High Prevalence of aCL-IgA and aβ2GPI-IgA in Drug-Free Schizophrenia Patients: Evidence of a Potential Autoimmune Link
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.1.1. Schizophrenic Patients
2.1.2. Healthy Controls
2.2. Antibody Assays
2.2.1. IgG, IgA, and IgM Anti-Cardiolipin Antibodies (aCL)
2.2.2. IgG, IgA, and IgM Anti-beta-2 Glycoprotein-I Antibodies (aβ2GPI)
2.3. Statistical Analysis
3. Results
3.1. Patients
3.2. Healthy Controls
3.3. Anti-Cardiolipin Antibodies
3.4. Anti-beta-2 Glycoprotein-I Antibodies
3.5. Anti-Phospholipid Antibodies
3.6. Correlations Between aCL, aβ2GPI Levels, and Clinical Data
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khandaker, G.M.; Cousins, L.; Deakin, J.; Lennox, B.R.; Yolken, R.; Jones, P.B. Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment. Lancet Psychiatry 2015, 2, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Najjar, S.; Steiner, J.; Najjar, A.; Bechter, K. A clinical approach to new-onset psychosis associated with immune dysregulation: The concept of autoimmune psychosis. J. Neuroinflamm. 2018, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Ezeoke, A.; Mellor, A.; Buckley, P.; Miller, B. A systematic, quantitative review of blood autoantibodies in schizophrenia. Schizophr. Res. 2013, 150, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Man, Y.L.; Sanna, G. Neuropsychiatric Manifestations of Antiphospholipid Syndrome—A Narrative Review. Brain Sci. 2022, 12, 91. [Google Scholar] [CrossRef]
- Capozzi, A.; Manganelli, V.; Riitano, G.; Caissutti, D.; Longo, A.; Garofalo, T.; Sorice, M.; Misasi, R. Advances in the Pathophysiology of Thrombosis in Antiphospholipid Syndrome: Molecular Mechanisms and Signaling through Lipid Rafts. J. Clin. Med. 2023, 12, 891. [Google Scholar] [CrossRef]
- Misasi, R.; Longo, A.; Recalchi, S.; Caissutti, D.; Riitano, G.; Manganelli, V.; Garofalo, T.; Sorice, M.; Capozzi, A. Molecular Mechanisms of “Antiphospholipid Antibodies” and Their Paradoxical Role in the Pathogenesis of “Seronegative APS”. Int. J. Mol. Sci. 2020, 21, 8411. [Google Scholar] [CrossRef]
- Mayer, M.; Cerovec, M.; Radoš, M.; Čikeš, N. Antiphospholipid syndrome and central nervous system. Clin. Neurol. Neurosurg. 2010, 112, 602–608. [Google Scholar] [CrossRef]
- Li, M.; Gao, Y.; Wang, D.; Hu, X.; Jiang, J.; Qing, Y.; Yang, X.; Cui, G.; Wang, P.; Zhang, J.; et al. Impaired Membrane Lipid Homeostasis in Schizophrenia. Schizophr. Bull. 2022, 48, 1125–1135. [Google Scholar] [CrossRef]
- Dickens, A.M.; Sen, P.; Kempton, M.J.; Barrantes-Vidal, N.; Iyegbe, C.; Nordentoft, M.; Pollak, T.; Riecher-Rössler, A.; Ruhrmann, S.; Sachs, G.; et al. Dysregulated Lipid Metabolism Precedes Onset of Psychosis. Biol. Psychiatry 2021, 89, 288–297. [Google Scholar] [CrossRef]
- Horrobin, D.F. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr. Res. 1998, 30, 193–208. [Google Scholar] [CrossRef]
- Mahadik, S.P.; Evans, D.R. Is schizophrenia a metabolic brain disorder? Membrane phospholipid dysregulation and its therapeutic implications. Psychiatr. Clin. N. Am. 2003, 26, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Hoirisch-Clapauch, S.; Amaral, O.B.; Mezzasalma, M.A.U.; Panizzutti, R.; Nardi, A.E. Dysfunction in the coagulation system and schizophrenia. Transl. Psychiatry 2016, 6, e704. [Google Scholar] [CrossRef]
- Yu, P.; Passam, F.H.; Yu, D.M.; Denyer, G.; Krilis, S.A. Beta2-glycoprotein I inhibits vascular endothelial growth factor and basic fibroblast growth factor induced angiogenesis through its amino terminal domain. J. Thromb. Haemost. 2008, 6, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, T.; Wincup, C.; Buchholz, I.; Pericleous, C.; Giles, I.; Ripoll, V.; Cohen, H.; Delcea, M.; Rahman, A. The role of beta-2-glycoprotein I in health and disease associating structure with function: More than just APS. Blood Rev. 2020, 39, 100610. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, S.; Atsumi, T.; Ieko, M.; Koike, T. Beta2-glycoprotein I, anti-beta2-glycoprotein I, and fibrinolysis. Thromb. Res. 2004, 114, 461–465. [Google Scholar] [CrossRef]
- Hulstein, J.J.J.; Lenting, P.J.; de Laat, B.; Derksen, R.H.W.M.; Fijnheer, R.; de Groot, P.G. beta2-Glycoprotein I inhibits von Willebrand factor dependent platelet adhesion and aggregation. Blood 2007, 110, 1483–1491. [Google Scholar] [CrossRef]
- Arnout, J. Antiphospholipid Syndrome: Diagnostic Aspects of Lupus Anticoagulants. Thromb. Haemost. 2001, 86, 83–91. [Google Scholar] [CrossRef]
- Grossi, C.; Artusi, C.; Meroni, P.; Borghi, M.O.; Neglia, L.; Lonati, P.A.; Oggioni, M.; Tedesco, F.; De Simoni, M.-G.; Fumagalli, S. β2 glycoprotein I participates in phagocytosis of apoptotic neurons and in vascular injury in experimental brain stroke. J. Cereb. Blood Flow Metab. 2021, 41, 2038–2053. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing, Inc.: Arlington, VA, USA, 2013; pp. 1–947. [Google Scholar]
- First, M.B.; Gibbon, M. The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and the Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II). In Comprehensive Handbook of Psychological Assessment, Vol 2: Personality Assessment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 134–143. [Google Scholar]
- Amer, M.A.E.H.; Amer, R.A.R.; Mourad, H.A.; Shmma, G.T. Antiphospholipid antibodies as biomarkers for schizophrenia. Int. J. Res. Psychiatry 2023, 3, 1–8. [Google Scholar] [CrossRef]
- Chang, S.-H.; Chiang, S.-Y.; Chiu, C.-C.; Tsai, C.-C.; Tsai, H.-H.; Huang, C.-Y.; Hsu, T.-C.; Tzang, B.-S. Expression of anti-cardiolipin antibodies and inflammatory associated factors in patients with schizophrenia. Psychiatry Res. 2011, 187, 341–346. [Google Scholar] [CrossRef]
