Next Article in Journal
The Posterior Sustained Negativity Revisited—An SPN Reanalysis of Jacobsen and Höfel (2003)
Previous Article in Journal
A Critical Note on Symmetry Contact Artifacts and the Evaluation of the Quality of Homology Models
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Variety of 7-Dimensional 2-Step Nilpotent Lie Algebras

by
María Alejandra Alvarez
Departamento de Matemáticas, Universidad de Antofagasta, Antofagasta 1240000, Chile
Symmetry 2018, 10(1), 26; https://doi.org/10.3390/sym10010026
Submission received: 19 December 2017 / Revised: 2 January 2018 / Accepted: 6 January 2018 / Published: 11 January 2018

Abstract

:
In this note, we consider degenerations between complex 2-step nilpotent Lie algebras of dimension 7 within the variety N 7 2 . This allows us to obtain the rigid algebras in N 7 2 , whose closures give the irreducible components of the variety.

1. Introduction

The study of degenerations (also called contractions in Physics) and the geometric classification of varieties of different kinds of structures is an active research field. There are several works on degenerations, orbit closures and geometric classifications of different algebras. We provide here a list of references on many of them: Lie algebras (see, for example, [1,2,3,4,5,6,7,8,9,10]), Jordan algebras (see for example [11,12,13,14]), Leibniz algebras (see [15,16,17]), pre-Lie algebras in [18], Novikov algebras in [19], Filippov algebras in [20], binary Lie and nilpotent Malcev algebras in [21], and also for different superalgebras (see [22,23,24]).
In particular for Lie algebras, the problem has been completely solved in dimension ≤4 and for nilpotent Lie algebras in dimension ≤6. In dimension 7, the cases of 5-step and 6-step nilpotent Lie algebras have been studied by Burde in [2]. Another related and interesting problem is the study of rigid 2-step nilpotent within the variety of 2-step nilpotent Lie algebras. This has been done in [25,26,27]. The aim of this work is to consider complex 2-step nilpotent Lie algebras of dimension 7. This is a step forward in order to obtain the complete picture of degenerations of nilpotent Lie algebras in dimension 7. In this variety, there are three rigid Lie algebras.

2. The Variety N n 2

Let V be a complex n-dimensional vector space with a fixed basis e 1 , , e n . Identify a Lie algebra structure on V, g , with its set of structure constants c i j k C n 3 , [ e i , e j ] = k = 1 n c i , j k e k . Since every set of structure constants must satisfy the polynomial equations given by the skew-symmetry and the Jacobi identity: c i , j k + c j , i k = 0 and l = 1 n c j , k l c i , l r + c k , i l c j , l r + c i , j l c k , l r = 0 , the set of n-dimensional Lie algebras is an affine variety in C n 3 , denoted by L n . The group G = GL ( n , C ) acts on L n via change of basis:
g · [ X , Y ] = g [ g 1 X , g 1 Y ] , X , Y g , g G .
The variety N n 2 is the closed subset of L n given by all at most 2-step nilpotent Lie algebras. This variety is endowed with the Zariski topology.

