A Robust Single-Valued Neutrosophic Soft Aggregation Operators in Multi-Criteria Decision Making
Abstract
:1. Introduction
2. Literature Review
3. Basic Concepts of FSS and SVNSS
- (i)
- If , then
- (ii)
- If , then
- (iii)
- If , then
- (1)
- If , then .
- (2)
- If , then .
- (3)
- If , then .
4. Single-Valued Neutrosophic Soft Weighted Arithmetic Averaging (SVNSWAA) Operator
4.1. Operational Law for SVNSNs
- (i)
- (ii)
- (iii)
- (iv)
- .
4.2. Single-Valued Neutrosophic Soft Weighted Geometric Averaging (SVNSWGA) Operator
- (Idempotency Property) If for all s, t, then
- (Boundedness Property) If and if
- (Shift-invariance Property) Let be another SVNSN then
- (Homogeneity Property) For any real number , we have
5. Model for MCDM Method Using Single-Valued Soft Information
An Approach Based on Proposed Operators
- Step 1.
- Collect all the information in the form of single-valued neutrosophic soft matrix related to each alternatives under different parameters as
- Step 2.
- To normalize the aggregated decision matrix by transforming values of benefit type (B) into cost (C) type by using the formula depicted in [61].
- Step 3.
- Aggregate the SVNSNs for each alternatives into collective decision matrix using SVNSWA or (SVNSWGA) operators.
- Step 4.
- Using Equation (1) we get the score value of for each alternatives .
- Step 5.
- Rank all the alternative in order to choice the best one(s) in accordance with .
- Step 6.
- End.
6. Numerical Example
6.1. By SVNSWA Operator
- Step 1.
- Step 2.
- All the parameters are of same type, so, there is no required for normalization.
- Step 3.
- The opinion of doctors for each patient are aggregated by using Equation (5) given as follows: , , and .
- Step 4.
- The values of score functions are: , , and .
- Step 5.
- Ranking all the patients in accordance with the value of the score of the overall single-valued neutrosophic soft numbers as .
- Step 6.
- Therefore, is the more illness patient than other patients.
6.2. By Using SVNSWGA Operator
- Step 3.
- The aggregated values for each patients using SVNSWGA operator are as follows from Equation (10): , , and .
- Step 4.
- The values of score functions are: , , and .
- Step 5.
- Ranking all the candidates in accordance with the value of the score of the overall single-valued neutrosophic soft numbers as .
- Step 6.
- Hence, is the most illness patient diagnosed by the expert doctors.
7. Comparative Analysis
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kurvers, R.H.J.M.; Krause, J.; Argenziano, G.; Zalaudek, I.; Wolf, M. Detection accuracy of collective intelligence assessments for skin cancer diagnosis. JAMA Dermatol. 2015, 151, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Krause, J.; Carney, P.A.; Bogart, A.; Kurvers, R.H.J.M. Collective intelligence meets medical decision-making: The collective outperforms the best radiologist. PLoS ONE 2015, 10, e0134269. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.A.R.; Brown, G.; Radford, A.N. Individual confidence-weighting and group decision-making. Trends Ecol. Evol. 2017, 32, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Olfati-Saber, R.; Franco, E.; Frazzoli, E.; Shamma, J.S. Belief consensus and distributed hypothesis testing in sensor networks. In Networked Embedded Sensing and Control; Springer: Berlin/Heidelberg, Germany, 2006; pp. 169–182. [Google Scholar]
- Mukhametzyanov, I.; Pamuear, D. A sensistivity analysis in MCDM problems: A statistical approach. Decis. Mak. Appl. Manag. Eng. 2018, 1, 51–80. [Google Scholar] [CrossRef]
- Teixeira, C.; Lopes, I.; Figueiredo, M. Classification methodology for spare parts management combining maintenance and logistics perspectives. J. Manag. Anal. 2018, 5, 116–135. [Google Scholar] [CrossRef]