- Halacheva, K.; Dimova, S.; Tolev, T.; Dimov, D.; Nikolova, M. Elevated anticardiolipin antibodies in schizophrenic patients before and during neuroleptic medication. Psychiatry Res. 2009, 169, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Firer, M.; Sirota, P.; Schild, K.; Elizur, A.; Slor, H. Anticardiolipin antibodies are elevated in drug-free, multiply affected families with schizophrenia. J. Clin. Immunol. 1994, 14, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Chengappa, K.; Carpenter, A.; Keshavan, M.; Yang, Z.W.; Kelly, R.; Rabin, B.; Ganguli, R. Elevated IGG and IGM anticardiolipin antibodies in a subgroup of medicated and unmedicated schizophrenic patients. Biol. Psychiatry 1991, 30, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Sirota, P.; Bogdanov, I.; Katzav, A.; Hershko, R.; Chapman, J. Reduced anticardiolipin antibodies in first episode and chronic schizophrenia. Psychiatry Res. 2006, 144, 211–216. [Google Scholar] [CrossRef]
- Canoso, R.T.; de Oliveira, R.M.; Nixon, R.A. Neuroleptic-associated autoantibodies a prevalence study. Biol. Psychiatry 1990, 27, 863–870. [Google Scholar] [CrossRef]
- Yannitsi, S.G.; Manoussakis, M.N.; Mavridis, A.K.; Tzioufas, A.G.; Loukas, S.B.; Plataris, G.K.; Liakos, A.D.; Moutsopoulos, H.M. Factors related to the presence of autoantibodies in patients with chronic mental disorders. Biol. Psychiatry 1990, 27, 747–756. [Google Scholar] [CrossRef]
- Shen, H.; Li, R.; Xiao, H.; Zhou, Q.; Cui, Q.; Chen, J. Higher serum clozapine level is associated with increased antiphospholipid antibodies in schizophrenia patients. J. Psychiatr. Res. 2009, 43, 615–619. [Google Scholar] [CrossRef]
- Vlagea, A.; Pascual-Salcedo, D.; Doforno, R.; Lavilla, P.; Diez, J.; Merlano, B.P.; Cuesta, M.V.; Gil, A. IgA anti-β2 glycoprotein I antibodies: Experience from a large center. Thromb. Res. 2018, 162, 38–43. [Google Scholar] [CrossRef]
- Cabrera-Marante, O.; Rodríguez de Frías, E.; Serrano, M.; Lozano Morillo, F.; Naranjo, L.; Gil-Etayo, F.J.; Paz-Artal, E.; Pleguezuelo, D.E.; Serrano, A. The Weight of IgA Anti-β2glycoprotein I in the Antiphospholipid Syndrome Pathogenesis: Closing the Gap of Seronegative Antiphospholipid Syndrome. Int. J. Mol. Sci. 2020, 21, 8972. [Google Scholar] [CrossRef]
- Bertolaccini, M.; Amengual, O.; Atsumi, T.; Binder, W.; Laat, B.D.; Forastiero, R.; Kutteh, W.H.; Lambert, M.; Matsubayashi, H.; Murthy, V.; et al. ‘Non-criteria’ aPL tests: Report of a task force and preconference workshop at the 13th International Congress on Antiphospholipid Antibodies, Galveston, TX, USA, April 2010. Lupus 2011, 20, 191–205. [Google Scholar] [CrossRef]
- Petri, M.; Orbai, A.; Alarcón, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 2012, 64, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Aringer, M.; Costenbader, K.H.; Daikh, D.I.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 EULAR/ACR Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Barbhaiya, M.; Zuily, S.; Naden, R.; Hendry, A.; Manneville, F.; Amigo, M.C.; Amoura, Z.; Andrade, D.; Andreoli, L.; Artim-Esen, B.; et al. 2023 ACR/EULAR antiphospholipid syndrome classification criteria. Ann. Rheum. Dis. 2023, 82, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Flores, J.A.; Serrano, M.; Pérez, D.; Lora, D.; Paz-Artal, E.; Morales, J.M.; Serrano, A. Detection of circulating immune complexes of human IgA and beta 2 glycoprotein I in patients with antiphospholipid syndrome symptomatology. J. Immunol. Methods 2015, 422, 51–58. [Google Scholar] [CrossRef]