3. Degenerations of Lie Algebras

Given two Lie algebras g and h we say that g degenerates to h and denoted by g h , if h lies in the Zariski closure of the G-orbit O ( g ) . An element g N n 2 is called rigid, if its orbit O ( g ) is open in N n 2 Since each orbit O ( g ) is a constructible set, its closures relative to the Euclidean and the Zariski topologies are the same (see [28], 1.10 Corollary 1, p. 84). As a consequence, the following is obtained:
Lemma 1.
Let C ( t ) be the field of fractions of the polynomial ring C [ t ] . If there exists an operator g t GL ( n , C ( t ) ) such that lim t 0 g t · g = h , , then g h .
The previous Lemma gives the definition of a Lie algebra contraction. In general, a contraction is a particular type of degeneration.
A nice result concerning degenerations is the fact that every n-dimensional (Lie) algebra degenerates to the trivial one. Consider the operator g t = t 1 I n , i.e., g t ( e k ) = t 1 e k for 1 k n , then
lim t 0 g t · [ e i , e j ] = lim t 0 g t [ g t 1 ( e i ) , g t 1 ( e j ) ] = lim t 0 g t [ t e i , t e j ] = lim t 0 t 2 k = 1 n c i , j k g t ( e k ) = lim t 0 t k = 1 n c i , j k e k = 0
There are many invariants for the orbit closure of a Lie algebra. Among them, we mention the ones that will be used in this work.
Lemma 2.
Let g , h N n 2 . If g h , then the following relations must hold:
(a) 
d i m O ( g ) > d i m O ( h ) ,
(b) 
d i m [ g , g ] d i m [ h , h ] ,
(c) 
d i m z ( g ) d i m z ( h ) , where z ( g ) is the center of g ,
(d) 
d i m H k ( g ) d i m H k ( h ) for 0 k n , where H k ( g ) is the k-th trivial cohomology group for g ,
(e) 
d i m a ( g ) d i m a ( h ) , where a ( g ) is the maximal abelian subalgebra of g .
Proof. 
The first relation follows from the Closed Orbit Lemma (see [29], I. Lemma 1.8, p. 53). The remaining follow by proving that the corresponding sets are closed, using in some cases the upper semi continuity of appropriated functions (see Ref. [30], §3, Theorem 2, p. 14). See also [2,5] for the proofs of ( d ) and ( e ) , respectively. ☐

The Classification of Complex 7-Dimensional 2-Step Nilpotent Lie Algebras

We consider here the classification of indecomposable 2-step nilpotent Lie algebras over C of dimension 7, given by Gong in [31]. For Lie algebras of dimension ≤6, we follow the book of Šnobl and Winternitz [32].
In Table 1, we provide the isomorphism classes of Lie algebras in N 7 2 and the dimension of every orbit.
By using Lemma 2, we can discard possible degenerations. We show in Table 2 the non-degeneration reasons. To clarify this table, consider the Lie algebras ( 37 B ) and ( 27 A ) . Since the dimension of the orbits of ( 37 B ) and ( 27 A ) are 29 and 28, respectively, ( 37 B ) may degenerate to ( 27 A ) according to Lemma 2 ( a ) . The centers of ( 37 B ) and ( 27 A ) are z ( 37 B ) = e 5 , e 6 , e 7 and z ( 27 A ) = e 6 , e 7 , respectively. Thus, we obtain that dim z ( 37 B ) = 3 > 2 = dim z ( 27 A ) , which contradicts Lemma 2 ( c ) ; therefore, ( 37 B ) ( 27 A ) .
Next, we prove that the remaining possible degenerations are in fact degenerations. Since the relation of degeneration is transitive, we consider only essential degenerations. For every essential degeneration g h , we provide in Table 3, a parametrized basis of g .
To explain Table 3, consider the degeneration n 3 , 1 n 3 , 1 n 6 , 2 . Lie brackets of n 3 , 1 n 3 , 1 are, in our parametrized basis, given by:
[ x 3 , x 5 ] = t x 1 , [ x 3 , x 6 ] = x 1 , [ x 5 , x 4 ] = x 1 , [ x 4 , x 6 ] = x 2 .
When t 0 , we obtain the Lie brackets of n 6 , 2 .
Table 3 allows us to draw the Hasse diagram for essential degenerations (see Figure 1).

