Next Issue
Volume 6, September
Previous Issue
Volume 6, March
 
 

Antibodies, Volume 6, Issue 2 (June 2017) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
3764 KiB  
Article
Dimerized Domain V of Beta2-Glycoprotein I Is Sufficient to Upregulate Procoagulant Activity in PMA-Treated U937 Monocytes and Require Intact Residues in Two Phospholipid-Binding Loops
by Alexey Kolyada, David A. Barrios and Natalia Beglova
Antibodies 2017, 6(2), 8; https://doi.org/10.3390/antib6020008 - 2 Jun 2017
Cited by 7 | Viewed by 6160
Abstract
Upregulation of the procoagulant activity of monocytes by antibodies to beta2-glycoprotein I (β2GPI) is one of the mechanisms contributing to thrombosis in antiphospholipid syndrome. Current knowledge about receptors responsible for the upregulation of procoagulant activity by β2GPI/anti-β2GPI complexes and their binding sites on [...] Read more.
Upregulation of the procoagulant activity of monocytes by antibodies to beta2-glycoprotein I (β2GPI) is one of the mechanisms contributing to thrombosis in antiphospholipid syndrome. Current knowledge about receptors responsible for the upregulation of procoagulant activity by β2GPI/anti-β2GPI complexes and their binding sites on β2GPI is far from complete. We quantified the procoagulant activity expressed by phorbol 12-myristate 13-acetate (PMA)-differentiated U937 cells by measuring clotting kinetics in human plasma exposed to stimulated cells. Cells stimulated with anti-β2GPI were compared to cells treated with dimerized domain V of β2GPI (β2GPI-DV) or point mutants of β2GPI-DV. We demonstrated that dimerized β2GPI-DV is sufficient to induce procoagulant activity in monocytes. Using site-directed mutagenesis, we determined that the phospholipid-binding interface on β2GPI is larger than previously thought and includes Lys308 in β2GPI-DV. Intact residues in two phospholipid-binding loops of β2GPI-DV were important for the potentiation of procoagulant activity. We did not detect a correlation between the ability of β2GPI-DV variants to bind ApoER2 and potentiation of the procoagulant activity of cells. The region on β2GPI inducing procoagulant activity in monocytes can now be narrowed down to β2GPI-DV. The ability of β2GPI-DV dimers to come close to cell membrane and attach to it is important for the stimulation of procoagulant activity. Full article
(This article belongs to the Special Issue Antiphospholipid Antibodies and Syndrome)
Show Figures

Figure 1

2855 KiB  
Article
Asymmetric Fc Engineering for Bispecific Antibodies with Reduced Effector Function
by Eric Escobar-Cabrera, Paula Lario, Jason Baardsnes, Joseph Schrag, Yves Durocher and Surjit Dixit
Antibodies 2017, 6(2), 7; https://doi.org/10.3390/antib6020007 - 16 May 2017
Cited by 9 | Viewed by 8690
Abstract
Asymmetric bispecific antibodies are a rapidly expanding therapeutic antibody class, designed to recognize two different target epitopes concurrently to achieve novel functions not available with normal antibodies. Many therapeutic designs require antibodies with reduced or silenced effector function. Although many solutions have been [...] Read more.
Asymmetric bispecific antibodies are a rapidly expanding therapeutic antibody class, designed to recognize two different target epitopes concurrently to achieve novel functions not available with normal antibodies. Many therapeutic designs require antibodies with reduced or silenced effector function. Although many solutions have been described in the literature to knockout effector function, to date all of them have involved the use of a specific antibody subtype (e.g., IgG2 or IgG4), or symmetric mutations in the lower hinge or CH2 domain of traditional homodimeric monospecific antibodies. In the context of a heterodimeric Fc, we describe novel asymmetric Fc mutations with reduced or silenced effector function in this article. These heteromultimeric designs contain asymmetric charged mutations in the lower hinge and the CH2 domain of the Fc. Surface plasmon resonance showed that the designed mutations display much reduced binding to all of the Fc gamma receptors and C1q. Ex vivo ADCC and CDC assays showed a consistent reduction in activity. Differential scanning calorimetry showed increased thermal stability for some of the designs. Finally, the asymmetric nature of the introduced charged mutations allowed for separation of homodimeric impurities by ion exchange chromatography, providing, as an added benefit, a purification strategy for the production of bispecific antibodies with reduced or silenced effector function. Full article
(This article belongs to the Special Issue Advances in Bispecific Antibodies)
Show Figures

Figure 1

1046 KiB  
Article
Collagen Autoantibodies and Their Relationship to CCP Antibodies and Rheumatoid Factor in the Progression of Early Rheumatoid Arthritis
by Senga F. Whittingham, Alex Stockman and Merrill J. Rowley
Antibodies 2017, 6(2), 6; https://doi.org/10.3390/antib6020006 - 5 Apr 2017
Cited by 6 | Viewed by 7629
Abstract
Serum autoantibodies to cyclic citrullinated peptides (anti-CCP) and rheumatoid factor (RF) are important markers for diagnosis and prognosis of rheumatoid arthritis (RA), but their autoantigens are not cartilage-specific. Autoantibodies to joint-specific type II collagen (CII) also occur in RA, and monoclonal antibodies of [...] Read more.
Serum autoantibodies to cyclic citrullinated peptides (anti-CCP) and rheumatoid factor (RF) are important markers for diagnosis and prognosis of rheumatoid arthritis (RA), but their autoantigens are not cartilage-specific. Autoantibodies to joint-specific type II collagen (CII) also occur in RA, and monoclonal antibodies of similar specificity induce collagen antibody-induced arthritis in animals, but their role in RA is uncertain. We utilized an enzyme-linked immunosorbent assay (ELISA) with the CB10 peptide of CII to compare the frequency of autoantibodies with those of anti-CCP and RF in stored sera from a prospective study of 82 patients with early RA to examine the outcome, defined as remission (n = 23), persisting non-erosive arthritis (n = 27), or erosions (n = 32). Initial frequencies of anti-CB10, anti-CCP and RF were 76%, 54%, and 57% in RA, and 4%, 0%, and 9% in 136 controls. The frequency of anti-CB10 was unrelated to outcome, but anti-CCP and RF increased with increasing severity, and the number of autoantibodies mirrored the severity. We suggest RA is an immune complex-mediated arthritis in which the three antibodies interact, with anti-CII inducing localized cartilage damage and inflammation resulting in citrullination of joint proteins, neoepitope formation, and a strong anti-CCP response in genetically-susceptible subjects, all amplified and modified by RF. Full article
(This article belongs to the Special Issue Auto-Antibody and Autoimmune Disease)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop