Ocular Mucous Membrane Pemphigoid Demonstrates a Distinct Autoantibody Profile from Those of Other Autoimmune Blistering Diseases: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Samples
2.2. PhIP-Seq HuScan Library Construction
2.3. PhIP-Seq
2.4. Bioinformatic Analysis
3. Results
3.1. PhIP-Seq Analysis of AIBD Sera Identified Distinct Targeted Antigens in oMMP Patients
3.2. Pathway Enrichment Analysis Demonstrated Enriched Signals in oMMP
3.3. Comparison to Prior Pemphigus Proteome Arrays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, L.S.; Ahmed, A.R.; Anhalt, G.J.; Bernauer, W.; Cooper, K.D.; Elder, M.J.; Fine, J.D.; Foster, C.S.; Ghohestani, R.; Hashimoto, T.; et al. The first international consensus on mucous membrane pemphigoid: Definition, diagnostic criteria, pathogenic factors, medical treatment, and prognostic indicators. Arch. Dermatol. 2002, 138, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.S.; Sainz De La Maza, M. Ocular cicatricial pemphigoid review. Curr. Opin. Allergy Clin. Immunol. 2004, 4, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, S.C.; Günther, C.; Böckle, B.C.; Didona, D.; Ehrchen, J.; Gaskins, M.; Geerling, G.; Gläser, R.; Hadaschik, E.; Hampl, M.; et al. S2k Guideline for the diagnosis and treatment of mucous membrane pemphigoid. J. Dtsch. Dermatol. Ges. 2022, 20, 1530–1550. [Google Scholar] [CrossRef] [PubMed]
- Elder, M.J.; Bernauer, W.; Leonard, J.; Dart, J.K. Progression of disease in ocular cicatricial pemphigoid. Br. J. Ophthalmol. 1996, 80, 292–296. [Google Scholar] [CrossRef]
- Foster, C.S.; Chang, P.Y.; Ahmed, A.R. Combination of rituximab and intravenous immunoglobulin for recalcitrant ocular cicatricial pemphigoid: A preliminary report. Ophthalmology 2010, 117, 861–869. [Google Scholar] [CrossRef]
- Kneiber, D.; Kowalski, E.; Kroloff, M.; Patel, P.; Jones, V.; Tu, E.; Sugar, J.; Aronson, I.; Amber, K. Direct Immunofluorescence Findings in 145 Consecutive Patients Receiving a Conjunctival Biopsy for Cicatrizing Conjunctivitis. Ocul. Immunol. Inflamm. 2021, 29, 1478–1479. [Google Scholar] [CrossRef]
- Labowsky, M.T.; Stinnett, S.S.; Liss, J.; Daluvoy, M.; Hall, R.P., 3rd; Shieh, C. Clinical Implications of Direct Immunofluorescence Findings in Patients with Ocular Mucous Membrane Pemphigoid. Am. J. Ophthalmol. 2017, 183, 48–55. [Google Scholar] [CrossRef]
- Williams, G.P.; Radford, C.; Nightingale, P.; Dart, J.K.; Rauz, S. Evaluation of early and late presentation of patients with ocular mucous membrane pemphigoid to two major tertiary referral hospitals in the United Kingdom. Eye 2011, 25, 1207–1218. [Google Scholar] [CrossRef]
- Saw, V.P.; Dart, J.K.; Rauz, S.; Ramsay, A.; Bunce, C.; Xing, W.; Maddison, P.G.; Phillips, M. Immunosuppressive therapy for ocular mucous membrane pemphigoid strategies and outcomes. Ophthalmology 2008, 115, 253–261.e1. [Google Scholar] [CrossRef]
- Ong, H.S.; Setterfield, J.F.; Minassian, D.C.; Dart, J.K. Mucous Membrane Pemphigoid with Ocular Involvement: The Clinical Phenotype and Its Relationship to Direct Immunofluorescence Findings. Ophthalmology 2018, 125, 496–504. [Google Scholar] [CrossRef]
- Sodha, D.; Patzelt, S.; Djalilian, A.R.; Jain, S.; Geerling, G.; Schmidt, E.; Amber, K.T. The Role of Serology in the Diagnosis of Ocular Predominant Mucous Membrane Pemphigoid and the Search for an Ocular-Specific Autoantigen. Ocul. Immunol. Inflamm. 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.Y.; Bhol, K.; Tesavibul, N.; Letko, E.; Simmons, R.K.; Foster, C.S.; Ahmed, A.R. The role of antibody to human beta4 integrin in conjunctival basement membrane separation: Possible in vitro model for ocular cicatricial pemphigoid. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2283–2290. [Google Scholar]
- Bhol, K.C.; Dans, M.J.; Simmons, R.K.; Foster, C.S.; Giancotti, F.G.; Ahmed, A.R. The autoantibodies to alpha 6 beta 4 integrin of patients affected by ocular cicatricial pemphigoid recognize predominantly epitopes within the large cytoplasmic domain of human beta 4. J. Immunol. 2000, 165, 2824–2829. [Google Scholar] [CrossRef] [PubMed]
- Bhol, K.C.; Colon, J.E.; Ahmed, A.R. Autoantibody in mucous membrane pemphigoid binds to an intracellular epitope on human beta4 integrin and causes basement membrane zone separation in oral mucosa in an organ culture model. J. Investig. Dermatol. 2003, 120, 701–702. [Google Scholar] [CrossRef] [PubMed]
- Rashid, K.A.; Gürcan, H.M.; Ahmed, A.R. Antigen specificity in subsets of mucous membrane pemphigoid. J. Investig. Dermatol. 2006, 126, 2631–2636. [Google Scholar] [CrossRef]
- Li, X.; Qian, H.; Sogame, R.; Hirako, Y.; Tsuruta, D.; Ishii, N.; Koga, H.; Tsuchisaka, A.; Jin, Z.; Tsubota, K.; Fukumoto, A. Integrin β4 is a major target antigen in pure ocular mucous membrane pemphigoid. Eur. J. Dermatol. 2016, 26, 247–253. [Google Scholar]
- Letko, E.; Bhol, K.; Foster, S.C.; Ahmed, R.A. Influence of intravenous immunoglobulin therapy on serum levels of anti-beta 4 antibodies in ocular cicatricial pemphigoid. A correlation with disease activity. A preliminary study. Curr. Eye Res. 2000, 21, 646–654. [Google Scholar] [CrossRef]
- Maglie, R.; De Almeida, C.V.; Baffa, M.E.; Bianchi, B.; Caproni, M.; Di Zenzo, G.; Li, X.; Hirako, Y.; Hashimoto, T.; Tusa, I.; et al. Anti-β4 integrin autoantibodies in patients with mucous membrane pemphigoid: A retrospective analysis from a tertiary centre in Italy. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e249–e251. [Google Scholar] [CrossRef]
- Thorne, J.E.; Anhalt, G.J.; Jabs, D.A. Mucous membrane pemphigoid and pseudopemphigoid. Ophthalmology 2004, 111, 45–52. [Google Scholar] [CrossRef]
- Anesi, S.D.; Eggenschwiler, L.; Ferrara, M.; Artornsombudh, P.; Walsh, M.; Foster, C.S. Reliability of Conjunctival Biopsy for Diagnosis of Ocular Mucous Membrane Pemphigoid: Redetermination of the Standard for Diagnosis and Outcomes of Previously Biopsy-Negative Patients. Ocul. Immunol. Inflamm. 2021, 29, 1106–1113. [Google Scholar] [CrossRef]
- Mai, S.; Izumi, K.; Itamoto, S.; Kurosawa, S.; Nagata, Y.; Hikichi, S.; Miyazawa, H.; Tokuchi, K.; Imafuku, K.; Yanagi, T.; et al. Native collagen XVII complex ELISA: An approach for diagnosis and monitoring of anti-integrin β4 mucous membrane pemphigoid. J. Eur. Acad. Dermatol. Venereol. 2024, 38, e385–e387. [Google Scholar] [CrossRef] [PubMed]
