Exp. Med. 1962, 116, 207–227. [Google Scholar] [CrossRef]
- Oudin, J.; Michel, M. A new allotype form of rabbit serum gamma-globulins, apparently associated with antibody function and specificity. C. R. Hebd. Seances Acad. Sci. 1963, 257, 805–808. [Google Scholar]
- Kunkel, H.G.; Mannik, M.; Williams, R.C. Individual Antigenic Specificity of Isolated Antibodies. Science 1963, 140, 1218–1219. [Google Scholar] [CrossRef]
- Hilschmann, N.; Craig, L.C. Amino Acid Sequence Studies with Bence-Jones Proteins. Proc. Natl. Acad. Sci. USA 1965, 53, 1403–1409. [Google Scholar] [CrossRef]
- Sarma, V.R.; Silverton, E.W.; Davies, D.R.; Terry, W.D. The Three-Dimensional Structure at 6 A Resolution of a Human ΓG1 Immunoglobulin Molecule. J. Biol. Chem. 1971, 246, 3753–3759. [Google Scholar] [CrossRef] [PubMed]
- Poljak, R.J.; Amzel, L.M.; Avey, H.P.; Becka, L.N. Structure of Fab New at 6 Å Resolution. Nat. New Biol. 1972, 235, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Gugler, E.; Bokelmann, G.; Datwyler, A.; Von Muralt, G. Immunoelectrophoretic studies on human milk proteins. Schweiz. Med. Wochenschr. 1958, 88, 1264–1267. [Google Scholar]
- Rowe, D.S.; Fahey, J.L. A New Class of Human Immunoglobulins. I. A Unique Myeloma Protein. J. Exp. Med. 1965, 121, 171–184. [Google Scholar] [CrossRef]
- Rowe, D.S.; Fahey, J.L. A New Class of Human Immunoglobulins. Ii. Normal Serum IgD. J. Exp. Med. 1965, 121, 185–199. [Google Scholar] [CrossRef]
- Ishizaka, K.; Ishizaka, T.; Hornbrook, M.M. Physico-Chemical Properties of Human Reaginic Antibody: IV. Presence of a Unique Immunoglobulin as a Carrier of Reaginic Activity. J. Immunol. 1966, 97, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, K.; Ishizaka, T. Identification of ΓE-Antibodies as a Carrier of Reaginic Activity. J. Immunol. 1967, 99, 1187–1198. [Google Scholar] [CrossRef]
- Coca, A.F.; Grove, E.F. Studies in Hypersensitiveness. J. Immunol. 1925, 10, 445–464. [Google Scholar] [CrossRef]
- Johansson, S.G.; Bennich, H. Immunological Studies of an Atypical (Myeloma) Immunoglobulin. Immunology 1967, 13, 381–394. [Google Scholar]
- Bennich, H.; Ishizaka, K.; Ishizaka, T.; Johansson, S.G. A Comparative Antigenic Study of ΛE-Globulin and Myeloma-IgND. J. Immunol. 1969, 102, 826–831. [Google Scholar] [CrossRef]
- Grey, H.M.; Kunkel, H.G. H Chain Subgroups of Myeloma Proteins and Normal 7s Gamma-Globulin. J. Exp. Med. 1964, 120, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Lichter, E.A.; Dray, S. Immunoelectrophoretic Characterization of Human Serum Proteins with Primate Antisera. J. Immunol. 1964, 92, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Ballieux, R.E.; Bernier, G.M.; Tominaga, K.; Putnam, F.W. Gamma Globulin Antigenic Types Defined by Heavy Chain Determinants. Science 1964, 145, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Terry, W.D.; Fahley, J.L.; Steinberg, A.G. GM and INV Factors in Subclasses of Human IgG. J. Exp. Med. 1965, 122, 1087–1102. [Google Scholar] [CrossRef]
- Dreyer, W.J.; Bennett, J.C. The Molecular Basis of Antibody Formation: A Paradox. Proc. Natl. Acad. Sci. USA 1965, 54, 864–869. [Google Scholar] [CrossRef]
- Davis, M.M.; Calame, K.; Early, P.W.; Livant, D.L.; Joho, R.; Weissman, I.L.; Hood, L. An Immunoglobulin Heavy-Chain Gene Is Formed by at Least Two Recombinational Events. Nature 1980, 283, 733–739. [Google Scholar] [CrossRef]
- Snapper, C.M.; Paul, W.E. Interferon-Gamma and B Cell Stimulatory Factor-1 Reciprocally Regulate Ig Isotype Production. Science 1987, 236, 944–947. [Google Scholar] [CrossRef]
- Muramatsu, M.; Kinoshita, K.; Fagarasan, S.; Yamada, S.; Shinkai, Y.; Honjo, T. Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme. Cell 2000, 102, 553–563. [Google Scholar] [CrossRef]