- Ronaynea, D.; Brown Gordon, D.A. Multi-attribute decision by sampling: An account of the attraction, compromise and similarity effects. J. Math. Psychol. 2017, 81, 11–27. [Google Scholar] [CrossRef]
- Abbasian, N.S.; Salajegheh Gaspar, A.H.; Brett, P.O. Improving early OSV design robustness by applying Multivariate big data analytics on a ship’s life cycle. J. Ind. Inf. Integr. 2018, 10, 29–38. [Google Scholar] [CrossRef]
- Liu, F.; Aiwu, G.; Lukovac, V.; Vukic, M. A multicriteria model for the selection of the transport service provider: A single valued neutrosophic DEMATEL multicriteria model. Decis. Mak. Appl. Manag. Eng. 2018, 1, 121–130. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic Fuzzy Sets: Theory and Applications, Studies in Fuzziness and Soft Computing; Physica-Verlag: Heidelberg, Germany; New York, NY, USA, 1999; Volume 35. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
- Beliakov, G.; Pradera, A.; Calvo, T. Aggregation Functions: A Guide for Practitioners; Springer: Heidelberg/Berlin, Germany; New York, NY, USA, 2007. [Google Scholar]
- Beliakov, G.; Bustince, H.; Goswami, D.P.; Mukherjee, U.K.; Pal, N.R. On averaging operators for Atanassov’s intuitionistic fuzzy sets. Inf. Sci. 2011, 181, 1116–1124. [Google Scholar] [CrossRef]
- Chen, S.M.; Chiou, C.H. Multiattribute decision making based on interval-valued intuitionistic fuzzy sets, PSO techniques, and evidential reasoning methodology. IEEE Trans. Fuzzy Syst. 2015, 23, 1905–1916. [Google Scholar] [CrossRef]
- Jana, C.; Pal, M.; Karaaslan, F.; Wang, J.Q. Trapezoidal neutrosophic aggregation operators and its application in multiple attribute decision-making process. Sci. Iran. E 2018. in accepted. [Google Scholar]
- Jana, C.; Senapati, T.; Pal, M.; Yager, R.R. Picture fuzzy Dombi aggregation operators: Application to MADM process. Appl. Soft Comput. 2018, 74, 99–109. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Wu, X.H.; Zhang, H.Y.; Chen, X.H. The fuzzy cross-entropy for intuitionistic hesitant fuzzy sets and its application in multi-criteria decision-making. Int. J. Syst. Sci. 2015, 46, 2335–2350. [Google Scholar] [CrossRef]
- Wang, P.; Xu, X.H.; Wang, J.Q.; Cai, C.G. Some new operation rules and a new ranking method for interval-valued intuitionistic linguistic numbers. J. Int. Fuzzy syst. 2017, 32, 1069–1078. [Google Scholar] [CrossRef]
- Xu, Z.S.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433. [Google Scholar] [CrossRef]
- Xu, Z.S. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar]
- Ye, J. Multicriteria fuzzy decision-making method based ona novel accuracy function under interval-valued intuitionistic fuzzy environment. Expert Syst. Appl. 2009, 36, 899–6902. [Google Scholar] [CrossRef]
- Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, DE, USA, 1999. [Google Scholar]
- Smarandache, F. Neutrosophic set-a generalization of the intuitionistic fuzzy set. Int. J. Pure Appl. Math. 2005, 24/3, 287–297. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Int. Fuzzy Syst. 2014, 27, 2459–2466. [Google Scholar]
- Garg, H.; Nancy. Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making. J. Ambient Intell. Hum. Comput. 2018, 9, 1975–1997. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.Y.; Wang, J.Q. Frank Choquet Bonferroni mean operators of bipolar neutrosophic sets and their application to multi-criteria decision-making problems. Int. J. Fuzzy Syst. 2018, 20, 13–28. [Google Scholar] [CrossRef]
- Shi, L.; Ye, J. Dombi aggregation operators of neutrosophic cubic sets for multiple attribute decision-making. Algorithms 2018, 11, 29. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhang, Z. Some single-valued neutrosophic Bonferroni power aggregation operators in multiple attribute decision making. J. Ambient Intell. Hum. Comput. 2018. [Google Scholar] [CrossRef]
