Some Fixed-Point Theorems in b-Dislocated Metric Space and Applications
Abstract
:1. Introduction
- every F-contraction is necessarily continuous;
- every F-contraction is need not be a Banach contraction.
- (E1)
- ,
- (E2)
- ,
- (E3)
- (E4)
- and
- (E5)
- (E6)
- .
- F is strictly increasing;
- .
- .
- There exists such that
- .
- inf F = ;
- .
- F is continuous on ;
- .
- for all ;
- .
- 1°.
- 2°.
- 3°.
- 4°.
- 5°.
- 6°.
- 7°.
- 8°.
- 9°.
- 1.
- ;
- 2.
- ;
- 3.
- .
- 1.
- ;
- 2.
- ;
- 3.
- .
- Convergent to x if and only if
- Cauchy if and only if exists and is tends to finite.
- Complete if and only if every Cauchy sequence in X converges to this gives
2. Extended -Contraction
- 1.
- F is an order embedding. i.e., for all we have .
- 2.
- F is sub-additive, i.e., for we have
- 3.
- For every sequence of positive numbers
3. Weak-Generalized -Contraction
4. Application to Non-linear Integral Equation
- N1:
- where and
- N2:
- For all and
5. Application to Fractional Calculus
- :
- For and
- :
- Define by
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Wardowski, D. Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94. [Google Scholar] [CrossRef]
- Secelean, N.A. Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 2013, 277. [Google Scholar] [CrossRef]
- Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef]
- Karapınar, E.; Kutbi, M.A.; Piri, H.; O’Regan, D. Fixed points of conditionally F-contractions in complete metric-like spaces. Fixed Point Theory Appl. 2015, 2015, 126. [Google Scholar] [CrossRef]
- Wardowski, D.; Van Dung, N. Fixed points of f -weak contractions on complete metric spaces. Demonstr. Math. 2014, 1, 146–155. [Google Scholar] [CrossRef]
- Minak, G.; Halvaci, A.; Altun, I. Ciric type generalized F-contractions on complete metric spaces and fixed point results. Filomat 2014, 28, 1143–1151. [Google Scholar] [CrossRef]
- Vetro, F. F-contractions of Hardy–Rogers type and application to multistage decision processes. Nonlinear Anal. Model. Control 2016, 21, 531–546. [Google Scholar]
- Wardowski, D. Solving existence problems via F-contractions. Proc. Am. Math. Soc. 2018, 146, 1585–1598. [Google Scholar] [CrossRef]
- Lukacs, A.; Kajanto, S. Fixed point theorems for various types of F-ontractions in complete b-metric spaces. Fixed Point Theory Appl. 2018, 19, 321–334. [Google Scholar] [CrossRef]
- Rasham, T.; Shoaib, A.; Hussain, N.; Arshad, M.; Khan, S.U. Common fixed point results for new Ciric-type rational multivalued F-contraction with an application. Fixed Point Theory Appl. 2018, 20, 45. [Google Scholar] [CrossRef]
- Kumari, P.S.; Panthi, D. Cyclic compatible contraction and related fixed point theorems. Fixed Point Theory Appl. 2016, 2016, 28. [Google Scholar] [CrossRef]
- Dung, N.V.; Hang, V.T.L. A fixed point theorem for generalized F-contractions on complete metric spaces. Vietnam J. Math. 2015, 43, 743–753. [Google Scholar] [CrossRef]
- Kumari, P.S.; Panthi, D. Connecting various types of cyclic contractions and contractive self-mappings with Hardy-Rogers self-mappings. Fixed Point Theory Appl. 2016, 2016, 15. [Google Scholar] [CrossRef]
- Karapınar, E.; Kumari, P.S.; Lateef, D. A New Approach to the Solution of the Fredholm Integral Equation via a Fixed Point on Extended b-Metric Spaces. Symmetry 2018, 10, 512. [Google Scholar] [CrossRef]
- Kumari, P.S.; Zoto, K.; Panthi, D. d-Neighborhood system and generalized F-contraction in dislocated metric space. SpringerPlus 2015, 4, 368. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.G. Metric Domains for Completeness. Ph.D. Thesis, University of Warwick, Warwick, UK, 1985. [Google Scholar]
- Hitzler, P.; Seda, A.K. Seda, Dislocated Topologies. J. Electr. Eng. 2000, 51, 3–7. [Google Scholar]
- Alghamdi, M.A.; Hussain, N.; Salimi, P. Fixed point and coupled fixed point theorems on b-metric-like spaces. J. Inequal. Appl. 2013, 2013, 402. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Dong, J.; Zhu, C. Some fixed point theorems in b-metric-like spaces. Fixed Point Theory Appl. 2015, 2015, 122. [Google Scholar] [CrossRef] [Green Version]
- Hussain, N.; Roshan, J.R.; Parvaneh, V.; Kadelburg, Z. Fixed points of contractive mappings in b-metric-like spaces. Sci. World J. 2014, 2014, 471827. [Google Scholar] [CrossRef]
- Zoto, K.; Rhoades, B.E.; Radenović, S. Some generalizations for (α − ψ,ϕ) -contractions in b-metric-like spaces and an application. Fixed Point Theory Appl. 2017, 2017, 26. [Google Scholar] [CrossRef]
- Aydi, H.; Felhi, A.; Sahmim, S. On common fixed points for αψ-contractions and generalized cyclic contractions in b-metric-like spaces and consequences. J. Nonlinear Sci. Appl. 2016, 9, 2492–2510. [Google Scholar] [CrossRef]
- Aydi, H.; Felhi, A.; Sahmim, S. Common fixed points via implicit contractions on b-metric-like spaces. J. Nonlinear Sci. Appl. 2017, 10, 1524–1537. [Google Scholar] [CrossRef] [Green Version]
- Klin-eam, C.; Suanoom, C. Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions. Fixed Point Theory Appl. 2015, 2015, 74. [Google Scholar] [CrossRef]
- Hitzler, P. Generalized Metrics and Topology in Logic Programming Semantics. Ph.D. Thesis, National University of Ireland, University College, Cork, Ireland, 2001. [Google Scholar]
- Karapınar, E. A Short Survey on Dislocated Metric Spaces via Fixed-Point Theory. In Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness; Springer: Singapore, 2017; pp. 457–483. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumati Kumari, P.; Alqahtani, O.; Karapınar, E. Some Fixed-Point Theorems in b-Dislocated Metric Space and Applications. Symmetry 2018, 10, 691. https://doi.org/10.3390/sym10120691
Sumati Kumari P, Alqahtani O, Karapınar E. Some Fixed-Point Theorems in b-Dislocated Metric Space and Applications. Symmetry. 2018; 10(12):691. https://doi.org/10.3390/sym10120691
Chicago/Turabian StyleSumati Kumari, Panda, Obaid Alqahtani, and Erdal Karapınar. 2018. "Some Fixed-Point Theorems in b-Dislocated Metric Space and Applications" Symmetry 10, no. 12: 691. https://doi.org/10.3390/sym10120691
APA StyleSumati Kumari, P., Alqahtani, O., & Karapınar, E. (2018). Some Fixed-Point Theorems in b-Dislocated Metric Space and Applications. Symmetry, 10(12), 691. https://doi.org/10.3390/sym10120691