- Alt, F.; Rosenberg, N.; Lewis, S.; Thomas, E.; Baltimore, D. Organization and Reorganization of Immunoglobulin Genes in A-MULV-Transformed Cells: Rearrangement of Heavy but Not Light Chain Genes. Cell 1981, 27, 381–390. [Google Scholar] [CrossRef]
- Miller, R.A.; Maloney, D.G.; Warnke, R.; Levy, R. Treatment of B-Cell Lymphoma with Monoclonal Anti-Idiotype Antibody. N. Engl. J. Med. 1982, 306, 517–522. [Google Scholar] [CrossRef]
- Morrison, S.L.; Johnson, M.J.; Herzenberg, L.A.; Oi, V.T. Chimeric Human Antibody Molecules: Mouse Antigen-Binding Domains with Human Constant Region Domains. Proc. Natl. Acad. Sci. USA 1984, 81, 6851–6855. [Google Scholar] [CrossRef] [PubMed]
- Boulianne, G.L.; Hozumi, N.; Shulman, M.J. Production of Functional Chimaeric Mouse/Human Antibody. Nature 1984, 312, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.P. Filamentous Fusion Phage: Novel Expression Vectors That Display Cloned Antigens on the Virion Surface. Science 1985, 228, 1315–1317. [Google Scholar] [CrossRef]
- Better, M.; Chang, C.P.; Robinson, R.R.; Horwitz, A.H. Escherichia Coli Secretion of an Active Chimeric Antibody Fragment. Science 1988, 240, 1041–1043. [Google Scholar] [CrossRef]
- Hale, G.; Dyer, M.J.; Clark, M.R.; Phillips, J.M.; Marcus, R.; Riechmann, L.; Winter, G.; Waldmann, H. Remission Induction in Non-Hodgkin Lymphoma with Reshaped Human Monoclonal Antibody CAMPATH-1H. Lancet 1988, 2, 1394–1399. [Google Scholar] [CrossRef]
- Schatz, D.G.; Oettinger, M.A.; Baltimore, D. The V(D)J Recombination Activating Gene, RAG-1. Cell 1989, 59, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.K.; Smith, G.P. Searching for Peptide Ligands with an Epitope Library. Science 1990, 249, 386–390. [Google Scholar] [CrossRef]
- McCafferty, J.; Griffiths, A.D.; Winter, G.; Chiswell, D.J. Phage Antibodies: Filamentous Phage Displaying Antibody Variable Domains. Nature 1990, 348, 552–554. [Google Scholar] [CrossRef]
- Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced Expression of PD-1, a Novel Member of the Immunoglobulin Gene Superfamily, upon Programmed Cell Death. EMBO J. 1992, 11, 3887–3895. [Google Scholar] [CrossRef]
- Elliott, M.J.; Maini, R.N.; Feldmann, M.; Long-Fox, A.; Charles, P.; Katsikis, P.; Brennan, F.M.; Walker, J.; Bijl, H.; Ghrayeb, J. Treatment of Rheumatoid Arthritis with Chimeric Monoclonal Antibodies to Tumor Necrosis Factor Alpha. Arthritis Rheum. 1993, 36, 1681–1690. [Google Scholar] [CrossRef]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science 1996, 271, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Bonner, W.A.; Hulett, H.R.; Sweet, R.G.; Herzenberg, L.A. Fluorescence Activated Cell Sorting. Rev. Sci. Instrum. 1972, 43, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Fulwyler, M.J. Electronic Separation of Biological Cells by Volume. Science 1965, 150, 910–911. [Google Scholar] [CrossRef] [PubMed]
- Edelman, G.M.; Gally, J.A. Somatic Recombination of Duplicated Genes: An Hypothesis on the Origin of Antibody Diversity. Proc. Natl. Acad. Sci. USA 1967, 57, 353–358. [Google Scholar] [CrossRef]
- Brack, C.; Hirama, M.; Lenhard-Schuller, R.; Tonegawa, S. A Complete Immunoglobulin Gene Is Created by Somatic Recombination. Cell 1978, 15, 1–14. [Google Scholar] [CrossRef]
- Oettinger, M.A.; Schatz, D.G.; Gorka, C.; Baltimore, D. RAG-1 and RAG-2, Adjacent Genes That Synergistically Activate V(D)J Recombination. Science 1990, 248, 1517–1523. [Google Scholar] [CrossRef]
- McBlane, J.F.; van Gent, D.C.; Ramsden, D.A.; Romeo, C.; Cuomo, C.A.; Gellert, M.; Oettinger, M.A. Cleavage at a V(D)J Recombination Signal Requires Only RAG1 and RAG2 Proteins and Occurs in Two Steps. Cell 1995, 83, 387–395. [Google Scholar] [CrossRef]
- Stavnezer, J.; Guikema, J.E.J.; Schrader, C.E. Mechanism and Regulation of Class Switch Recombination. Annu. Rev. Immunol. 2008, 26, 261–292. [Google Scholar] [CrossRef]