4. The Irreducible Components

It is known (see for example [28]) that the irreducible components of a variety are closures of single orbits or closures of infinite families of orbits. Since there are no infinite families of 7-dimensional 2-step nilpotent Lie algebras, the irreducible components of N 7 2 are the orbit closures of the rigid Lie algebras: if g is a rigid Lie algebra in N 7 2 , then there exists an irreducible component C of N 7 2 , such that C O ( g ) is open; then, C O ( g ) ¯ . In the Hasse diagram, one can identify the rigid algebras as those that have no entering arrows. Another proof of this fact can be found in [27].
With all this, we can state:
Theorem 1.
The variety N 7 2 , of at most 2-step nilpotent Lie algebras of dimension 7, has three irreducible components:
1.
C 1 = O ( ( 17 ) ) ¯ ,
2.
C 2 = O ( ( 27 B ) ) ¯ ,
3.
C 3 = O ( ( 37 D ) ) ¯ .
Moreover, the Lie algebras ( 17 ) , ( 27 B ) , ( 37 D ) are rigid in N 7 2 .
Proof. 
It follows from Table 2 and Table 3 and the Hasse diagram. Moreover, one obtains:
  • O ( ( 17 ) ) ¯ = ( 17 ) , n 5 , 3 , n 3 , 1 , C 7 ,
  • O ( ( 27 B ) ) ¯ = ( 27 B ) , ( 27 A ) , n 3 , 1 n 3 , 1 , n 6 , 2 , n 5 , 1 , n 5 , 3 , n 3 , 1 , C 7 ,
  • O ( ( 37 D ) ) ¯ = ( 37 D ) , ( 37 B ) , ( 37 C ) , n 3 , 1 n 3 , 1 , ( 37 A ) , n 6 , 2 , n 5 , 1 , n 5 , 3 , n 3 , 1 , C 7 .
 ☐