- Martínez-Flores, J.A.; Serrano, M.; Pérez, D.; Cámara, A.G.; Lora, D.; Morillas, L.; Ayala, R.; Paz-Artal, E.; Morales, J.M.; Serrano, A. Circulating Immune Complexes of IgA Bound to Beta 2 Glycoprotein are Strongly Associated with the Occurrence of Acute Thrombotic Events. J. Atheroscler. Thromb. 2016, 23, 1242–1253. [Google Scholar] [CrossRef]
- Pierangeli, S.S.; Liu, X.W.; Barker, J.H.; Anderson, G.; Harris, E.N. Induction of Thrombosis in a Mouse Model by IgG, IgM and IgA Immunoglobulins from Patients with the Antiphospholipid Syndrome. Thromb. Haemost. 1995, 74, 1361–1367. [Google Scholar] [CrossRef]
- Naranjo, L.; Ostos, F.; Gil-Etayo, F.J.; Hernández-Gallego, J.; Cabrera-Marante, Ó.; Pleguezuelo, D.E.; Díaz-Simón, R.; Cerro, M.; Lora, D.; Martínez-Salio, A.; et al. Presence of Extra-Criteria Antiphospholipid Antibodies Is an Independent Risk Factor for Ischemic Stroke. Front. Cardiovasc. Med. 2021, 8, 665741. [Google Scholar] [CrossRef]
- Mehrani, T.; Petri, M. Association of IgA Anti-ß2 Glycoprotein I with Clinical and Laboratory Manifestations of Systemic Lupus Erythematosus. J. Rheumatol. 2011, 38, 64–68. [Google Scholar] [CrossRef]
- Lakos, G.; Favaloro, E.J.; Harris, E.N.; Meroni, P.L.; Tincani, A.; Wong, R.C.; Pierangeli, S.S. International consensus guidelines on anticardiolipin and anti–β2-glycoprotein I testing: Report from the 13th International Congress on Antiphospholipid Antibodies. Arthritis Rheum. 2012, 64, 1–10. [Google Scholar] [CrossRef]
- Truglia, S.; Mancuso, S.; Capozzi, A.; Recalchi, S.; Riitano, G.; Longo, A.; De Carolis, S.; Spinelli, F.R.; Alessandri, C.; Ceccarelli, F.; et al. ‘Non-criteria antiphospholipid antibodies’: Bridging the gap between seropositive and seronegative antiphospholipid syndrome. Rheumatology 2022, 61, 826–833. [Google Scholar] [CrossRef]
- Reshetnyak, T.; Cheldieva, F.; Cherkasova, M.; Lila, A.; Nasonov, E. IgA Antiphospholipid Antibodies in Antiphospholipid Syndrome and Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2022, 23, 9432. [Google Scholar] [CrossRef]
Schizophrenic Patients (n = 80) | |
---|---|
Sex (male/female) | 50/30 (62.5%/37.5%) |
Age (years) | 37.94 ± 1.37 (16–68) |
Age of onset (years) | 25.03 ± 6.83 (13–44) |
Disease duration (years) | 12.79 ± 9.47 |
Family history (yes/no) | 42/38 (52.5%/47.5%) |
Medication status on admission Medication-naive Medication-free | 13 (16.25%) 67 (83.75%) |
Subtypes Paranoid Undifferentiated Disorganized | 11 (13.75%) 40 (50%) 29 (36.25%) |
Psychopathology score 1 BPRS at admission PANS at admission SAPS at admission SANS at admission CGI at admission EGF at admission | 53.8 ± 5.8 78.4 ± 11.77 37.22 ± 11.69 35.92 ± 12.88 4.72 ± 0.65 37.22 ± 5.35 |
