Quasiprobability Distribution Functions from Fractional Fourier Transforms
Abstract
:1. Introduction
2. Fractional Fourier Transform
3. Probability Distribution in the Phase Space
Case
4. Kirkwood Distribution and Distribution
4.1. Number State
4.2. Superposition of Two Coherent States
5. Reconstruction of Distribution
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leibfried, D.; Meekhof, D.M.; King, B.E.; Monroe, C.; Itano, W.M.; Wineland, D.J. Experimental determination of the motional quantum state of a trapped atom. Phys. Rev. Lett. 1996, 77, 4281. [Google Scholar] [CrossRef] [PubMed]
- Bertet, P.; Auffeves, A.; Maioli, P.; Osnaghi, S.; Meunier, T.; Brune, M.; Raimond, J.M.; Haroche, S. Direct measurement of the Wigner function of a one-photon fock state in a cavity. Phys. Rev. Lett. 2002, 89, 200402. [Google Scholar] [CrossRef] [PubMed]
- Lutterbach, L.G.; Davidovich, L. Method for direct measurement of the Wigner function in cavity QED and ion traps. Phys. Rev. Lett. 1997, 78, 2547. [Google Scholar] [CrossRef]
- Leonhardt, U. Measuring the Quantum State of Light; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Lvovsky, A.I.; Raymer, M.G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 2009, 81, 299–332. [Google Scholar] [CrossRef] [Green Version]
- Wallentowitz, S.; Vogel, W. Reconstruction of the quantum-mechanical state of a trapped ion. Phys. Rev. Lett. 1995, 75, 2932–2935. [Google Scholar] [CrossRef] [PubMed]
- Wallentowitz, S.; Vogel, W. Unbalanced homodyning for quantum state measurements. Phys. Rev. A 1996, 53, 4528–4533. [Google Scholar] [CrossRef] [PubMed]
- Wigner, E.P. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749. [Google Scholar] [CrossRef]
- McCoy, N.H. On the function in quantum mechanics which corresponds to a given function in classical mechanics. Proc. Natl. Acad. Sci. USA 1932, 18, 674. [Google Scholar] [CrossRef] [PubMed]
- Dirac, P.A.M. On the analogy between classical and quantum mechanics. Rev. Mod. Phys. 1945, 17, 195. [Google Scholar] [CrossRef]
- Husimi, K. Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264–314. [Google Scholar]
- Kirkwood, J.G. Quantum statistics of almost classical assemblies. Phys. Rev. 1933, 44, 31–37. [Google Scholar] [CrossRef]
- Kiesel, T.; Vogel, W.; Bellini, M.; Zavatta, A. Nonclassicality quasiprobability of single-photon-added thermal states. Phys. Rev. A 2011, 83, 032116. [Google Scholar] [CrossRef]
- Moya-Cessa, H.; Vidiella-Barranco, A. Interaction of squeezed states of light with two-level atoms. J. Mod. Opt. 1992, 39, 2481–2499. [Google Scholar] [CrossRef]
- Alonso, M.A. Wigner functions in optics: Describing beams as ray bundles and pulses as particle ensembles. Adv. Opt. Photonics 2001, 3, 272–365. [Google Scholar] [CrossRef]
- Bastiaans, M.J.; Wolf, K.B. Phase reconstruction from intensity measurements in linear systems. J. Opt. Soc. Am. A 2003, 20, 1046–1049. [Google Scholar] [CrossRef]
- Yazdanpanah, N.; Tavassoly, M.K.; Jurez-Amaro, R.; Moya-Cessa, H.M. Reconstruction of quasiprobability distribution functions of the cavity field considering field and atomic decays. Opt. Commun. 2017, 400, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Royer, A. Wigner function as the expectation value of a parity operator. Phys. Rev. A 1977, 15, 449. [Google Scholar] [CrossRef]
- Wünsche, A. Displaced Fock states and their connection to quasi-probabilities. Quantum Opt. 1991, 3, 359–383. [Google Scholar] [CrossRef]
- Moya-Cessa, H.; Knight, P.L. Series representation of quantum-field quasiprobabilities. Phys. Rev. A 1993, 48, 2479. [Google Scholar] [CrossRef] [PubMed]
- Glauber, R.J. Coherent and incoherent states of the radiation field. Phys. Rev. 1963, 131, 2766. [Google Scholar] [CrossRef]
- De Oliveira, F.A.M.; Kim, M.S.; Knight, P.L.; Buzek, V. Properties of displaced number states. Phys. Rev. A 1990, 41, 2645. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, E.C.G. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 1963, 10, 277. [Google Scholar] [CrossRef]
- Pati, A.K.; Singh, U.; Sinha, U. Measuring non-Hermitian operators via weak values. Phys. Rev. A 2015, 92, 052120. [Google Scholar] [CrossRef]
- Rihaczek, A.N. Signal energy distribution in time and frequency. IEEE Trans. Inf. Theory 1968, 14, 369–374. [Google Scholar] [CrossRef]
- Namias, V. The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl. 1980, 25, 241–265. [Google Scholar] [CrossRef]
- Agarwal, G.S.; Simon, R. A simple realization of fractional Fourier transform and relation to harmonic oscillator Green’s function. Opt. Commun. 1994, 110, 23. [Google Scholar] [CrossRef]
- Fan, H.-Y.; Chen, J.-H. On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations. Front. Phys. 2015, 10, 100301. [Google Scholar] [CrossRef]
- Praxmeyer, L.; Wódkiewicz, K. Quantum interference in the Kirkwood-Rihaczek representation. Opt. Commun. 2003, 223, 349–365. [Google Scholar] [CrossRef]
- Praxmeyer, L.; Wódkiewicz, K. Hydrogen atom in phase space: The Kirkwood-Rihaczek representation. Phys. Rev. A 2003, 67, 054502. [Google Scholar] [CrossRef]
- Moya-Cessa, H. Relation between the Glauber-Sudarshan and Kirkwood-Rihaczec distribution functions. J. Mod. Opt. 2013, 60, 726–730. [Google Scholar] [CrossRef]
- Moya-Cessa, H.; Roversi, J.A.; Dutra, S.M.; Vidiella-Barranco, A. Recovering coherence from decoherence: A method of quantum state reconstrucion. Phys. Rev. A 1999, 60, 4029–4033. [Google Scholar] [CrossRef]
- Moya-Cessa, H.; Dutra, S.M.; Roversi, J.A.; Vidiella-Barranco, A. Quantum state reconstruction in the presence of dissipation. J. Mod. Opt. 1999, 46, 555–558. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anaya-Contreras, J.A.; Zúñiga-Segundo, A.; Moya-Cessa, H.M. Quasiprobability Distribution Functions from Fractional Fourier Transforms. Symmetry 2019, 11, 344. https://doi.org/10.3390/sym11030344
Anaya-Contreras JA, Zúñiga-Segundo A, Moya-Cessa HM. Quasiprobability Distribution Functions from Fractional Fourier Transforms. Symmetry. 2019; 11(3):344. https://doi.org/10.3390/sym11030344
Chicago/Turabian StyleAnaya-Contreras, Jorge A., Arturo Zúñiga-Segundo, and Héctor M. Moya-Cessa. 2019. "Quasiprobability Distribution Functions from Fractional Fourier Transforms" Symmetry 11, no. 3: 344. https://doi.org/10.3390/sym11030344
APA StyleAnaya-Contreras, J. A., Zúñiga-Segundo, A., & Moya-Cessa, H. M. (2019). Quasiprobability Distribution Functions from Fractional Fourier Transforms. Symmetry, 11(3), 344. https://doi.org/10.3390/sym11030344