Acknowledgments

The author thanks the VRIIP of Universidad de Antofagasta for supporting the research stay at Universidad de Zaragoza, where part of this work was done.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Burde, D. Degenerations of nilpotent Lie algebras. J. Lie Theory 1999, 9, 193–202. [Google Scholar]
  2. Burde, D. Degenerations of 7-Dimensional Nilpotent Lie Algebras. Commun. Algebra 2005, 33, 1259–1277. [Google Scholar] [CrossRef]
  3. Burde, D.; Steinhoff, C. Classification of Orbit Closures of 4-Dimensional Complex Lie Algebras. J. Algebra 1999, 214, 729–739. [Google Scholar] [CrossRef]
  4. Carles, R.; Diakité, Y. Sur les variétés d’algèbres de Lie de dimension ≤7. J. Algebra 1984, 91, 53–63. [Google Scholar] [CrossRef]
  5. Grunewald, F.; O’Hallloran, J. Varieties of Nilpotent Lie Algebras of Dimension Less Than Six. J. Algebra 1988, 112, 315–325. [Google Scholar] [CrossRef]
  6. Kirillov, A.A.; Neretin, Y.A. The Variety An of n-Dimensional Lie Algebra Structures. Am. Math. Soc. Transl. 1987, 137, 21–30. [Google Scholar]
  7. Lauret, J. Degenerations of Lie algebras and geometry of Lie groups. Differ. Geom. Appl. 2003, 18, 177–194. [Google Scholar] [CrossRef]
  8. Nesterenko, M.; Popovych, R. Contractions of low-dimensional Lie algebras. J. Math. Phys. 2006, 47, 123515. [Google Scholar] [CrossRef]
  9. Seeley, C. Degenerations of 6-dimensional nilpotent lie algebras over C . Commun. Algebra 1990, 18, 3493–3505. [Google Scholar]
  10. Weimar-Woods, E. The three-dimensional real Lie algebras and their contractions. J. Math. Phys. 1991, 32, 2028–2033. [Google Scholar] [CrossRef]
  11. Ancochea Bermúdez, J.M.; Fresán, J.; Margalef Bentabol, J. Contractions of low-dimensional nilpotent Jordan algebras. Commun. Algebra 2011, 39, 1139–1151. [Google Scholar] [CrossRef]
  12. Gorshkov, I.; Kaygorodov, I.; Popov, Y. Degenerations of Jordan Algebras. arXiv, 2017; arXiv:1707.08836. [Google Scholar]
  13. Kashuba, I.; Martin, M.E. Deformations of Jordan algebras of dimension four. J. Algebra 2014, 399, 277–289. [Google Scholar] [CrossRef]
  14. Kashuba, I.; Patera, J. Graded contractions of Jordan algebras and of their representations. J. Phys. A-Math. Gen. 2003, 36, 12453. [Google Scholar]
  15. Casas, J.M.; Khudoyberdiyev, A.K.; Ladra, M.; Omirov, B.A. On the degenerations of solvable Leibniz algebras. Linear Algebra Appl. 2013, 439, 315–325. [Google Scholar] [CrossRef]
  16. Ismailov, N.; Kaygorodov, I.; Volkov, Y. The geometric classification of Leibniz algebras. arXiv, 2017; arXiv:1705.04346. [Google Scholar]
  17. Kaygorodov, I.; Popov, Y.; Pozhidaev, A.; Volkov, Y. Degenerations of nilpotent Leibniz and Zinbiel algebras. Linear Multilinear Algebra, 2018; arXiv:1611.06454. [Google Scholar]
  18. Beneš, T.; Burde, D. Degenerations of pre-Lie algebras. J. Math. Phys. 2009, 50, 112102. [Google Scholar] [CrossRef]
  19. Beneš, T.; Burde, D. Classification of orbit closures in the variety of three dimensional Novikov algebras. J. Algebra Appl. 2014, 13, 1350081. [Google Scholar] [CrossRef]
  20. De Azcarraga, J.; Izquierdo, J.; Picon, M. Contractions of Filippov algebras. J. Math. Phys. 2011, 52, 013516. [Google Scholar] [CrossRef]
  21. Kaygorodov, I.; Popov, Y.; Volkov, Y. Degenerations of binary Lie and nilpotent Malcev algebras. arXiv, 2016; arXiv:1609.07392. [Google Scholar]
  22. Armour, A.; Zhang, Y. Geometric Classification of 4-Dimensional Superalgebras, Chapter Algebra, Geometry and Mathematical Physics. Springer Proc. Math. Stat. 2014, 85, 291–323. [Google Scholar]
  23. Alvarez, M.A.; Hernández, I.; Universidad de Antofagasta, Antofagasta, Chile. Unpublished work. 2017.
  24. Alvarez, M.A.; Hernández, I.; Kaygorodov, I. Degenerations of Jordan superalgebras. arXiv, 2017; arXiv:1708.07758. [Google Scholar]
  25. Goze, M.; Remm, E. k-step nilpotent Lie algebras. Georgian Math. J. 2015, 22, 219–234. [Google Scholar] [CrossRef]
  26. Brega, A.; Cagliero, L.; Chaves-Ochoa, A. The Nash—Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras. J. Pure Appl. Algebra 2017, 221, 2250–2265. [Google Scholar] [CrossRef]
  27. Alvarez, M.A. On rigid 2-step nilpotent Lie algebras. Algebra Colloq. (In Press).
  28. Mumford, D. The red book of varieties and schemes. In Lecture Notes in Mathematics; Springer: Berlin, Germany, 1988. [Google Scholar]
  29. Borel, A. Linear Algebraic Groups. In Graduate Texts in Mathematics, 2nd ed.; Springer: Berlin, Germany, 1991. [Google Scholar]
  30. Crawley-Boevey, W. Geometry of Representations of Algebras; Lecture Notes; Oxford University: Oxford, UK, 1993. [Google Scholar]
  31. Gong, M.P. Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Fields and R ). Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 1998. [Google Scholar]
  32. Šnobl, L.; Winternitz, P. Classification and Identification of Lie Algebras; CRM Monograph Series; American Mathematical Society: Providence, RI, USA, 2014. [Google Scholar]
Figure 1. Degenerations in N 7 2 .
Figure 1. Degenerations in N 7 2 .
Symmetry 10 00026 g001
Table 1. 7-dimensional Lie algebras.
Table 1. 7-dimensional Lie algebras.
g Lie Product dim O ( g )
( 17 ) [ e 1 , e 2 ] = e 7 , [ e 3 , e 4 ] = e 7 , [ e 5 , e 6 ] = e 7 21
( 27 A ) [ e 1 , e 2 ] = e 6 , [ e 1 , e 4 ] = e 7 , [ e 3 , e 5 ] = e 7 28
( 27 B ) [ e 1 , e 2 ] = e 6 , [ e 1 , e 5 ] = e 7 , [ e 3 , e 4 ] = e 6 , [ e 2 , e 3 ] = e 7 30
( 37 A ) [ e 1 , e 2 ] = e 5 , [ e 2 , e 3 ] = e 6 , [ e 2 , e 4 ] = e 7 24
( 37 B ) [ e 1 , e 2 ] = e 5 , [ e 2 , e 3 ] = e 6 , [ e 3 , e 4 ] = e 7 29
( 37 C ) [ e 1 , e 2 ] = e 5 , [ e 2 , e 3 ] = e 6 , [ e 2 , e 4 ] = e 7 , [ e 3 , e 4 ] = e 5 27
( 37 D ) [ e 1 , e 2 ] = e 5 , [ e 1 , e 3 ] = e 6 , [ e 2 , e 4 ] = e 7 , [ e 3 , e 4 ] = e 5 30
n 6 , 1 [ e 4 , e 5 ] = e 2 , [ e 4 , e 6 ] = e 3 , [ e 5 , e 6 ] = e 1 24
n 6 , 2 [ e 3 , e 6 ] = e 1 , [ e 5 , e 4 ] = e 1 , [ e 4 , e 6 ] = e 2 25
n 3 , 1 n 3 , 1 [ e 2 , e 3 ] = e 1 , [ e 5 , e 6 ] = e 4 26
n 5 , 1 [ e 3 , e 5 ] = e 1 , [ e 4 , e 5 ] = e 2 22
n 5 , 3 [ e 2 , e 4 ] = e 1 , [ e 3 , e 5 ] = e 1 20