- Ulucay, V.; Deli, I.; Sahin, M. Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision-making. Neural Comput. Appl. 2018, 29, 739–748. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, M.; Zhou, Y.; Hezam, I. Multi-criteria group decision making based on neutrosophic analytic hierarchy process. J. Int. Fuzzy Syst. 2017, 33, 4055–4066. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, M.; Smarandache, F. An extension of neutrosophic AHP-SWOT analysis for strategic planning and decision-making. Symmetry 2018, 10, 116. [Google Scholar] [CrossRef]
- Dalapati, S.; Pramanik, S.; Alam, S.; Smarandache, F.; Roy, T.K. IN-cross entropy based magdm strategy under interval neutrosophic set environment. Neutrosophic Sets Syst. 2017, 18, 43–57. [Google Scholar]
- Bausys, R.; Zavadskas, E.K. Multicriteria decision making approach by VIKOR under interval neutrosophic set environment. Econ. Comput. Econ. Cybern. Stud. Res. 2015, 4, 33–48. [Google Scholar]
- Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under single valued neutrosophic environment. Neural Comput. Appl. 2016, 27, 727–737. [Google Scholar] [CrossRef]
- Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F.; Krishnan Kishore, K.P.; Sahin, R. Shortest path problem under interval valued neutrosophic setting. J. Fundam. Appl. Sci. 2018, 10, 168–174. [Google Scholar]
- Sahin, R.; Liu, P. Correlation coefficient of single-valued neutrosophic hesitant fuzzy sets and its applications in decision making. Neural Comput. Appl. 2017, 28, 1387–1395. [Google Scholar] [CrossRef]
- Jana, C.; Pal, M.; Wang, J.Q. Bipolar fuzzy Dombi aggregation operators and its application in multiple attribute decision making process. J. Ambient Intell. Hum. Comput. 2018. [Google Scholar] [CrossRef]
- Pamuear, D.; Bozaniae, D.; Lukovac, V.; Komazec, N. Normalized weighted geometric bonferroni mean operator of interval rough numbers- application in interval rough DEMATEL-COPRAS. Facta Univ. Ser. Mech. Eng. 2018, 1–22. [Google Scholar] [CrossRef]
- Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
- Maji, P.K.; Biswas, R.; Roy, A.R. Intuitionistic fuzzy soft sets. J. Fuzzy Math. 2001, 9, 677–692. [Google Scholar]
- Molodtsov, D. Soft set theory-first results. Comput. Math. Appl. 1999, 27, 19–31. [Google Scholar] [CrossRef]
- Cagman, N.; Citak, F.; Enginoglu, S. Fuzzy parameterized fuzzy soft set theory and its applications. Turk. J. Fuzzy Syst. 2001, 1, 21–35. [Google Scholar]
- Cagman, N.; Deli, I. Intuitionistic fuzzy parameterized soft set theory and its decision making. Appl. Soft. Comput. 2015, 28, 109–113. [Google Scholar] [Green Version]
- Alkhazaleh, S.; Salleh, A.R. Fuzzy soft expert set and its application. Appl. Math. 2014, 5, 1349–1368. [Google Scholar] [CrossRef]
- Garg, H.; Arora, R. Generalized and group-based generalized intuitionistic fuzzy soft sets with applications in decision-making. Appl. Intell. 2018, 48, 343–356. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, Y.; Chen, Q.; Liu, H.; Tang, J. Interval-valued intuitionistic fuzzy soft sets and their properties. Comput. Math. Appl. 2010, 60, 906–918. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Lin, T.Y.; Yang, J.; Li, Y.; Yu, D. Combination of interval-valued fuzzy set and soft set. Comput. Math. Appl. 2009, 58, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Jana, C.; Pal, M. Application of bipolar intuitionistic fuzzy soft sets in decision making problem. Int. J. Fuzzy Syst. Appl. 2018, 7, 32–55. [Google Scholar] [CrossRef]
- Babitha, K.V.; John, S.J. Hesistant fuzzy soft sets. J. New Results Sci. 2013, 3, 98–107. [Google Scholar]
- Jana, C.; Pal, M. Applications of new soft intersection set on groups. Ann. Fuzzy Math. Inf. 2013, 6, 17–31. [Google Scholar]
- Jana, C.; Pal, M. Application of (α,β)-soft intersectional sets on BCK/BCI-algebras. Int. J. Intell. Syst. Technol. Appl. 2017, 16, 269–288. [Google Scholar] [CrossRef]