- Maglie, R.; Antiga, E. It is time to reconsider antibodies against integrin β4 in mucous membrane pemphigoid: Comment on ‘Native collagen XVII complex ELISA: An approach for diagnosis and monitoring of anti-integrin β4 mucous membrane pemphigoid’. J. Eur. Acad. Dermatol. Venereol. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Arase, N.; Sasaoka, Y.; Narita, J.; Kiyohara, E.; Hashimoto, K.; Shinzaki, S.; Nojima, S.; Takagi, J.; Fujimoto, M. Anti-α6β4 integrin autoantibodies inhibit the binding of laminins to α6β4 integrin in patients with pemphigoid and affect the gastrointestinal tract. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, C.; Arase, N.; Higuchi, S.; Arase, H.; Takagi, J.; Nojima, S.; Tanemura, A.; Fujimoto, M. Serum autoantibodies against the extracellular region of α6β4 integrin in a patient with dipeptidyl peptidase-4 inhibitor-induced bullous pemphigoid. JAAD Case Rep. 2022, 20, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Amber, K.T.; Murrell, D.F.; Schmidt, E.; Joly, P.; Borradori, L. Autoimmune Subepidermal Bullous Diseases of the Skin and Mucosae: Clinical Features, Diagnosis, and Management. Clin. Rev. Allergy Immunol. 2018, 54, 26–51. [Google Scholar] [CrossRef] [PubMed]
- Di Zenzo, G.; Amber, K.T.; Sayar, B.S.; Müller, E.J.; Borradori, L. Immune response in pemphigus and beyond: Progresses and emerging concepts. Semin. Immunopathol. 2016, 38, 57–74. [Google Scholar] [CrossRef]
- Cole, C.; Borradori, L.; Amber, K.T. Deciphering the Contribution of BP230 Autoantibodies in Bullous Pemphigoid. Antibodies 2022, 11, 44. [Google Scholar] [CrossRef]
- Sielski, L.; Baker, J.; DePasquale, M.C.; Attwood, K.; Seiffert-Sinha, K.; Sinha, A.A. Desmoglein compensation hypothesis fidelity assessment in Pemphigus. Front. Immunol. 2022, 13, 969278. [Google Scholar] [CrossRef]
- Kalantari-Dehaghi, M.; Anhalt, G.J.; Camilleri, M.J.; Chernyavsky, A.I.; Chun, S.; Felgner, P.L.; Jasinskas, A.; Leiferman, K.M.; Liang, L.; Marchenko, S.; et al. Pemphigus vulgaris autoantibody profiling by proteomic technique. PLoS ONE 2013, 8, e57587. [Google Scholar] [CrossRef]
- Amber, K.T.; Valdebran, M.; Grando, S.A. Non-Desmoglein Antibodies in Patients with Pemphigus Vulgaris. Front. Immunol. 2018, 9, 1190. [Google Scholar] [CrossRef]
- Hisamatsu, Y.; Amagai, M.; Garrod, D.R.; Kanzaki, T.; Hashimoto, T. The detection of IgG and IgA autoantibodies to desmocollins 1-3 by enzyme-linked immunosorbent assays using baculovirus-expressed proteins, in atypical pemphigus but not in typical pemphigus. Br. J. Dermatol. 2004, 151, 73–83. [Google Scholar] [CrossRef]
- Hudemann, C.; Maglie, R.; Llamazares-Prada, M.; Beckert, B.; Didona, D.; Tikkanen, R.; Schmitt, T.; Hashimoto, T.; Waschke, J.; Hertl, M.; et al. Human Desmocollin 3‒Specific IgG Antibodies Are Pathogenic in a Humanized HLA Class II Transgenic Mouse Model of Pemphigus. J. Investig. Dermatol. 2022, 142, 915–923.e3. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Ishii, N.; Ishiko, A.; Hashimoto, T. Pemphigus Autoantibodies to Desmocollin 3 but Not to Desmocollin 1 Directly Block Heterophilic Desmoglein/Desmocollin Transinteraction. J. Investig. Dermatol. 2024, 144, 1394–1397. [Google Scholar] [CrossRef] [PubMed]