Schizophrenic Patients (n = 80) | Healthy Controls (n = 80) | p | |
---|---|---|---|
Anti-cardiolipin | 21.25% (17/80) | 3.75% (3/80) | 0.0008 |
Anti-β2-glycoprotein I | 27.5% (22/80) | 1.25% (1/80) | <10−3 |
Antiphospholipid | 31.25% (25/80) | 5% (4/80) | <10−3 |
Schizophrenic Patients (n = 80) | Healthy Controls (n = 80) | p | |
---|---|---|---|
aCL-IgG | 3.75% (3/80) | 1.25% (1/80) | NS |
aCL-IgA | 8.75% (7/80) | 0% | 0.006 |
aCL-IgM | 16.25% (13/80) | 2.5% (2/80) | 0.002 |
aβ2GPI-IgG | 6.25% (5/80) | 0% | NS |
aβ2GPI-IgA | 22.5% (18/80) | 1.25% (1/80) | <10−3 |
aβ2GPI-IgM | 7.5% (6/80) | 0% | NS |
Patient N° | Sex | Anti-Cardiolipin (U/mL) | Anti-β2glycoprotein I (U/mL) | ||||
---|---|---|---|---|---|---|---|
IgG | IgA | IgM | IgG | IgA | IgM | ||
1 | F | - | - | - | - | 16 | - |
2 | M | - | - | 12.5 | - | - | 13 |
3 | F | - | - | - | 24 | - | |
4 | M | - | 12 | 21 | - | 68 | 20 |
5 | F | 14 | - | - | 54.5 | 24 | - |
6 | M | - | - | 9.5 | - | 23.5 | - |
7 | M | - | 11.5 | - | - | 70 | - |
8 | M | - | - | - | - | 12 | - |
9 | M | - | - | 10 | - | 20 | - |
10 | M | - | - | 12 | - | - | - |
11 | F | 26 | 34 | 18 | 68 | >100 | 16.5 |
12 | F | 11 | 18.5 | 56 | 19 | >100 | 54.5 |
13 | M | - | - | 9 | - | - | - |
14 | F | - | - | - | - | 35 | - |
15 | F | - | - | 12.25 | - | - | - |
16 | F | - | - | 10.5 | - | 12.5 | - |
17 | F | - | - | - | - | 64 | |
18 | F | - | 14 | 14 | 10.5 | 70.5 | - |
19 | F | - | 13.5 | - | 24.5 | - | |
20 | M | - | - | - | - | 26 | - |
21 | M | - | - | 17.5 | - | 19.5 | |
22 | M | - | 11 | - | - | - | 27.5 |
23 | M | - | - | - | 25 | - | - |
24 | M | - | - | - | - | 25 | - |
25 | M | - | 10.5 | - | - | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samoud, S.; Zamali, I.; Korbi, F.; Mtiraoui, A.; Ben Hmid, A.; Hannachi, N.; Galai, Y.; Louzir, H.; El Kissi, Y. High Prevalence of aCL-IgA and aβ2GPI-IgA in Drug-Free Schizophrenia Patients: Evidence of a Potential Autoimmune Link. Antibodies 2024, 13, 92. https://doi.org/10.3390/antib13040092
Samoud S, Zamali I, Korbi F, Mtiraoui A, Ben Hmid A, Hannachi N, Galai Y, Louzir H, El Kissi Y. High Prevalence of aCL-IgA and aβ2GPI-IgA in Drug-Free Schizophrenia Patients: Evidence of a Potential Autoimmune Link. Antibodies. 2024; 13(4):92. https://doi.org/10.3390/antib13040092
Chicago/Turabian StyleSamoud, Samar, Imen Zamali, Fatma Korbi, Ahlem Mtiraoui, Ahlem Ben Hmid, Neila Hannachi, Yousr Galai, Hechmi Louzir, and Yousri El Kissi. 2024. "High Prevalence of aCL-IgA and aβ2GPI-IgA in Drug-Free Schizophrenia Patients: Evidence of a Potential Autoimmune Link" Antibodies 13, no. 4: 92. https://doi.org/10.3390/antib13040092
APA StyleSamoud, S., Zamali, I., Korbi, F., Mtiraoui, A., Ben Hmid, A., Hannachi, N., Galai, Y., Louzir, H., & El Kissi, Y. (2024). High Prevalence of aCL-IgA and aβ2GPI-IgA in Drug-Free Schizophrenia Patients: Evidence of a Potential Autoimmune Link. Antibodies, 13(4), 92. https://doi.org/10.3390/antib13040092