- Selvachandran, G.; Peng, X. A modified TOPSIS method based on vague parameterized vague soft sets and its application to supplier selection problems. Neural Comput. Appl. 2018. [Google Scholar] [CrossRef]
- Arora, R.; Garg, H. Prioritized averaging/geometric aggregation operators under the intuitionistic fuzzy soft set environment. Sci. Iran. E 2018, 25, 466–482. [Google Scholar] [CrossRef]
- Karaaslan, F. Possibility neutrosophic soft sets and PNS-decision making method. Appl. Soft Comput. 2017, 54, 403–414. [Google Scholar] [CrossRef]
- Broumi, S.; Samarandache, F. Single-valued neutrosophic soft expert sets and their application in decision-making. J. New Theory 2015, 3, 67–88. [Google Scholar]
- Ali, M.; Son, L.; Deli, I.; Tien, N.D. Bipolar Neutrosophic Soft Sets and Applications in Decision Making. J. Int. Fuzzy Syst. 2017, 33, 4077–4087. [Google Scholar] [CrossRef]
- Deli, I.; Eraslan, S.; Cagman, N. ivnpiv-Neutrosophic soft sets and their decision making based on similarity measure. Neural Comput. Appl. 2018, 29, 187–203. [Google Scholar] [CrossRef]
- Khalid, A.; Abbas, M. Distance measures and operations in intuitionistic and interval- valued intuitionistic fuzzy soft set theory. Int. J. Fuzzy Syst. 2015, 17, 490–497. [Google Scholar] [CrossRef]
- Sahin, R. Multi-criteria neutrosophic decision making method based on score and accuracy functions under neutrosophic environment. arXiv, 2014; arXiv:412.5202. [Google Scholar]
- Xu, Z.S.; Hu, H. Projection models for intuitionistic fuzzy multiple attribute decision- making. Int. J. Inf. Technol. Dec. Mak. 2010, 9, 267–280. [Google Scholar] [CrossRef]
- Chen, J.; Ye, J. Some Single-Valued Neutrosophic Dombi Weighted Aggregation Operators for Multiple Attribute Decision-Making. Symmetry 2017, 9, 82. [Google Scholar] [CrossRef]
- Pamuear, D.; Badi, I.; Sanja, S.; Obradovic, R. A novel approach for the selection of power-generation technology using a linguistic neutrosophic CODAS method: A case study in Libya. Energies 2018, 11, 2489. [Google Scholar] [CrossRef]
- Maio, C.D.; Fenza, G.; Loia, V.; Orciuoli, F.; Herrera-Viedma, E. A framework for context-aware heterogeneous group decision making in business processes. Knowl.-Based Syst. 2016, 102, 39–50. [Google Scholar] [CrossRef]
- Smarandache, F.; Vladareanu, L. Applications of Neutrosophic Logic to Robotics. Available online: https://www.researchgate.net/publication/268443363_Applications_of_Neutrosophic_Logic_to_Robotics_An_Introduction (accessed on 21 March 2015).
Methods | Ranking Order | ||||
---|---|---|---|---|---|
0.1514 | 0.2632 | 0.2047 | 0.1875 | ||
0.0519 | 0.1417 | 0.1145 | 0.0930 | ||
Ye [25] by SNWAA operator | 0.1440 | 0.2583 | 0.1969 | 0.1822 | |
Ye [25] by SNWGA operator | 0.1487 | 0.2506 | 0.1999 | 0.1852 | |
Chen and Ye [62] SVNDWA operator | 0.1594 | 0.2732 | 0.2131 | 0.1915 | |
Chen and Ye [62] SVNDWG operator | 0.1378 | 0.2383 | 0.1875 | 0.1760 | |
Sahin [60] SVNWAA operator | 0.1515 | 0.2632 | 0.2047 | 0.1869 | |
Sahin [60] SVNWGA operator | 0.1412 | 0.2445 | 0.1921 | 0.1791 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jana, C.; Pal, M. A Robust Single-Valued Neutrosophic Soft Aggregation Operators in Multi-Criteria Decision Making. Symmetry 2019, 11, 110. https://doi.org/10.3390/sym11010110
Jana C, Pal M. A Robust Single-Valued Neutrosophic Soft Aggregation Operators in Multi-Criteria Decision Making. Symmetry. 2019; 11(1):110. https://doi.org/10.3390/sym11010110
Chicago/Turabian StyleJana, Chiranjibe, and Madhumangal Pal. 2019. "A Robust Single-Valued Neutrosophic Soft Aggregation Operators in Multi-Criteria Decision Making" Symmetry 11, no. 1: 110. https://doi.org/10.3390/sym11010110
APA StyleJana, C., & Pal, M. (2019). A Robust Single-Valued Neutrosophic Soft Aggregation Operators in Multi-Criteria Decision Making. Symmetry, 11(1), 110. https://doi.org/10.3390/sym11010110