- Ishii, N. Significance of anti-desmocollin autoantibodies in pemphigus. J. Dermatol. 2023, 50, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Ishii, N.; Teye, K.; Fukuda, S.; Uehara, R.; Hachiya, T.; Koga, H.; Tsuchisaka, A.; Numata, S.; Ohyama, B.; Tateishi, C.; et al. Anti-desmocollin autoantibodies in nonclassical pemphigus. Br. J. Dermatol. 2015, 173, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Nagler, A.R.; Farber, S.A.; Choi, E.J.; Jackson, L.H.; Leiferman, K.M.; Ishii, N.; Hashimoto, T.; Amagai, M.; Zone, J.J.; et al. Autoimmunity to desmocollin 3 in pemphigus vulgaris. Am. J. Pathol. 2010, 177, 2724–2730. [Google Scholar] [CrossRef]
- Mindorf, S.; Dettmann, I.M.; Krüger, S.; Fuhrmann, T.; Rentzsch, K.; Karl, I.; Probst, C.; Komorowski, L.; Fechner, K.; van Beek, N.; et al. Routine detection of serum antidesmocollin autoantibodies is only useful in patients with atypical pemphigus. Exp. Dermatol. 2017, 26, 1267–1270. [Google Scholar] [CrossRef]
- Müller, R.; Heber, B.; Hashimoto, T.; Messer, G.; Müllegger, R.; Niedermeier, A.; Hertl, M. Autoantibodies against desmocollins in European patients with pemphigus. Clin. Exp. Dermatol. 2009, 34, 898–903. [Google Scholar] [CrossRef]
- Rafei, D.; Müller, R.; Ishii, N.; Llamazares, M.; Hashimoto, T.; Hertl, M.; Eming, R. IgG autoantibodies against desmocollin 3 in pemphigus sera induce loss of keratinocyte adhesion. Am. J. Pathol. 2011, 178, 718–723. [Google Scholar] [CrossRef]
- Chernyavsky, A.; Amber, K.T.; Agnoletti, A.F.; Wang, C.; Grando, S.A. Synergy among non-desmoglein antibodies contributes to the immunopathology of desmoglein antibody-negative pemphigus vulgaris. J. Biol. Chem. 2019, 294, 4520–4528. [Google Scholar] [CrossRef]
- Chernyavsky, A.; Khylynskyi, M.M.; Patel, K.G.; Grando, S.A. Chronic exposure to the anti-M3 muscarinic acetylcholine receptor autoantibody in pemphigus vulgaris contributes to disease pathophysiology. J. Biol. Chem. 2022, 298, 101687. [Google Scholar] [CrossRef]
- Chernyavsky, A.; Patel, K.G.; Grando, S.A. Mechanisms of synergy of autoantibodies to M3 muscarinic acetylcholine receptor and secretory pathway Ca(2+)/Mn(2+)-ATPase isoform 1 in patients with non-desmoglein pemphigus vulgaris. Int. Immunopharmacol. 2020, 80, 106149. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Grando, C.; Liu, S.; Chernyavsky, A.; Chen, J.K.; Andersen, B.; Grando, S.A. The M3 Muscarinic Acetylcholine Receptor Promotes Epidermal Differentiation. J. Investig. Dermatol. 2022, 142, 3211–3221.e2. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chernyavsky, A.; Webber, R.J.; Grando, S.A.; Wang, P.H. Critical Role of the Neonatal Fc Receptor (FcRn) in the Pathogenic Action of Antimitochondrial Autoantibodies Synergizing with Anti-desmoglein Autoantibodies in Pemphigus Vulgaris. J. Biol. Chem. 2015, 290, 23826–23837. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.R.; Carrozzo, M.; Caux, F.; Cirillo, N.; Dmochowski, M.; Alonso, A.E.; Gniadecki, R.; Hertl, M.; López-Zabalza, M.J.; Lotti, R.; et al. Monopathogenic vs multipathogenic explanations of pemphigus pathophysiology. Exp. Dermatol. 2016, 25, 839–846. [Google Scholar] [CrossRef]
- Larman, H.B.; Zhao, Z.; Laserson, U.; Li, M.Z.; Ciccia, A.; Gakidis, M.A.; Church, G.M.; Kesari, S.; LeProust, E.M.; Solimini, N.L.; et al. Autoantigen discovery with a synthetic human peptidome. Nat. Biotechnol. 2011, 29, 535–541. [Google Scholar] [CrossRef]
- Mohan, D.; Wansley, D.L.; Sie, B.M.; Noon, M.S.; Baer, A.N.; Laserson, U.; Larman, H.B. PhIP-Seq characterization of serum antibodies using oligonucleotide-encoded peptidomes. Nat. Protoc. 2018, 13, 1958–1978. [Google Scholar] [CrossRef]
- Larman, H.B.; Laserson, U.; Querol, L.; Verhaeghen, K.; Solimini, N.L.; Xu, G.J.; Klarenbeek, P.L.; Church, G.M.; Hafler, D.A.; Plenge, R.M.; et al. PhIP-Seq characterization of autoantibodies from patients with multiple sclerosis, type 1 diabetes and rheumatoid arthritis. J. Autoimmun. 2013, 43, 1–9. [Google Scholar] [CrossRef]
- Vazquez, S.E.; Ferré, E.M.; Scheel, D.W.; Sunshine, S.; Miao, B.; Mandel-Brehm, C.; Quandt, Z.; Chan, A.Y.; Cheng, M.; German, M.; et al. Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-Seq. eLife 2020, 9, e55053. [Google Scholar] [CrossRef]
- Cantarelli, C.; Jarque, M.; Angeletti, A.; Manrique, J.; Hartzell, S.; O’Donnell, T.; Merritt, E.; Laserson, U.; Perin, L.; Donadei, C.; et al. A Comprehensive Phenotypic and Functional Immune Analysis Unravels Circulating Anti-Phospholipase A2 Receptor Antibody Secreting Cells in Membranous Nephropathy Patients. Kidney Int. Rep. 2020, 5, 1764–1776. [Google Scholar] [CrossRef]
- Valencia-Sanchez, C.; Knight, A.M.; Hammami, M.B.; Guo, Y.; Mills, J.R.; Kryzer, T.J.; Piquet, A.L.; Amin, A.; Heinzelmann, M.; Lucchinetti, C.F.; Lennon, V.A. Characterisation of TRIM46 autoantibody-associated paraneoplastic neurological syndrome. J. Neurol. Neurosurg. Psychiatry 2022, 93, 196–200. [Google Scholar] [CrossRef]
- Rezk, M.; Pittock, S.J.; Kapadia, R.K.; Knight, A.M.; Guo, Y.; Gupta, P.; LaFrance-Corey, R.G.; Zekeridou, A.; McKeon, A.; Dasari, S.; et al. Identification of SKOR2 IgG as a novel biomarker of paraneoplastic neurologic syndrome. Front. Immunol. 2023, 14, 1243946. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, S.E.; Mann, S.A.; Bodansky, A.; Kung, A.F.; Quandt, Z.; Ferré, E.M.N.; Landegren, N.; Eriksson, D.; Bastard, P.; Zhang, S.Y.; Liu, J. Autoantibody discovery across monogenic, acquired, and COVID19-associated autoimmunity with scalable PhIP-Seq. eLife 2022, 11, e78550. [Google Scholar] [CrossRef] [PubMed]
- Bodansky, A.; Wang, C.Y.; Saxena, A.; Mitchell, A.; Kung, A.F.; Takahashi, S.; Anglin, K.; Huang, B.; Hoh, R.; Lu, S.; et al. Autoantigen profiling reveals a shared post-COVID signature in fully recovered and long COVID patients. JCI Insight 2023, 8, e169515. [Google Scholar] [CrossRef]
- Mandel-Brehm, C.; Benson, L.A.; Tran, B.; Kung, A.F.; Mann, S.A.; Vazquez, S.E.; Retallack, H.; Sample, H.A.; Zorn, K.C.; Khan, L.M.; et al. ZSCAN1 Autoantibodies Are Associated with Pediatric Paraneoplastic ROHHAD. Ann. Neurol. 2022, 92, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Bourgonje, A.R.; Andreu-Sánchez, S.; Vogl, T.; Hu, S.; Vich Vila, A.; Gacesa, R.; Leviatan, S.; Kurilshikov, A.; Klompus, S.; Kalka, I.N.; et al. Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures. Immunity 2023, 56, 1393–1409.e6. [Google Scholar] [CrossRef]