- Yeap, L.-S.; Meng, F.-L. Cis- and Trans-Factors Affecting AID Targeting and Mutagenic Outcomes in Antibody Diversification. Adv. Immunol. 2019, 141, 51–103. [Google Scholar] [CrossRef]
- Cotton, R.G.; Milstein, C. Letter: Fusion of Two Immunoglobulin-Producing Myeloma Cells. Nature 1973, 244, 42–43. [Google Scholar] [CrossRef]
- Klinman, N.R. Antibody with Homogeneous Antigen Binding Produced by Splenic Foci in Organ Culture. Immunochemistry 1969, 6, 757–759. [Google Scholar] [CrossRef] [PubMed]
- Shulman, M.; Wilde, C.D.; Köhler, G. A Better Cell Line for Making Hybridomas Secreting Specific Antibodies. Nature 1978, 276, 269–270. [Google Scholar] [CrossRef] [PubMed]
- Nadler, L.M.; Stashenko, P.; Hardy, R.; Kaplan, W.D.; Button, L.N.; Kufe, D.W.; Antman, K.H.; Schlossman, S.F. Serotherapy of a Patient with a Monoclonal Antibody Directed against a Human Lymphoma-Associated Antigen. Cancer Res. 1980, 40, 3147–3154. [Google Scholar]
- Meeker, T.C.; Lowder, J.; Maloney, D.G.; Miller, R.A.; Thielemans, K.; Warnke, R.; Levy, R. A Clinical Trial of Anti-Idiotype Therapy for B Cell Malignancy. Blood 1985, 65, 1349–1363. [Google Scholar] [CrossRef]
- Kung, P.; Goldstein, G.; Reinherz, E.L.; Schlossman, S.F. Monoclonal Antibodies Defining Distinctive Human T Cell Surface Antigens. Science 1979, 206, 347–349. [Google Scholar] [CrossRef]
- Abramowicz, D.; Crusiaux, A.; Goldman, M. Anaphylactic Shock after Retreatment with OKT3 Monoclonal Antibody. N. Engl. J. Med. 1992, 327, 736. [Google Scholar] [CrossRef] [PubMed]
- Carter, P.J. Introduction to Current and Future Protein Therapeutics: A Protein Engineering Perspective. Exp. Cell Res. 2011, 317, 1261–1269. [Google Scholar] [CrossRef]
- Sgro, C. Side-Effects of a Monoclonal Antibody, Muromonab CD3/Orthoclone OKT3: Bibliographic Review. Toxicology 1995, 105, 23–29. [Google Scholar] [CrossRef]
- Bird, R.; Hardman, K.; Jacobson, J.; Johnson, S.; Kaufman, B.; Lee, S.; Lee, T.; Pope, S.; Riordan, G.; Whitlow, M. Single-Chain Antigen-Binding Proteins. Science 1988, 242, 423–426. [Google Scholar] [CrossRef]
- Huston, J.S.; Levinson, D.; Mudgett-Hunter, M.; Tai, M.S.; Novotný, J.; Margolies, M.N.; Ridge, R.J.; Bruccoleri, R.E.; Haber, E.; Crea, R. Protein Engineering of Antibody Binding Sites: Recovery of Specific Activity in an Anti-Digoxin Single-Chain Fv Analogue Produced in Escherichia Coli. Proc. Natl. Acad. Sci. USA 1988, 85, 5879–5883. [Google Scholar] [CrossRef]
- Jespers, L.S.; Roberts, A.; Mahler, S.M.; Winter, G.; Hoogenboom, H.R. Guiding the Selection of Human Antibodies from Phage Display Repertoires to a Single Epitope of an Antigen. Nat. Biotechnol. 1994, 12, 899–903. [Google Scholar] [CrossRef]
- Waldmann, H.; Polliak, A.; Hale, G.; Or, R.; Cividalli, G.; Weiss, L.; Weshler, Z.; Samuel, S.; Manor, D.; Brautbar, C. Elimination of Graft-versus-Host Disease by in-Vitro Depletion of Alloreactive Lymphocytes with a Monoclonal Rat Anti-Human Lymphocyte Antibody (CAMPATH-1). Lancet 1984, 2, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Hale, G.; Bright, S.; Chumbley, G.; Hoang, T.; Metcalf, D.; Munro, A.J.; Waldmann, H. Removal of T Cells from Bone Marrow for Transplantation: A Monoclonal Antilymphocyte Antibody That Fixes Human Complement. Blood 1983, 62, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Ruck, T.; Bittner, S.; Wiendl, H.; Meuth, S.G. Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond. Int. J. Mol. Sci. 2015, 16, 16414–16439. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Tao, Y.; Zhang, Y.; Wang, J.; Yang, J.; Wang, Y. CD25: A Potential Tumor Therapeutic Target. Int. J. Cancer 2023, 152, 1290–1303. [Google Scholar] [CrossRef] [PubMed]
- Chisari, C.G.; Sgarlata, E.; Arena, S.; Toscano, S.; Luca, M.; Patti, F. Rituximab for the Treatment of Multiple Sclerosis: A Review. J. Neurol. 2022, 269, 159–183. [Google Scholar] [CrossRef]
- Maloney, D.G.; Grillo-López, A.J.; White, C.A.; Bodkin, D.; Schilder, R.J.; Neidhart, J.A.; Janakiraman, N.; Foon, K.A.; Liles, T.M.; Dallaire, B.K.; et al. IDEC-C2B8 (Rituximab) Anti-CD20 Monoclonal Antibody Therapy in Patients with Relapsed Low-Grade Non-Hodgkin’s Lymphoma. Blood 1997, 90, 2188–2195. [Google Scholar] [CrossRef]
- Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-Positive Breast Cancer: Advances and Future Directions. Nat. Rev. Drug Discov. 2023, 22, 101–126. [Google Scholar] [CrossRef]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.-Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef]
- Kaminski, M.S.; Zasadny, K.R.; Francis, I.R.; Milik, A.W.; Ross, C.W.; Moon, S.D.; Crawford, S.M.; Burgess, J.M.; Petry, N.A.; Butchko, G.M. Radioimmunotherapy of B-Cell Lymphoma with [131I]Anti-B1 (Anti-CD20) Antibody. N. Engl. J. Med. 1993, 329, 459–465. [Google Scholar] [CrossRef]
- Valldorf, B.; Hinz, S.C.; Russo, G.; Pekar, L.; Mohr, L.; Klemm, J.; Doerner, A.; Krah, S.; Hust, M.; Zielonka, S. Antibody Display Technologies: Selecting the Cream of the Crop. Biol. Chem. 2022, 403, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Lonberg, N.; Taylor, L.D.; Harding, F.A.; Trounstine, M.; Higgins, K.M.; Schramm, S.R.; Kuo, C.C.; Mashayekh, R.; Wymore, K.; McCabe, J.G. Antigen-Specific Human Antibodies from Mice Comprising Four Distinct Genetic Modifications. Nature 1994, 368, 856–859. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.J.; Green, L.L.; Corvalan, J.R.; Jia, X.C.; Maynard-Currie, C.E.; Yang, X.D.; Gallo, M.L.; Louie, D.M.; Lee, D.V.; Erickson, K.L.; et al. Functional Transplant of Megabase Human Immunoglobulin Loci Recapitulates Human Antibody Response in Mice. Nat. Genet. 1997, 15, 146–156. [Google Scholar] [CrossRef]
- Folkman, J. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med. 1971, 285, 1182–1186. [Google Scholar] [CrossRef]
- Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in Cancer Treatment: A Review of 15 Years of Clinical Experience and Future Outlook. Cancer Treat. Rev. 2020, 86, 102017. [Google Scholar] [CrossRef]
- Kim, K.J.; Li, B.; Winer, J.; Armanini, M.; Gillett, N.; Phillips, H.S.; Ferrara, N. Inhibition of Vascular Endothelial Growth Factor-Induced Angiogenesis Suppresses Tumour Growth in Vivo. Nature 1993, 362, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Clynes, R.A.; Towers, T.L.; Presta, L.G.; Ravetch, J.V. Inhibitory Fc Receptors Modulate in Vivo Cytotoxicity against Tumor Targets. Nat. Med. 2000, 6, 443–446. [Google Scholar] [CrossRef]
- Sondermann, P.; Huber, R.; Oosthuizen, V.; Jacob, U. The 3.2-Å Crystal Structure of the Human IgG1 Fc Fragment-FcγRIII Complex. Nature 2000, 406, 267–273. [Google Scholar] [CrossRef]
- Shields, R.L.; Namenuk, A.K.; Hong, K.; Meng, Y.G.; Rae, J.; Briggs, J.; Xie, D.; Lai, J.; Stadlen, A.; Li, B.; et al. High Resolution Mapping of the Binding Site on Human IgG1 for Fc Gamma RI, Fc Gamma RII, Fc Gamma RIII, and FcRn and Design of IgG1 Variants with Improved Binding to the Fc Gamma R. J. Biol. Chem. 2001, 276, 6591–6604. [Google Scholar] [CrossRef]
- Shinkawa, T.; Nakamura, K.; Yamane, N.; Shoji-Hosaka, E.; Kanda, Y.; Sakurada, M.; Uchida, K.; Anazawa, H.; Satoh, M.; Yamasaki, M.; et al. The Absence of Fucose but Not the Presence of Galactose or Bisecting N-Acetylglucosamine of Human IgG1 Complex-Type Oligosaccharides Shows the Critical Role of Enhancing Antibody-Dependent Cellular Cytotoxicity. J. Biol. Chem. 2003, 278, 3466–3473. [Google Scholar] [CrossRef]
- Remer, M.; Al-Shamkhani, A.; Glennie, M.; Johnson, P. Mogamulizumab and the Treatment of CCR4-Positive T-Cell Lymphomas. Immunotherapy 2014, 6, 1187–1206. [Google Scholar] [CrossRef] [PubMed]
- Dall’Acqua, W.F.; Woods, R.M.; Ward, E.S.; Palaszynski, S.R.; Patel, N.K.; Brewah, Y.A.; Wu, H.; Kiener, P.A.; Langermann, S. Increasing the Affinity of a Human IgG1 for the Neonatal Fc Receptor: Biological Consequences. J. Immunol. 2002, 169, 5171–5180. [Google Scholar] [CrossRef] [PubMed]
- Zalevsky, J.; Chamberlain, A.K.; Horton, H.M.; Karki, S.; Leung, I.W.L.; Sproule, T.J.; Lazar, G.A.; Roopenian, D.C.; Desjarlais, J.R. Enhanced Antibody Half-Life Improves in Vivo Activity. Nat. Biotechnol. 2010, 28, 157–159. [Google Scholar] [CrossRef]
- Lee, J.W.; Sicre de Fontbrune, F.; Wong Lee Lee, L.; Pessoa, V.; Gualandro, S.; Füreder, W.; Ptushkin, V.; Rottinghaus, S.T.; Volles, L.; Shafner, L.; et al. Ravulizumab (ALXN1210) vs Eculizumab in Adult Patients with PNH Naive to Complement Inhibitors: The 301 Study. Blood 2019, 133, 530–539. [Google Scholar] [CrossRef]
- Tsuchikama, K.; Anami, Y.; Ha, S.Y.Y.; Yamazaki, C.M. Exploring the next Generation of Antibody-Drug Conjugates. Nat. Rev. Clin. Oncol. 2024, 21, 203–223. [Google Scholar] [CrossRef]
- Ford, C.H.; Newman, C.E.; Johnson, J.R.; Woodhouse, C.S.; Reeder, T.A.; Rowland, G.F.; Simmonds, R.G. Localisation and Toxicity Study of a Vindesine-Anti-CEA Conjugate in Patients with Advanced Cancer. Br. J. Cancer 1983, 47, 35–42. [Google Scholar] [CrossRef]
- Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W.H.I. Bispecific Antibodies: A Mechanistic Review of the Pipeline. Nat. Rev. Drug Discov. 2019, 18, 585–608. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.; Brinkmann, U.; Reichert, J.M.; Kontermann, R.E. The Present and Future of Bispecific Antibodies for Cancer Therapy. Nat. Rev. Drug Discov. 2024, 23, 301–319. [Google Scholar] [CrossRef]
- van de Donk, N.W.C.J.; Zweegman, S. T-Cell-Engaging Bispecific Antibodies in Cancer. Lancet 2023, 402, 142–158. [Google Scholar] [CrossRef]
- Topp, M.S.; Kufer, P.; Gökbuget, N.; Goebeler, M.; Klinger, M.; Neumann, S.; Horst, H.-A.; Raff, T.; Viardot, A.; Schmid, M.; et al. Targeted Therapy with the T-Cell-Engaging Antibody Blinatumomab of Chemotherapy-Refractory Minimal Residual Disease in B-Lineage Acute Lymphoblastic Leukemia Patients Results in High Response Rate and Prolonged Leukemia-Free Survival. J. Clin. Oncol. 2011, 29, 2493–2498. [Google Scholar] [CrossRef]
- Sheykhhasan, M.; Ahmadieh-Yazdi, A.; Vicidomini, R.; Poondla, N.; Tanzadehpanah, H.; Dirbaziyan, A.; Mahaki, H.; Manoochehri, H.; Kalhor, N.; Dama, P. CAR T Therapies in Multiple Myeloma: Unleashing the Future. Cancer Gene Ther. 2024, 31, 667–686. [Google Scholar] [CrossRef] [PubMed]
- Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci. Transl. Med. 2011, 3, 95ra73. [Google Scholar] [CrossRef]
- Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y. Antibody Drug Conjugate: The “Biological Missile” for Targeted Cancer Therapy. Signal Transduct. Target. Ther. 2022, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- Seimetz, D.; Lindhofer, H.; Bokemeyer, C. Development and Approval of the Trifunctional Antibody Catumaxomab (Anti-EpCAM x Anti-CD3) as a Targeted Cancer Immunotherapy. Cancer Treat. Rev. 2010, 36, 458–467. [Google Scholar] [CrossRef]
- Przepiorka, D.; Ko, C.-W.; Deisseroth, A.; Yancey, C.L.; Candau-Chacon, R.; Chiu, H.-J.; Gehrke, B.J.; Gomez-Broughton, C.; Kane, R.C.; Kirshner, S.; et al. FDA Approval: Blinatumomab. Clin. Cancer Res. 2015, 21, 4035–4039. [Google Scholar] [CrossRef] [PubMed]
- Bargou, R.; Leo, E.; Zugmaier, G.; Klinger, M.; Goebeler, M.; Knop, S.; Noppeney, R.; Viardot, A.; Hess, G.; Schuler, M.; et al. Tumor Regression in Cancer Patients by Very Low Doses of a T Cell-Engaging Antibody. Science 2008, 321, 974–977. [Google Scholar] [CrossRef]