n 3 , 1 [ e 2 , e 3 ] = e 1 15
C 7 [ · , · ] = 0 0
Table 2. Non-degenerations.
Table 2. Non-degenerations.
g h Reason Lemma 2
n 5 , 1 n 5 , 3 ; n 6 , 1 ( 17 ) , n 5 , 3 ; ( 37 A ) ( 17 ) ; n 6 , 2 ( 17 ) ; n 3 , 1 n 3 , 1 ( 17 ) ; ( c )
( 37 C ) ( 17 ) ; ( 27 A ) ( 17 ) ; ( 37 B ) ( 27 A ) ; ( 27 B ) ( 17 ) ; ( 37 D ) ( 27 A ) , ( 17 )
( 17 ) n 5 , 1 ; n 6 , 2 n 6 , 1 ; n 3 , 1 n 3 , 1 ( 37 A ) , n 6 , 1 ; ( b )
( 27 A ) ( 37 C ) , n 6 , 1 , ( 37 A ) ; ( 27 B ) ( 37 B ) , ( 37 C ) , ( 37 A ) , n 6 , 1
( 37 A ) n 6 , 1 ( d )
( 37 A ) n 5 , 3 ( e )
Table 3. Degenerations.
Table 3. Degenerations.
g h Parametrized Basis
n 5 , 3 n 3 , 1 x 1 = e 1 , x 2 = e 2 , x 3 = e 4 , x 4 = e 3 , x 5 = t e 5 , x 6 = e 6 , x 7 = e 7
n 5 , 1 n 3 , 1 x 1 = e 1 , x 2 = e 3 , x 3 = e 5 , x 4 = t e 4 , x 5 = e 2 , x 6 = e 6 , x 7 = e 7
( 17 ) n 5 , 3 x 1 = e 7 , x 2 = e 1 , x 3 = e 3 , x 4 = e 2 , x 5 = e 4 , x 6 = t e 6 , x 7 = e 5
n 6 , 1 n 5 , 1 x 1 = e 3 , x 2 = e 1 , x 3 = e 4 , x 4 = e 5 , x 5 = e 6 , x 6 = 1 t e 2 , x 7 = e 7
( 37 A ) n 5 , 1 x 1 = e 6 , x 2 = e 7 , x 3 = e 3 , x 4 = e 4 , x 5 = e 2 , x 6 = t e 1 , x 7 = e 5
n 6 , 2 n 5 , 1 x 1 = e 1 , x 2 = e 2 , x 3 = e 3 , x 4 = e 4 , x 5 = e 6 , x 6 = t e 5 , x 7 = e 7
n 6 , 2 n 5 , 3 x 1 = e 1 , x 2 = e 3 , x 3 = e 5 , x 4 = e 6 , x 5 = e 4 , x 6 = 1 t e 2 x 7 = e 7
n 3 , 1 n 3 , 1 n 6 , 2 x 1 = 1 t e 4 , x 2 = e 1 + 1 t 2 e 4 , x 3 = e 6 , x 4 = e 2 1 t e 6 , x 5 = e 5 , x 6 = 1 t e 5 + e 3 , x 7 = e 7
( 37 C ) n 3 , 1 n 3 , 1 x 1 = e 5 , x 2 = t 1 e 1 , x 3 = t e 2 , x 4 = t 2 e 7 , x 5 = t e 3 + t 2 e 2 , x 6 = e 4 , x 7 = e 6
( 37 C ) ( 37 A ) x 1 = e 1 , x 2 = e 2 , x 3 = t e 3 , x 4 = e 4 , x 5 = e 5 , x 6 = t e 6 , x 7 = e 7
( 37 C ) n 6 , 1 x 1 = e 5 , x 2 = e 6 , x 3 = e 7 , x 4 = e 2 , x 5 = e 3 , x 6 = e 4 , x 7 = t e 1
( 27 A ) n 3 , 1 n 3 , 1 x 1 = e 6 , x 2 = e 1 , x 3 = e 2 , x 4 = e 7 , x 5 = e 3 , x 6 = e 5 , x 7 = t e 4
( 37 B ) ( 37 C ) x 1 = e 3 , x 2 = e 1 + i t e 2 + i t 3 e 3 1 t e 4 , x 3 = i t e 3 + e 4 , x 4 = e 2 + 1 t e 3 , x 5 = 1 t e 7 , x 6 = 1 t e 6 , x 7 = e 5 + 1 t 2 e 7
( 27 B ) ( 27 A ) x 1 = e 3 , x 2 = e 4 , x 3 = t e 1 , x 4 = e 2 , x 5 = 1 t e 5 x 6 = e 6 , x 7 = e 7
( 37 D ) ( 37 B ) x 1 = e 2 , x 2 = e 4 , x 3 = e 3 , x 4 = t e 1 , x 5 = e 7 , x 6 = e 5 , x 7 = t e 6

Share and Cite

MDPI and ACS Style

Alvarez, M.A. The Variety of 7-Dimensional 2-Step Nilpotent Lie Algebras. Symmetry 2018, 10, 26. https://doi.org/10.3390/sym10010026

AMA Style

Alvarez MA. The Variety of 7-Dimensional 2-Step Nilpotent Lie Algebras. Symmetry. 2018; 10(1):26. https://doi.org/10.3390/sym10010026

Chicago/Turabian Style

Alvarez, María Alejandra. 2018. "The Variety of 7-Dimensional 2-Step Nilpotent Lie Algebras" Symmetry 10, no. 1: 26. https://doi.org/10.3390/sym10010026

APA Style

Alvarez, M. A. (2018). The Variety of 7-Dimensional 2-Step Nilpotent Lie Algebras. Symmetry, 10(1), 26. https://doi.org/10.3390/sym10010026

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop