Multiple Criteria Group Decision-Making Considering Symmetry with Regards to the Positive and Negative Ideal Solutions via the Pythagorean Normal Cloud Model for Application to Economic Decisions
Abstract
:1. Introduction
2. Preliminaries
2.1. Intuitionistic Fuzzy Sets and Pythagorean Fuzzy Sets
2.2. NC and the Backward Cloud Generator
3. Pythagorean Normal Cloud
3.1. Backward Cloud Generator and Aggregation Operators for PNCs
3.2. Distance Measures for PNCs
4. PNC-Based MCGDM Method
5. Results
5.1. Empirical Application
5.2. Comparative Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rostamzadeh, R.; Esmaeili, A.; Nia, A.S.; Saparauskas, J.; Ghorabaee, M.K. A fuzzy ARAS method for supply chain management performance measurement in SMEs under uncertainty. Transform. Bus. Econ. 2017, 16, 319–348. [Google Scholar]
- Hu, K.H.; Jianguo, W.; Tzeng, G.H. Improving China’s regional financial center modernization development using a new hybrid MADM model. Technol. Econ. Dev. Econ. 2018, 24, 429–466. [Google Scholar] [CrossRef]
- Czubenko, M.; Kowalczuk, Z.; Ordys, A. Autonomous driver based on an intelligent system of decision-making. Cogn. Comput. 2015, 7, 1–13. [Google Scholar]
- Akusok, A.; Miche, Y.; Hegedus, J.; Nian, R.; Lendasse, A. A two stage methodology using K-NN and false-positive minimizing ELM for nominal data classification. Cogn. Comput. 2014, 6, 432–445. [Google Scholar]
- Mak, D.K. A fuzzy probabilistic method for medical diagnosis. J. Med. Syst. 2015, 39, 26–35. [Google Scholar]
- Meng, F.Y.; Chen, X.H. Correlation coefficients of hesitant fuzzy sets and their application based on fuzzy measures. Cogn. Comput. 2015, 7, 445–463. [Google Scholar]
- Zenebe, A.; Zhou, L.N.; Norcio, A.F. User preferences discovery using fuzzy models. Fuzzy Sets Syst. 2010, 161, 3044–3063. [Google Scholar]
- Vahidov, R.; Ji, F. A diversity-based method for infrequent purchase decision support in e-commerce. Electron. Commer. Res. Appl. 2015, 4, 143–158. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [Google Scholar]
- Zadeh, L.A. Probability measures of fuzzy events. J. Math. Anal. Appl. 1968, 23, 421–427. [Google Scholar]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar]
- Atanassov, K.T.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1998, 31, 343–349. [Google Scholar]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar]
- Yager, R.R. Pythagorean membership grades in multi-criteria decision-making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965. [Google Scholar]
- Yager, R.R. Properties and applications of Pythagorean fuzzy sets. In Imprecision and Uncertainty in Information Representation and Processing; Angelov, P., Sotirov, S., Eds.; Springer: Cham, Switzerland, 2016; pp. 119–136. ISBN 978-3-319-26301-4. [Google Scholar]
- Liang, D.C.; Xu, Z.S.; Darko, A.P. Projection model for fusing the information of Pythagorean fuzzy multicriteria group decision-making based on geometric Bonferroni mean. Int. J. Intell. Syst. 2017, 32, 966–987. [Google Scholar] [CrossRef]
- Beliakov, G.; James, S. Averaging aggregation functions for preferences expressed as Pythagorean membership grades and fuzzy orthopairs. In Proceedings of the IEEE International Conference on Fuzzy Systems, Beijing, China, 6–11 July 2014; pp. 298–305. [Google Scholar]
- Reformat, M.Z.; Yager, R.R. Suggesting recommendations using Pythagorean fuzzy sets illustrated using Netflix movie data. In Information Processing and Management of Uncertainty in Knowledge-Based Systems; Laurent, A., Ed.; Springer: Berlin, Germany, 2014; pp. 546–556. ISBN 978-3-319-08794-8. [Google Scholar]
- Zeng, S.Z. Pythagorean fuzzy multiattribute group decision-making with probabilistic information and OWA approach. Int. J. Intell. Syst. 2017, 32, 1136–1150. [Google Scholar] [CrossRef]
- Zeng, S.Z.; Chen, J.P.; Li, X.S. A hybrid method for Pythagorean fuzzy multiple-criteria decision-making. Int. J. Inf. Technol. Decis. 2016, 15, 403–422. [Google Scholar]
- Li, D.Y.; Liu, C.Y.; Du, Y.; Han, X. Artificial intelligence with uncertainty. J. Softw. 2004, 15, 1583–1594. [Google Scholar]
- Wang, G.Y.; Xu, C.L.; Li, D.Y. Generic normal cloud model. Inf. Sci. 2014, 280, 1–15. [Google Scholar]
- Li, D.Y.; Han, J.W.; Shi, X.M.; Chan, M.C. Knowledge representation and discovery based on linguistic atoms. Knowl.-Based Syst. 1998, 10, 431–440. [Google Scholar]
- Wang, D.; Zeng, D.B.; Singh, V.P.; Xu, P.C.; Liu, D.F.; Wang, Y.K.; Zeng, X.K.; Wu, J.C.; Wang, L.C. A multidimension cloud model-based approach for water quality assessment. Environ. Res. 2016, 149, 113–121. [Google Scholar]
- Jiang, J.B.; Liang, J.R.; Jiang, W.; Gu, Z.P. Application of trapezium cloud model in conception division and conception exaltation. Comput. Eng. Des. 2008, 29, 1235–1240. [Google Scholar]
- Wang, J.Q.; Yang, W.E. Multiple criteria group decision-making method based on intuitionistic normal cloud by Monte Carlo simulation. Syst. Eng. Theory Pract. 2013, 33, 2859–2865. [Google Scholar]
- Peng, X.D.; Yuan, H.Y.; Yang, Y. Pythagorean fuzzy measures and their applications. Int. J. Intell. Syst. 2017, 32, 991–1029. [Google Scholar] [CrossRef]
- Peng, X.D.; Yang, Y. Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. Int. J. Intell. Syst. 2016, 31, 444–487. [Google Scholar]
- Yang, W.E.; Wang, J.Q.; Ma, C.Q.; Wang, X.F. Hesitant linguistic multiple criteria decision-making method based on cloud generating algorithm. Control Decis. 2015, 30, 371–374. [Google Scholar]
- Wang, J.Q.; Liu, T. Uncertain linguistic multi-criteria group decision-making approach based on integrated cloud. Control Decis. 2012, 27, 1185–1190. [Google Scholar]
- Wang, J.Q.; Peng, L.; Zhang, H.Y.; Chen, X.H. Method of multi-criteria group decision-making based on cloud aggregation operators with linguistic information. Inf. Sci. 2014, 274, 177–191. [Google Scholar]
- Wang, J.Q.; Wang, P.; Wang, J.; Zhang, H.Y.; Chen, X.H. Atanassov’s interval-valued intuitionistic linguistic multi-criteria group decision-making method based on trapezium cloud model. IEEE Trans. Fuzzy Syst. 2014, 23, 542–554. [Google Scholar]
- Liu, C.; Tang, G.L.; Liu, P.D. An approach to multicriteria group decision-making with unknown weight information based on Pythagorean fuzzy uncertain linguistic aggregation operators. Math. Probl. Eng. 2017. [Google Scholar] [CrossRef]
- Garg, H. A novel improved accuracy function for interval valued Pythagorean fuzzy sets and its applications in the decision-making process. Int. J. Intell. Syst. 2017, 32, 1247–1260. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer-Verlag: New York, NY, USA, 1981; ISBN 978-3-540-10558-9. [Google Scholar]
- Xu, Z.S. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2008, 14, 1179–1187. [Google Scholar]
- Zhang, X.L.; Zhao, L.; Zang, J.Y.; Fan, H.M.; Cheng, L. Flatness intelligent control based on T-S cloud inference neural network. Trans. ISIJ 2014, 54, 2608–2617. [Google Scholar]
- Zhang, X.L.; Xu, Z.S. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar]
- Luo, Z.Q.; Zhang, G.W. A new algorithm of backward normal onevariate cloud. J. Front. Comput. Sci. Technol. 2007, 1, 234–240. [Google Scholar]
- Wang, J.Q.; Peng, J.J.; Zhang, H.Y.; Liu, T.; Chen, X.H. An uncertain linguistic multi-criteria group decision-making method based on a cloud model. Group Decis. Negot. 2015, 24, 171–192. [Google Scholar]
- Zhang, H.Y.; Ji, P.; Wang, J.Q.; Chen, X.H. A Neutrosophic normal cloud and its application in decision-making. Cogn. Comput. 2016, 8, 649–669. [Google Scholar]
- Peng, B.; Zhou, J.M.; Peng, D.H. Cloud model based approach to group decision-making with uncertain pure linguistic information. J. Intell. Fuzzy Syst. 2017, 32, 1959–1968. [Google Scholar]
- Peng, B.; Ye, C.M.; Zeng, S.Z. Uncertain pure linguistic hybrid harmonic averaging operator and generalized interval aggregation operator based approach to group decision-making. Knowl.-Based Syst. 2012, 36, 175–181. [Google Scholar]
Case No. | The Final Ranking | ||
---|---|---|---|
1 | −0.499 | ||
2 | −0.3 | ||
3 | −0.1 | ||
4 | 0.2 | ||
5 | 0.4 | ||
6 | 0.499 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Su, W.; Baležentis, T.; Streimikiene, D. Multiple Criteria Group Decision-Making Considering Symmetry with Regards to the Positive and Negative Ideal Solutions via the Pythagorean Normal Cloud Model for Application to Economic Decisions. Symmetry 2018, 10, 140. https://doi.org/10.3390/sym10050140
Zhou J, Su W, Baležentis T, Streimikiene D. Multiple Criteria Group Decision-Making Considering Symmetry with Regards to the Positive and Negative Ideal Solutions via the Pythagorean Normal Cloud Model for Application to Economic Decisions. Symmetry. 2018; 10(5):140. https://doi.org/10.3390/sym10050140
Chicago/Turabian StyleZhou, Jinming, Weihua Su, Tomas Baležentis, and Dalia Streimikiene. 2018. "Multiple Criteria Group Decision-Making Considering Symmetry with Regards to the Positive and Negative Ideal Solutions via the Pythagorean Normal Cloud Model for Application to Economic Decisions" Symmetry 10, no. 5: 140. https://doi.org/10.3390/sym10050140
APA StyleZhou, J., Su, W., Baležentis, T., & Streimikiene, D. (2018). Multiple Criteria Group Decision-Making Considering Symmetry with Regards to the Positive and Negative Ideal Solutions via the Pythagorean Normal Cloud Model for Application to Economic Decisions. Symmetry, 10(5), 140. https://doi.org/10.3390/sym10050140