- Braendstrup, P.; Levine, B.L.; Ruella, M. The Long Road to the First FDA-Approved Gene Therapy: Chimeric Antigen Receptor T Cells Targeting CD19. Cytotherapy 2020, 22, 57–69. [Google Scholar] [CrossRef]
- Agata, Y.; Kawasaki, A.; Nishimura, H.; Ishida, Y.; Tsubata, T.; Yagita, H.; Honjo, T. Expression of the PD-1 Antigen on the Surface of Stimulated Mouse T and B Lymphocytes. Int. Immunol. 1996, 8, 765–772. [Google Scholar] [CrossRef]
- Nishimura, H.; Nose, M.; Hiai, H.; Minato, N.; Honjo, T. Development of Lupus-like Autoimmune Diseases by Disruption of the PD-1 Gene Encoding an ITIM Motif-Carrying Immunoreceptor. Immunity 1999, 11, 141–151. [Google Scholar] [CrossRef]
- Chambers, C.A.; Kuhns, M.S.; Egen, J.G.; Allison, J.P. CTLA-4-Mediated Inhibition in Regulation of T Cell Responses: Mechanisms and Manipulation in Tumor Immunotherapy. Annu. Rev. Immunol. 2001, 19, 565–594. [Google Scholar] [CrossRef]
- Robert, C. A Decade of Immune-Checkpoint Inhibitors in Cancer Therapy. Nat. Commun. 2020, 11, 3801. [Google Scholar] [CrossRef]
- Cameron, F.; Whiteside, G.; Perry, C. Ipilimumab: First Global Approval: First Global Approval. Drugs 2011, 71, 1093–1104. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
- Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune Checkpoint Blockade Therapy for Cancer: An Overview of FDA-Approved Immune Checkpoint Inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [Google Scholar] [CrossRef]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef]
- Bagchi, S.; Yuan, R.; Engleman, E.G. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu. Rev. Pathol. 2021, 16, 223–249. [Google Scholar] [CrossRef]
- Naimi, A.; Mohammed, R.N.; Raji, A.; Chupradit, S.; Yumashev, A.V.; Suksatan, W.; Shalaby, M.N.; Thangavelu, L.; Kamrava, S.; Shomali, N.; et al. Tumor Immunotherapies by Immune Checkpoint Inhibitors (ICIs); the Pros and Cons. Cell Commun. Signal. 2022, 20, 44. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Casak, S.J.; Kumar, V.; Song, C.; Yuan, M.; Amatya, A.K.; Cheng, J.; Mishra-Kalyani, P.S.; Tang, S.; Lemery, S.J.; Auth, D.; et al. FDA Approval Summary: Durvalumab and Pembrolizumab, Immune Checkpoint Inhibitors for the Treatment of Biliary Tract Cancer. Clin. Cancer Res. 2024, 30, 3371–3377. [Google Scholar] [CrossRef]
- Lipsky, P.E.; Thompson, P.A.; Rosenwasser, L.J.; Dinarello, C.A. The Role of Interleukin 1 in Human B Cell Activation: Inhibition of B Cell Proliferation and the Generation of Immunoglobulin-Secreting Cells by an Antibody against Human Leukocytic Pyrogen. J. Immunol. 1983, 130, 2708–2714. [Google Scholar] [CrossRef]
- Klareskog, L.; Forsum, U.; Scheynius, A.; Kabelitz, D.; Wigzell, H. Evidence in Support of a Self-Perpetuating HLA-DR-Dependent Delayed-Type Cell Reaction in Rheumatoid Arthritis. Proc. Natl. Acad. Sci. USA 1982, 79, 3632–3636. [Google Scholar] [CrossRef]
- Bottazzo, G.F.; Pujol-Borrell, R.; Hanafusa, T.; Feldmann, M. Role of Aberrant HLA-DR Expression and Antigen Presentation in Induction of Endocrine Autoimmunity. Lancet 1983, 2, 1115–1119. [Google Scholar] [CrossRef]
- Brennan, F.M.; Chantry, D.; Jackson, A.; Maini, R.; Feldmann, M. Inhibitory Effect of TNF Alpha Antibodies on Synovial Cell Interleukin-1 Production in Rheumatoid Arthritis. Lancet 1989, 2, 244–247. [Google Scholar] [CrossRef]
- Lipsky, P.E.; van der Heijde, D.M.; St Clair, E.W.; Furst, D.E.; Breedveld, F.C.; Kalden, J.R.; Smolen, J.S.; Weisman, M.; Emery, P.; Feldmann, M.; et al. Infliximab and Methotrexate in the Treatment of Rheumatoid Arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N. Engl. J. Med. 2000, 343, 1594–1602. [Google Scholar] [CrossRef]
- Klareskog, L.; van der Heijde, D.; de Jager, J.P.; Gough, A.; Kalden, J.; Malaise, M.; Martín Mola, E.; Pavelka, K.; Sany, J.; Settas, L.; et al. Therapeutic Effect of the Combination of Etanercept and Methotrexate Compared with Each Treatment Alone in Patients with Rheumatoid Arthritis: Double-Blind Randomised Controlled Trial. Lancet 2004, 363, 675–681. [Google Scholar] [CrossRef]