- Upadhyay, V.; Yoon, Y.M.; Vazquez, S.E.; Velez, T.E.; Jones, K.D.; Lee, C.T.; Law, C.S.; Wolters, P.J.; Lee, S.; Yang, M.M.; et al. Phage Immunoprecipitation-Sequencing Reveals CDHR5 Autoantibodies in Select Patients with Interstitial Lung Disease. ACR Open Rheumatol. 2024, 6, 568–580. [Google Scholar] [CrossRef]
- Borradori, L.; Van Beek, N.; Feliciani, C.; Tedbirt, B.; Antiga, E.; Bergman, R.; Böckle, B.C.; Caproni, M.; Caux, F.; Chandran, N.; et al. Updated S2 K guidelines for the management of bullous pemphigoid initiated by the European Academy of Dermatology and Venereology (EADV). J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1689–1704. [Google Scholar] [CrossRef]
- Joly, P.; Horvath, B.; Patsatsi, A.; Uzun, S.; Bech, R.; Beissert, S.; Bergman, R.; Bernard, P.; Borradori, L.; Caproni, M.; et al. Updated S2K guidelines on the management of pemphigus vulgaris and foliaceus initiated by the european academy of dermatology and venereology (EADV). J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1900–1913. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef]
- Moore, B.A.; Leonard, B.C.; Sebbag, L.; Edwards, S.G.; Cooper, A.; Imai, D.M.; Straiton, E.; Santos, L.; Reilly, C.; Griffey, S.M.; et al. Identification of genes required for eye development by high-throughput screening of mouse knockouts. Commun. Biol. 2018, 1, 236. [Google Scholar] [CrossRef] [PubMed]
- Groza, T.; Gomez, F.L.; Mashhadi, H.H.; Muñoz-Fuentes, V.; Gunes, O.; Wilson, R.; Cacheiro, P.; Frost, A.; Keskivali-Bond, P.; Vardal, B.; et al. The International Mouse Phenotyping Consortium: Comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. 2023, 51, D1038–D1045. [Google Scholar] [CrossRef] [PubMed]
- Kalantari-Dehaghi, M.; Chen, Y.; Deng, W.; Chernyavsky, A.; Marchenko, S.; Wang, P.H.; Grando, S.A. Mechanisms of mitochondrial damage in keratinocytes by pemphigus vulgaris antibodies. J. Biol. Chem. 2013, 288, 16916–16925. [Google Scholar] [CrossRef] [PubMed]
- Credle, J.J.; Gunn, J.; Sangkhapreecha, P.; Monaco, D.R.; Zheng, X.A.; Tsai, H.J.; Wilbon, A.; Morgenlander, W.R.; Rastegar, A.; Dong, Y.; et al. Unbiased discovery of autoantibodies associated with severe COVID-19 via genome-scale self-assembled DNA-barcoded protein libraries. Nat. Biomed. Eng. 2022, 6, 992–1003. [Google Scholar] [CrossRef]
- Ujiie, H. What’s new in the pathogeneses and triggering factors of bullous pemphigoid. J. Dermatol. 2023, 50, 140–149. [Google Scholar] [CrossRef]
Condition | Age | Sex | IIF | BP180 ELISA | BP230 ELISA | COL7 ELISA | Dsg1 ELISA | Dsg3 ELISA | ITGβ4 IB |
---|---|---|---|---|---|---|---|---|---|
MMP | 51 | F | + | + | − | − | − | − | Nd |
50 | M | + | + | − | − | − | − | Nd | |
86 | F | − | + | − | − | − | − | Nd | |
66 | M | + | + | − | − | − | − | Nd | |
37 | F | + | + | − | − | − | − | Nd | |
72 | F | + | + | − | − | − | − | Nd | |
mcPV | 54 | M | + | − | Nd | Nd | + | + | Nd |
70 | F | + | − | − | − | + | + | Nd | |
66 | M | + | Nd | Nd | Nd | + | + | Nd | |
BP | 87 | F | + | + | + | − | Nd | Nd | Nd |
NR | NR | + | + | + | − | − | − | Nd | |
89 | F | + | + | + | − | Nd | Nd | Nd | |
oMMP | NR | NR | Nd | − | − | Nd | Nd | Nd | + |
NR | NR | Nd | − | − | Nd | Nd | Nd | + | |
NR | NR | Nd | − | − | Nd | Nd | Nd | + | |
80 | M | − | Nd | Nd | Nd | Nd | Nd | + | |
73 | F | + | Nd | Nd | Nd | Nd | Nd | + | |
82 | M | + | Nd | Nd | Nd | Nd | Nd | + | |
63 | F | + | − | − | Nd | Nd | Nd | − | |
NR | NR | − | − | − | Nd | Nd | Nd | + | |
NR | NR | − | − | − | Nd | Nd | Nd | + | |
NR | NR | − | − | − | Nd | Nd | Nd | + | |
78 | M | − | − | − | Nd | Nd | Nd | + | |
83 | M | − | − | − | Nd | Nd | Nd | − |
Gene | Protein Name | p | oMMP (%) | Controls (%) |
---|---|---|---|---|
TNKS1BP1 | 182 kDa tankyrase-1-binding protein | 0.003 | 83 | 16 |
SEC16B | Protein transport protein Sec16B | 0.004 | 58 | 0 |
DENND1C | DENN domain-containing protein 1C | 0.004 | 58 | 0 |
FNBP4 | Formin-binding protein 4 | 0.004 | 58 | 0 |
CASZ1 | Zinc finger protein castor homolog 1 | 0.009 | 66 | 8 |
GOLGB1 | Golgin subfamily B member 1 | 0.009 | 66 | 8 |
ARHGEF7 | Rho guanine nucleotide exchange factor 7 | 0.009 | 66 | 8 |
DOT1L | Histone-lysine N-methyltransferase, H3 lysine-79 specific | 0.009 | 66 | 8 |
FAT3 | Protocadherin Fat 3 isoform 2 precursor | 0.012 | 75 | 16 |
ARHGAP6 | Rho GTPase-activating protein 6 | 0.012 | 83 | 25 |
SRRT | Serrate RNA effector molecule homolog | 0.013 | 50 | 0 |
RPL6 | 60S ribosomal protein L6 | 0.013 | 50 | 0 |
LARP4B | La-related protein 4B | 0.013 | 50 | 0 |
PRDM15 | PR domain zinc finger protein 15 | 0.013 | 50 | 0 |
ELOA2 | Elongin-A2 | 0.013 | 50 | 0 |
FCGRT | IgG receptor FcRn large subunit p51 | 0.013 | 50 | 0 |
CLASP2 | CLIP-associating protein 2 | 0.013 | 50 | 0 |
HIP1 | Huntingtin-interacting protein 1 | 0.027 | 58 | 8 |
CILP | Cartilage intermediate layer protein 1 preproprotein | 0.027 | 58 | 8 |
NAV2 | Neuron navigator 2 | 0.036 | 83 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Bao, L.; Sodha, D.; Li, J.; Mansini, A.; Djalilian, A.R.; Li, X.; Qian, H.; Ishii, N.; Hashimoto, T.; et al. Ocular Mucous Membrane Pemphigoid Demonstrates a Distinct Autoantibody Profile from Those of Other Autoimmune Blistering Diseases: A Preliminary Study. Antibodies 2024, 13, 91. https://doi.org/10.3390/antib13040091
Liu Y, Bao L, Sodha D, Li J, Mansini A, Djalilian AR, Li X, Qian H, Ishii N, Hashimoto T, et al. Ocular Mucous Membrane Pemphigoid Demonstrates a Distinct Autoantibody Profile from Those of Other Autoimmune Blistering Diseases: A Preliminary Study. Antibodies. 2024; 13(4):91. https://doi.org/10.3390/antib13040091
Chicago/Turabian StyleLiu, Yingzi, Lei Bao, Dharm Sodha, Jing Li, Adrian Mansini, Ali R. Djalilian, Xiaoguang Li, Hua Qian, Norito Ishii, Takashi Hashimoto, and et al. 2024. "Ocular Mucous Membrane Pemphigoid Demonstrates a Distinct Autoantibody Profile from Those of Other Autoimmune Blistering Diseases: A Preliminary Study" Antibodies 13, no. 4: 91. https://doi.org/10.3390/antib13040091
APA StyleLiu, Y., Bao, L., Sodha, D., Li, J., Mansini, A., Djalilian, A. R., Li, X., Qian, H., Ishii, N., Hashimoto, T., & Amber, K. T. (2024). Ocular Mucous Membrane Pemphigoid Demonstrates a Distinct Autoantibody Profile from Those of Other Autoimmune Blistering Diseases: A Preliminary Study. Antibodies, 13(4), 91. https://doi.org/10.3390/antib13040091