- Siegmund, D.; Wajant, H. TNF and TNF Receptors as Therapeutic Targets for Rheumatic Diseases and Beyond. Nat. Rev. Rheumatol. 2023, 19, 576–591. [Google Scholar] [CrossRef]
- Sharma, S.D.; Bluett, J. Towards Personalized Medicine in Rheumatoid Arthritis. Open Access Rheumatol. 2024, 16, 89–114. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Rouvier, E.; Luciani, M.F.; Mattéi, M.G.; Denizot, F.; Golstein, P. CTLA-8, Cloned from an Activated T Cell, Bearing AU-Rich Messenger RNA Instability Sequences, and Homologous to a Herpesvirus Saimiri Gene. J. Immunol. 1993, 150, 5445–5456. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, M.B.; Koomen, C.W.; de Waal Malefyt, R.; Wierenga, E.A.; Bos, J.D. Interleukin-17 and Interferon-Gamma Synergize in the Enhancement of Proinflammatory Cytokine Production by Human Keratinocytes. J. Investig. Dermatol. 1998, 111, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Lowes, M.A.; Kikuchi, T.; Fuentes-Duculan, J.; Cardinale, I.; Zaba, L.C.; Haider, A.S.; Bowman, E.P.; Krueger, J.G. Psoriasis Vulgaris Lesions Contain Discrete Populations of Th1 and Th17 T Cells. J. Investig. Dermatol. 2008, 128, 1207–1211. [Google Scholar] [CrossRef] [PubMed]
- Langley, R.G.; Elewski, B.E.; Lebwohl, M.; Reich, K.; Griffiths, C.E.M.; Papp, K.; Puig, L.; Nakagawa, H.; Spelman, L.; Sigurgeirsson, B.; et al. Secukinumab in Plaque Psoriasis--Results of Two Phase 3 Trials. N. Engl. J. Med. 2014, 371, 326–338. [Google Scholar] [CrossRef]
- Sbidian, E.; Chaimani, A.; Guelimi, R.; Garcia-Doval, I.; Hua, C.; Hughes, C.; Naldi, L.; Kinberger, M.; Afach, S.; Le Cleach, L. Systemic Pharmacological Treatments for Chronic Plaque Psoriasis: A Network Meta-Analysis. Cochrane Database Syst. Rev. 2023, 7, CD011535. [Google Scholar] [CrossRef] [PubMed]
- Reich, K.; Warren, R.B.; Lebwohl, M.; Gooderham, M.; Strober, B.; Langley, R.G.; Paul, C.; De Cuyper, D.; Vanvoorden, V.; Madden, C.; et al. Bimekizumab versus Secukinumab in Plaque Psoriasis. N. Engl. J. Med. 2021, 385, 142–152. [Google Scholar] [CrossRef]
- Merola, J.F.; Landewé, R.; McInnes, I.B.; Mease, P.J.; Ritchlin, C.T.; Tanaka, Y.; Asahina, A.; Behrens, F.; Gladman, D.D.; Gossec, L.; et al. Bimekizumab in Patients with Active Psoriatic Arthritis and Previous Inadequate Response or Intolerance to Tumour Necrosis Factor-α Inhibitors: A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial (BE COMPLETE). Lancet 2023, 401, 38–48. [Google Scholar] [CrossRef]
- Bourgonje, A.R.; Ungaro, R.C.; Mehandru, S.; Colombel, J.-F. Targeting the Interleukin 23 Pathway in Inflammatory Bowel Disease. Gastroenterology, 2024; online ahead of print. [Google Scholar] [CrossRef]
- Müller, F.; Taubmann, J.; Bucci, L.; Wilhelm, A.; Bergmann, C.; Völkl, S.; Aigner, M.; Rothe, T.; Minopoulou, I.; Tur, C.; et al. CD19 CAR T-Cell Therapy in Autoimmune Disease-A Case Series with Follow-Up. N. Engl. J. Med. 2024, 390, 687–700. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharya, M.; Dhama, K. SARS-CoV-2 Vaccines, Vaccine Development Technologies, and Significant Efforts in Vaccine Development during the Pandemic: The Lessons Learned Might Help to Fight against the next Pandemic. Vaccines 2023, 11, 682. [Google Scholar] [CrossRef]
- Anderson, B.R.; Muramatsu, H.; Nallagatla, S.R.; Bevilacqua, P.C.; Sansing, L.H.; Weissman, D.; Karikó, K. Incorporation of Pseudouridine into MRNA Enhances Translation by Diminishing PKR Activation. Nucleic Acids Res. 2010, 38, 5884–5892. [Google Scholar] [CrossRef]
- Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity 2005, 23, 165–175. [Google Scholar] [CrossRef]
- Karikó, K.; Muramatsu, H.; Welsh, F.A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of Pseudouridine into MRNA Yields Superior Nonimmunogenic Vector with Increased Translational Capacity and Biological Stability. Mol. Ther. 2008, 16, 1833–1840. [Google Scholar] [CrossRef]
- Jamadade, P.; Nupur, N.; Maharana, K.C.; Singh, S. Therapeutic Monoclonal Antibodies for Metabolic Disorders: Major Advancements and Future Perspectives. Curr. Atheroscler. Rep. 2024, 26, 549–571. [Google Scholar] [CrossRef] [PubMed]
- Niazi, S.K.; Mariam, Z.; Magoola, M. Engineered Antibodies to Improve Efficacy against Neurodegenerative Disorders. Int. J. Mol. Sci. 2024, 25, 6683. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Biswas, S.; Roy, I. Immunotherapy: An Emerging Treatment Option for Neurodegenerative Diseases. Drug Discov. Today 2024, 29, 103974. [Google Scholar] [CrossRef]
- La Guidara, C.; Adamo, R.; Sala, C.; Micoli, F. Vaccines and Monoclonal Antibodies as Alternative Strategies to Antibiotics to Fight Antimicrobial Resistance. Int. J. Mol. Sci. 2024, 25, 5487. [Google Scholar] [CrossRef]
- Plana, D.; Palmer, A.C.; Sorger, P.K. Independent Drug Action in Combination Therapy: Implications for Precision Oncology. Cancer Discov. 2022, 12, 606–624. [Google Scholar] [CrossRef]
- Zoulikha, M.; Chen, Z.; Wu, J.; He, W. Approved Delivery Strategies for Biopharmaceuticals. Chin. Chem. Lett. 2024, 35, 110225. [Google Scholar] [CrossRef]
- Nicze, M.; Borówka, M.; Dec, A.; Niemiec, A.; Bułdak, Ł.; Okopień, B. The Current and Promising Oral Delivery Methods for Protein- and Peptide-Based Drugs. Int. J. Mol. Sci. 2024, 25, 815. [Google Scholar] [CrossRef]
- Qian, L.; Lin, X.; Gao, X.; Khan, R.U.; Liao, J.-Y.; Du, S.; Ge, J.; Zeng, S.; Yao, S.Q. The Dawn of a New Era: Targeting the “Undruggables” with Antibody-Based Therapeutics. Chem. Rev. 2023, 123, 7782–7853. [Google Scholar] [CrossRef]
- Jin, S.; Sun, Y.; Liang, X.; Gu, X.; Ning, J.; Xu, Y.; Chen, S.; Pan, L. Emerging New Therapeutic Antibody Derivatives for Cancer Treatment. Signal Transduct. Target. Ther. 2022, 7, 39. [Google Scholar] [CrossRef]
- Kuravsky, M.; Gibbons, G.F.; Joyce, C.; Scott-Tucker, A.; Macpherson, A.; Lawson, A.D.G. Modular Design of Bi- and Multi-Specific Knob Domain Fusions. Front. Immunol. 2024, 15, 1384467. [Google Scholar] [CrossRef]
- Zhou, Z.; Lin, T.; Chen, S.; Zhang, G.; Xu, Y.; Zou, H.; Zhou, A.; Zhang, Y.; Weng, S.; Han, X.; et al. Omics-Based Molecular Classifications Empowering in Precision Oncology. Cell. Oncol. 2024, 47, 759–777. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.E.; Ortega-Santos, C.P.; Whisner, C.M.; Klein-Seetharaman, J.; Jasbi, P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines 2024, 12, 1496. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.N.; McNaughton, A.D.; Kumar, N. Leveraging Artificial Intelligence to Expedite Antibody Design and Enhance Antibody-Antigen Interactions. Bioengineering 2024, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Notin, P.; Rollins, N.; Gal, Y.; Sander, C.; Marks, D. Machine Learning for Functional Protein Design. Nat. Biotechnol. 2024, 42, 216–228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araki, K.; Maeda, R. A Brief Chronicle of Antibody Research and Technological Advances. Antibodies 2024, 13, 90. https://doi.org/10.3390/antib13040090
Araki K, Maeda R. A Brief Chronicle of Antibody Research and Technological Advances. Antibodies. 2024; 13(4):90. https://doi.org/10.3390/antib13040090
Chicago/Turabian StyleAraki, Kazutaka, and Ryota Maeda. 2024. "A Brief Chronicle of Antibody Research and Technological Advances" Antibodies 13, no. 4: 90. https://doi.org/10.3390/antib13040090
APA StyleAraki, K., & Maeda, R. (2024). A Brief Chronicle of Antibody Research and Technological Advances. Antibodies, 13(4), 90. https://doi.org/10.3390/antib13040090